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Abstract 
The placebo response is associated with a positive expectation of recovery. Recent studies 
in mice uncovered a potential underlying mechanism of placebo effects, by 
demonstrating the involvement of the dopaminergic mesolimbic pathway, previously 
implicated in reward expectation, in immune modulation. Yet, it is not known whether an 
analogous brain-immune regulatory mechanism exists in humans, and whether it 
employs conscious positive expectations. Here, we employed fMRI-neurofeedback to 
train healthy participants to increase their reward mesolimbic activity by using self-
chosen mental strategies, followed by Hepatitis B Virus (HBV) vaccination. We found that 
stronger Ventral Tegmental Area (VTA) activity, but not control regions activation, was 
associated with higher post-vaccination HBV antibody titer. Interestingly, higher VTA 
activity before vaccination was associated with mental strategies characterized by 
positive expectation. Thus, our results establish a relationship between reward system 
activity, positive expectation and immunity in humans and reveal a potential 
neuropsychological mechanism for non-invasive immune modulation. 
 
https://clinicaltrials.gov/study/NCT03951870.  
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Introduction 
Could our thoughts and feelings directly affect our physical well-being? While clinical 
benefits of positive expectations from medical treatment (i.e. placebo effects) have been 
extensively documented1, the underlying neural mechanism of such a mind-body link 
has only begun to be elucidated. The neural network associated with reward 
expectation, exploration and prediction error is the dopaminergic mesolimbic pathway, 
specifically the Ventral Tegmental Area (VTA)2. Previous studies in mice demonstrated 
that chemogenetic activation of dopaminergic neurons in the VTA alters immune 
activity, which results in improved recovery from bacterial infection3 and attenuated 
lung tumor growth4. Using optogenetic stimulation, it was further shown that phasic 
activation of the VTA increases immune activity. Intriguingly, a prototypical increase 
in mating-induced cytokines was abolished by specific inhibition of VTA dopaminergic 
activity5. These findings demonstrate the top-down regulation of peripheral immunity 
in the context of reward-seeking behaviour. In humans, correlations between reward-
related neural activity (measured through functional neuroimaging) and specific 
immune markers have been documented6–8. However, it is unclear to what extent the 
human reward mesolimbic (reward-ML) pathway causally modulates immune function, 
and if it does, through which psychological processes. 
 
In the current study we investigated whether upregulation of the reward-ML network 
(the VTA and bilateral nucleus accumbens (Nac); see Figure S1) can enhance the 
response to an immune challenge. We hypothesized that upregulation of reward-ML 
activity could enhance participants’ immune response to vaccination (i.e., antibody 
titer). To test this, we applied functional Magnetic Resonance Imaging NeuroFeedback 
(fMRI-NF) training9–11, a self-neuromodulation procedure based on reinforcement 
learning principles. In each fMRI-NF trial (Figure 1b), participants chose and applied a 
mental strategy – a combination of perceptual, affective, cognitive, or meta-cognitive 
mental contents – and then received reinforcing feedback reporting on changes in 
targeted brain regions activations, thus learning which mental strategies induce the 
desired upregulation pattern. These self-chosen strategies were recorded during NF 
training, and then systematically characterized (Figure 1c, upper panel, and Figure 
S3). 
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Figure 1: a. Experimental procedure: NF participants performed 8 to 11 fMRI-NF runs (each run 
consists of five consecutive trials) across three fMRI-NF sessions (session 2 to 4), or, if time allowed, four 
fMRI-NF sessions (session 1 to 4). Session 4 fMRI-NF was immediately followed by HBV vaccination. 
Blood tests were acquired to assess HBV antibody titer (baseline at sessions 1 and 4; post-vaccination 
measurements at sessions 5 and 6). b. NF procedure: During each NF trial, participants were instructed 
to (i) choose via a key press one out of four mental strategies (predefined by participants before each NF 
run) for the upcoming ‘Upregulate’ screen, (ii) rest while passively watching the red dot on the screen, 
(iii) upregulate neural target activity by employing their chosen strategy (for example, recalling a trip), 
and (iv) receive numeric (1-10) and graphic (smiley) feedback proportional to regulation success 
(difference in neural target activity between the current trial’s ‘Upregulate’ and ‘Rest’ epochs). The 
experimental group received feedback contingent on the reward-ML network (VTA (blue) and bilateral 
Nac (purple)). Control NF group participants were randomly assigned to receive feedback contingent on 
one of four functional networks unrelated to reward processes (an example network is illustrated in 
green; see ‘Online Methods’ and Figure S2). Guided by repeated feedback, participants learn which 
strategy types are the most effective for facilitating the desired upregulation effect. c. 
Neuropsychological analyses of NF data. Upper panel: Mental characterization included post-session 
labelling of self-chosen mental strategies across 45 mental features, resulting in a vectorial mental 
characterization of each NF trial. Lower panel: Neural effects were estimated based on reward-ML 
Regions Of Interest (ROI) analyses of differences between ’Upregulate’ and ‘Rest’ fMRI-BOLD activity, 
across NF training runs. 
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Results 
In a pre-registered, double-blind, randomized controlled trial, 85 healthy individuals 
were recruited to the study (18-45, Mage±SD: 24.98 ± 4.56 years, 51 females). Participants 
were assigned either to upregulate the joint activity of their reward-ML network 
(experimental group; N=34), to upregulate one out of four non-mesolimbic functional 
networks (control group; N=34) (Figure 1b), or to a no-NF group (N=17) (see Table-1). 
Immediately after the last training session/waiting period, all participants received a 
Hepatitis B Virus (HBV) vaccine to challenge their immune system. Blood samples were 
drawn twice before and twice (14 and 28 days) after vaccination to assess the 
development of HBV antibodies (Figure 1a and ‘Online Methods’). A subgroup of 
subjects (n=34) arrived for a 7th session for a blood test 3 months following vaccination, 
aimed to assess long-term adaptive immune system effects manifested by HBV 
antibodies. The main trial began in March, 2020, and ended in August, 2022, when 
reaching the pre-registered N. No harms or unintended effects occurred to participants 
during the study.  
 
Table 1: Demographics and baseline motivational and personality characteristics 

Variable Reward-ML NF Control NF no NF p-value 
N 34 34 17 N/A 

Gender (F/M) (21/13) (21/13) (9/8) N/A 
Age 24.53 (4.43) 24.16 (2.81) 27.67 (6.66) 0.036 

TPQ Novelty Seeking 14.96 (4.03) 14.84 (3.91) 14.2 (6.09) 0.889 
TPQ Harm Avoidance 10.75 (5.69) 10.71 (5.59) 11.4 (5.85) 0.941 

TPQ Reward Dependence 21.24 (2.57) 20.49 (3.28) 19.0 (3.33) 0.138 
NEO-FFI Neuroticism 28.11 (7.79) 30.26 (7.72) 29.4 (8.71) 0.581 

NEO-FFI Openness 38.64 (6.49) 41.5 (5.54) 42.7 (7.12) 0.107 
NEO-FFI Agreeableness 52.07 (6.28) 50.58 (6.12) 47.5 (8.02) 0.165 

NEO-FFI Conscientiousness 47.75 (5.78) 47.28 (7.05) 45.9 (4.79) 0.727 
NEO-FFI Extraversion 43.01 (6.32) 42.39 (8.12) 43.0 (8.15) 0.942 

SPSRQ Reward Sensitivity 9.68 (3.82) 10.48 (3.48) 9.8 (4.58) 0.698 
SPSRQ Punishment Sensitivity 10.21 (4.43) 9.97 (4.47) 9.5 (5.15) 0.912 

Table 1: p- values were calculated based on a one-way ANOVA across the three study groups. Baseline 
motivational and personality characteristics are subscales of the Tri-Personality Questionnaire (TPQ), 
Neuroticism-Extraversion-Openness Five-Factor-Inventory (NEO-FFI), and Sensitivity to Reward and 
Sensitivity to Punishment Questionnaire (SPSRQ), measured at the beginning of session 1. 
 
Neurofeedback Regulation Effects 
We first determined whether the experimental group would exhibit elevated reward-
ML activation during NF training compared to the control NF group (our neural primary 
outcome measure). For each mesolimbic region, we conducted a mixed-linear-effects 
regression analysis. The dependent variable was Blood-Oxygenated-Level-Dependent 
(BOLD) percent signal changes (PSC) of ‘Upregulate>Rest’ contrasts calculated per NF 
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run (five consecutive NF trials). Hypotheses were quantified through group and time 
(session 2 to 4; see ‘Methods’ section) terms and group-by-time interaction term as 
fixed effects. A nested runs-within-sessions term was introduced as a fixed effect to 
account for within-session fatigue, and random intercepts were introduced to account 
for individual variability. Analyses revealed that VTA BOLD activity significantly 
increased across sessions for all NF participants (VTA main time effect: F(2,66)=7.61, 
p<0.001,	 𝜂!"#$%&#' = 0.19, Figure 2a, upper panel), but with no significantly larger 

increases in the reward-ML group compared to the control group (VTA group-by-time 
interaction: F(2,66)=0.762, p=n.s). Nac activity marginally increased more in the 
reward-ML group than in the control group (Nac group-by-time interaction: 
F(2,66)=2.708, p=0.067, 𝜂!"#$%&#' = 0.077; session-4 simple group effects: t(66)=2.42, 

p=0.019, Cohen’s D=0.295; Figure 2b, lower panel). Together, these results indicate 
differential effects across the reward-ML network, with substantial VTA upregulation 
effects regardless of NF targeting. 
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Figure 2: a. Neurofeedback regulation effects. fMRI-NF regulation effects per group (Mean±SE; black 
- experimental group; grey - control NF group) for VTA (upper panel; blue) and Nac (lower panel; purple) 
b. Brain-Immune correlations. Pearson’s correlations between the degree of regulation in each region 
(x-axes; higher positive slopes indicate a more substantial increase in regional activity across NF training 
runs), and post-vaccination change in HBV antibody levels (y-axes; higher values indicate a more 
substantial increase in HBV antibody levels). c. Pre-vaccination frequency of mental features. 
Frequency of affective and reward-related features in mental strategies during session 4 (prior to 
vaccination), for high and low regional activity levels in the VTA, Nac and non-mesolimbic control 
regions (coloured by dark vs bright shades, respectively).  † p<0.1; * p<0.05; ** p<0.01; *** p<0.001; **** 
p<0.0001. 
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Associations between reward mesolimbic upregulation and vaccination efficiency 
The VTA upregulation effects indicate that both experimental and control NF groups 
experienced reward-related activations. Inspecting NF groups separately via mixed-
linear-effects regression analysis (similar to the model detailed above, excluding 
group-related terms) revealed significant increases across sessions in VTA activity in 
the experimental group (F(2,33)=5.02, p<0.001, 𝜂!"#$%&#' = 0.233) and a marginal 

increase in the control NF group (F(2,33)=2.66, p=0.071, 𝜂!"#$%&#' = 0.139). Indeed, NF 

training is a reward learning paradigm (see also Figure S4 demonstrating reward-
related activations). In line with these results, we hypothesized that regardless of NF 
group allocation, reward-ML activity during NF training would be correlated with an 
elevated post-vaccination immune response. 
  
We assessed the correlations between neural regulation effects and immune responses 
(our first pre-registered hypothesis for the primary immunological outcome measure). 
For each region, participant-specific regulation effects were quantified as the 
individual change (i.e. increases or decreases, captured by a linear slope; see refs12–14) 
in ‘Upregulate>Rest’ BOLD activity levels across NF runs. IgG/IgM HBV antibody 
(HBVab) levels in blood plasma were log-transformed. The immune response was 
measured as the difference between mean post-vaccination (sessions 5 and 6) and 
mean baseline (sessions 1 and 4) measurements. Seven vaccination non-responders ( 

post-vaccination HBVab levels<10 mg/ml; a known phenomenon specifically for HBV 
vaccination, see ref15), evenly distributed among NF groups, were excluded from further 
immunological analyses. One participant dropped out due to personal reasons before 
post-vaccination antibody assessment sessions, leaving 60 participants for analyses (30 
in each NF group). Correlational analyses revealed that stronger increases in regulation 
of VTA, but not of Nac, were significantly correlated with higher post-vaccination HBV 
antibody changes (VTA: r=0.31, N=60, p=0.018, 𝐶𝐼()%= [0.061, 0.523]; Figure 2a, right 
panel; Nac: r=-0.01, N=60, p=0.887, 𝐶𝐼()%= [-0.263, 0.244]; Figure 2b, right panel; 
Bonferroni-corrected critical p=0.05/2 = 0.025). These findings suggest the existence 
of a VTA-immune modulatory effect in humans, which corresponds with previous 
findings in mice3–5.  
 
To determine whether these brain-immune associations persisted in time, we examined 
correlations between reward-ML regulation effects and HBVab change three months 
following HBV vaccination (secondary immunological outcome measure). Out of 34 
participants with long-term blood test measurements, 27 were NF participants. Three 
non-responders (according to the threshold defined above) were excluded, leaving 24 
participants for analysis (12 per NF group). Correlational analyses revealed that the 
pattern of results exhibited two weeks to one month after vaccination was preserved 
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three months following vaccination (VTA: r=0.3, p = 0.152, 𝐶𝐼()%= [-0.116, 0.628]; Nac: 
r=-0.19, p = 0.365, 𝐶𝐼()%= [-0.551, 0.231]), although it did not reach significance, 
possibly due to low statistical power. 
  
Critically, an alternative, non-causal explanation for the observed correlation between 
VTA regulation and HBVab change could be that general success in the NF task, rather 
than specific VTA regulation, led to a stronger immune response (at least for 
participants from the experimental group whose rewarding feedback was partly 
contingent on VTA levels). To test this possibility, we examined whether activity in the 
non-mesolimbic control regions, reinforced during regulation for the control group 
participants, was correlated with HBVab change. However, our analyses did not reveal 
such a correlation (r=0.11, N=30, p=0.559, 𝐶𝐼()%= [-0.26, 0.452]). In addition, VTA or 
Nac activity during session-4 ‘Feedback’ condition (Figure 1b), which captures neural 
reward responsivity levels during NF training, did not correlate with HBVab change 
(VTA: r=0.15, p=0.238, 𝐶𝐼()%= [-0.11, 0.389]; Nac: r=0.04, p=0.763, 𝐶𝐼()%= [-0.216, 
0.291]). Together, these analyses rule out general NF learning or reward effects as the 
driving factor of a VTA-immune correlation. 
  
Another non-causal explanation for the VTA-immune correlation is that individuals 
with higher trait motivational capacities may exhibit both stronger VTA regulation 
effects and higher vaccination efficiency, regardless of the temporal contingency 
between NF training and HBV vaccination. To examine this possibility, we assessed 
whether post-vaccination HBVab change and VTA upregulation effects were correlated 
with an array of motivational neuro-behavioural trait indices assessed by designated 
tasks and questionnaires collected before NF training (pre-registered as secondary 
outcome measures). These included fMRI BOLD responses to rewards in a Monetary 
Incentive Delay task16, a behavioural measure of effort expenditure levels17, and 
approach-avoidance tendencies18. However, analyses did not reveal any such 
associations (see ‘Supplementary Information’), ruling out such individual differences 
in motivational traits as the cause of the VTA-Immune correlation. 
 
We next examined our second pre-registered hypothesis regarding the primary 
immunological outcome measure, that the experimental group would exhibit a larger 
increase in anti-HBV antibody titer compared to the control group and the no-NF group. 
A one-way ANOVA across the three study groups (N=72 after excluding vaccination 
non-responders, as specified earlier) with post-vaccination HBVab change as the 
dependent variable did not reveal significant differences between groups (F(2,70) = 
0.65, p = 0.565). This is contrary to our hypothesis but in line with the lack of significant 
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differences between NF groups in VTA regulation effects, which were found to be 
correlated with, and possibly drive, post-vaccination HBVab change. 
 
Specificity of the link between VTA upregulation and positive expectation 
To reveal the psychological aspects of the link between VTA upregulation and immune 
function, we tested whether elevated reward-ML activity before HBV vaccination 
(during session 4) was associated with the employment of mental strategies 
characterized by reward-related features (pre-registered as a secondary outcome 
measure), and specifically positive expectation, which was previously reported to 
precede placebo effects19,20. As for brain-immune correlations, we analyzed data from 
both NF groups together. These analyses were defined as exploratory. 
 
To quantify the frequency of mental features during session 4 fMRI-NF training, we 
employed a new methodology for a trial-locked estimation of mental strategies during 
regulation attempts. For each NF trial, participants chose via key press which strategy 
to apply (Figure 1b, choice screen). Following training, participants characterized their 
applied strategies via a dedicated Mental Strategies Questionnaire for NF (Figure S3). 
This resulted in a binary matrix that indicates the involvement of mental 
categories/dimensions during each NF trial.  
 
For each target region, we classified the fourth NF session of each participant 
(𝑁+,-./0%+ = 68) as exhibiting either high or low activity patterns (based on a median 
split of session 4 ‘Upregulate>Rest’ BOLD activity levels). We then compared the 
frequency of mental features in trials from sessions exhibiting high vs low activity, 
using Chi-squared tests (29 included features, 𝑝1234/$$23& = 0.05/29 = 0.0017; total 
𝑁%$&#'+	 = 962. Feature-specific N differed according to participants’ responses (trials in 
which participants did not classify a strategy for a certain feature were excluded), and 
is reported below for each Chi-square test; see more details in ‘Online Methods’). 
Focusing on reward-related and affective features, we found that elevated VTA activity 
was associated solely with mental strategies characterized by a higher frequency of 
positive expectation feature (‘Experiencing a positive expectation or excitement 
towards events/occurrences’) (χ²(1)=17.33, p<.0001, 𝑁%$&#'+	= 862, 𝜑 = 0.140), while 
other reward-related/affective features did not differ as a function of VTA activity 
(Figure 2c, left panel). Conversely, elevated Nac activity was associated with higher 
frequency of several reward-related/affective features, such as love (χ²(1)=43.66, 
p<.0001, N = 962, 𝜑 = 0.213), social content (χ²(1)=24.40, p<.0001, 𝑁%$&#'+	= 960, 𝜑 =
0.159), positive valence (χ²(1)=20.63, p<.0001, 𝑁%$&#'+	= 962, 𝜑 = 0.146) and calmness 
(χ²(1)=10.95, p<.001, 𝑁%$&#'+	= 962, 𝜑 = 0.107), but not with positive expectation (Figure 
2c, middle panel). Similarly, elevated activity in non-mesolimbic regions regulated by 
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participants in the control group (thus tested only on participants in the control group, 
N=34), was associated only with the pleasure feature (χ²(1)=16.49, p<.0001, 𝑁%$&#'+	= 415,	
𝜑 = 0.199; Figure 2c, middle panel), with no association to positive expectation, 
further supporting the specificity of the link between positive expectation and VTA 
upregulation in the context of NF training (see Figure 2c, right panel, and 
‘Supplementary Information’ for complementary analyses). Taken together, these 
results suggest that high VTA upregulation before vaccination, but not Nac or control 
regions, was associated with a key antecedent of placebo responses – positive 
expectations. 
 
Discussion 
Overall, this study demonstrates that upregulating the VTA with fMRI-NF training is 
associated with a stronger post-vaccination immune response in humans. By 
empirically ruling out central non-causal interpretations, our findings suggest a top-
down brain-immune regulation mechanism, similar to that previously described in 
animals3–5, as a potential underlying neuropsychological mechanism of the placebo 
phenomenon. Utilizing a new methodology for characterizing mental strategies, we 
further support this claim by linking pre-vaccination VTA activation with positive 
expectations, which were shown to precede placebo effects19,20.  
 
Of note, as the observed neuroimmune effects were isolated to the VTA, it is possible 
that these could have been amplified and even result in the hypothesized group 
differences if the experimental group neural target for up regulation was exclusively 
the VTA rather than the entire reward-ML network. Moreover, the association between 
VTA upregulation and mental strategies characterized by positive expectation suggests 
that future clinical studies could elicit stronger downstream immune effects by 
encouraging participants to employ mental strategies that evoke positive expectations. 
Of note, the current study was designated as a mechanistic investigation of the link 
between the reward-ML network and immune function in humans. Therefore, although 
we present a potential neural intervention for boosting vaccination efficiency in 
humans, the number of participants in our study is considered relatively small for 
testing the efficacy of an intervention in a clinical trial. In this regard, to better 
understand the extent of mesolimbic-immune regulation, it would be beneficial to 
conduct a larger, phase-2 clinical trial, and to investigate additional immune outcomes 
(e.g., cytokines, cellular profiling) and challenges (e.g., bacterial infection, 
inflammation and malignancy).  
 
Altogether, our findings emphasize the “double life” of the reward mesolimbic 
pathway21, namely, guiding reward-seeking behaviour by anticipating external positive 
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outcomes, while simultaneously boosting somatic resilience to better deal with the 
challenges that accompany the pursuit of our appetitive goals. Arguably, our self-
neuromodulation fMRI-NF approach may be used to discover new ways to boost 
immune processes, with the potential for major therapeutic implications, in fields such 
as cancer immunotherapy and chronic inflammation. Thus, we may harness the natural 
capacities of our mind and brain to heal our bodies in times of need. 
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Online Methods 
 
Pre-registration: 
Pre-registration can be found at the clinicaltrials.gov website, study ID: NCT03951870  
https://clinicaltrials.gov/study/NCT03951870. 
 
Power calculation: 
To achieve sufficient statistical power (80%) for our study design, the various expected 
effects were analysed separately. Results indicated that the most demanding 
hypothesis, the existence of a moderate correlation (r=0.3) between reward mesolimbic 
activations during NF training and immunological outcome measures, requires at least 
67 data points. As this correlation could be assessed based on subjects from both NF 
groups, NF group sizes were set to 34 each (with 17 subjects in the no-NF control group, 
resulting in a 2:2:1 ratio design). 
 
Participants: 
In total, 85 healthy individuals (ages 18-45, Mage±SD: 24.98 ± 4.56 years, 51 females) 
who intended to receive vaccination for HBV were recruited for the study. Six additional 
participants were recruited to the study but dropped out either after the first session 
from personal reasons (N=5), or after their third session due to COVID pandemic 
restrictions (N=1), and were not included in analyses. Inclusion criteria to the study 
were normal or corrected to normal vision and being able to undergo MRI scanning. 
Participants were screened according to several exclusion criteria: autoimmune or 
other acute or chronic disease, previous diagnosis of psychiatric or neurologic 
disorders that led to hospitalization, chronic use of drugs, and MRI eligibility. An 
additional exclusion criterion was previous HBV vaccination (other than during 
infancy) to minimize initial HBV antibody levels, which is different than the pre-
registered criterion of prior HBV vaccination in the last ten years. This criterion was 
adjusted based on pilot studies that revealed high baseline HBV antibody levels even 
for subjects that were vaccinated approximately 10 years prior to recruitment (see 
“Supplementary Information”). All participants received a detailed explanation of the 
study (without exposing them to any hypotheses) and provided informed consent 
according to the Tel-Aviv Sourasky Medical Center Institutional Review Board (IRB) 
committee guidelines, prior to participation. Subjects were compensated at a rate of 50 
NIS (~ $15) per hour. 
 
Pilot studies aimed at assessing the immune response in our target population and the 
efficacy of our fMRI-NF training procedure were conducted between January and 
December 2019 (see “Supplementary Information”). 
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General Procedure: 
All experimental sessions and data collection were conducted at the Tel-Aviv Sourasky 
Medical Center. Subjects were randomly assigned to one of three study groups: reward 
ML-NF (N=34), control-NF (N=34), or a no-NF control group (N=17). Allocation to NF 
groups was double-blinded throughout the whole experiment (see more details in 
‘Randomization and double-blinding’). At the beginning of session 1, subjects were 
informed of the study goals and experimental protocol, and filled out an informed 
consent according to IRB guidelines. NF Subjects took part in four fMRI scanning 
sessions. Immediately prior to the first session, subjects filled out TPQ1, NEO-FFI2 and 
SPSRQ3 questionnaires, and performed the Effort Expenditure for Rewards Task (EEfRT) 
aimed to assess effort expenditure motivational tendencies4. Then, subjects received 
instructions about the NF task. To enable blinding, all subjects received NF task 
instructions appropriate to all targets of the study (see ‘NF double-blinding and 
randomization’ section). In general, subjects were told that to up-regulate (increase) 
neural activity during training, they will have to use mental strategies that could have 
several different characteristics, and that each region in the brain may be regulated 
with its own unique type of mental contents, which they will have to discover by 
themselves. It was also stressed that for each subject, different strategies may be 
efficient. Examples of mental strategies covered a variety of general categories: 
sensory, imagery or memory, emotional or motivational contents, social aspects, or 
conceptual/arithmetic. Other general instructions were to remain with one strategy per 
cycle (not to switch in the middle of a cycle), to make the strategy tangible, and relate 
as much as possible to the mental state they wish to employ, and during Rest screens to 
relax (but with eyes open), while making sure they do not engage in strategy application 
or choice. 
 
The first fMRI scan lasted for approximately 90 minutes. A head localizer sequence and 
a structural scan were acquired. Following structural scans, subjects proceeded to an 
eight-minute functional resting-state scan (not analysed or reported in this paper). 
Then, subjects performed two runs of a functional localizer - the Monetary Incentive 
Delay (MID) task (details below). Individual mesolimbic ROIs were extracted 
algorithmically without hampering double-blinding, according to the subject’s group 
allocation (details below). If time allowed, subjects proceeded to either one or two NF 
task runs, each run consisting of five NF cycles (Figure 1b), and If not, participants 
started their NF training in the following session. During sessions 2 to 4, a head 
localizer sequence, a structural scan, and a functional EPI template were acquired. 
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Then, subjects proceeded to three or four NF runs. At the fourth session, a post-NF 
training resting-state scan was ultimately obtained. 
  
Upon finishing the last NF practice session, participants received the HBV vaccination 
at the Tel Aviv Sourasky Medical Center (Ichilov Hospital). To assess immunological 
outcome measures, all participants provided four blood samples to assess HBV 
antibody levels, before NF training (session 1), at the beginning of session 4, and two 
and four weeks following HBV vaccination (sessions 5 and 6, respectively). 
  
Participants allocated to the no-NF group participated in the procedure described above 
except NF training. Specifically, in session 1 they filled out questionnaires, performed 
EEfRT,  and participated in an fMRI scanning session with structural, resting state and 
MID scans only. In session 4 they only provided a blood sample and received HBV 
vaccination. Sessions 5 and 6 were identical to those of NF participants.  
 
Finally, a subset of 34 participants (14 reward-ML NF, 13 control NF, and 7 no-NF) were 
randomly allocated to arrive at session 7 (not shown in Figure 1a) to provide an 
additional long-term blood test. Of note, a subset of 30 participants were planned to 
arrive to that follow-up session. However, several participants that were allocated to this 
group did not wish to attend the follow-up session. Thus, to reach the N=30 goal, we 
adapted the long-term assessment recruitment procedure by inviting participants 
according to availability and regardless of group allocation (which remained double-
blinded). This solution led to an unbalanced representation of the no-NF group 
(consisting of 3 out of the 30 participants). Thus, to maintain a planned 2:2:1 ratio 
between groups as for the main immunological outcome measure, we invited 4 
additional no-NF participants that were able to attend the three months follow up 
session, reaching the following Ns per group: reward-ML NF = 14; control NF = 13; and 
no-NF = 7. Importantly, these additional four subjects have no bearing on the brain-
immune correlation reported in the manuscript (as no-NF subjects are not included in 
this analysis). 
 

Tasks: 

Monetary Incentive Delay (MID) 
To assess the relationship between neural reward responsivity measures (reward 
anticipation and consumption) and implicit regulation of immune functions, we used 
a variant of the Monetary Incentive Delay (MID) task5 that was developed by Kirschner 
and colleagues (see refs6,7). This variant enables the assessment of reward anticipation 
and reward outcome across three reward levels, and uniquely enables parametric 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.18.24313899doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.18.24313899


16 

modulation of the consumption stage, which is calibrated according to individual task 
performance. The task was performed during session 1 fMRI scanning by all 
participants. Participants were informed that at the end of each of the two 
experimental runs, the software would sum the winnings of three randomly selected 
trials, and the amount of money they would win will appear on the screen. These sums 
were added to their compensation for participating in the experiment. The maximum 
amount of money to be won was 30 NIS.  

  
During each trial, one of three different cues was presented for 0.75 s. The cue indicated 
the maximum possible amount participants could gain in that trial (i.e., 10 NIS, 2 NIS, 
or 0 NIS; 1 NIS = ~$0.35 USD). After a delay of 2.5–3 s, the participants had to identify 
an outlier from 3 presented circles and press a button (a difference in either left or right 
circles, while the central circle was always constant) as rapidly as possible. Circles 
appeared for 0.32 to 1 s. Immediately following key-press, participants were notified of 
the amount of money they had won (duration of feedback: 2 s). The actual amount of 
money won for each trial was calibrated on the basis of the response times of the 
previous 15 individual trials, in order to account for individual differences in response 
time, and thus ensure similar frequencies of high rewards across individuals (roughly 
one-third for each level – high, moderate and low amounts). Error trials were defined as 
trials with a wrong response or a late response (more than 1 s) and were excluded from 
analyses. 
  
Each participant performed two training runs, one outside and another inside the 
scanner. Excluding the training sessions, the task included two experimental runs with 
36 trials of about 10 s each. The intertrial interval (ITI) was jittered from 1 to 9 s with a 
mean of 3.5 s to enhance statistical power. In total, a run lasted 6:32 minutes. The task 
was implemented using the MATLAB toolboxes Cogent 2000 and Cogent Graphics. 
  
Effort Expenditure for Rewards Task (EEfRT) 
To assess the relationship between incentive salience and immune function, all 
subjects performed the EEfRT4,8 at the beginning of the first experimental session 
outside the scanner. 
 
In the EEfRT, participants choose between two different task difficulty levels on each 
trial to obtain monetary rewards. For both types of trials, participants were asked to 
perform repeated manual button presses within a short period, where each button press 
raises the level of a virtual “bar” viewed onscreen by the participant. Participants are 
eligible to win the money allotted for each trial if they raised the bar to the “top” within 
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the prescribed time period. Successful completion of hard-trial required the subject to 
perform 100 button presses, using the non-dominant little finger within 21 seconds, 
while successful completion of easy-trial required the subject to make 30 button 
presses, using the dominant index finger within 7 seconds. In EEfRT, subject 
performance reflects individual differences in the willingness to expend effort for a 
given level of expected reward utility (reward amount weighted against the probability 
of winning). Thus, the behavioural aspect of the concept of “wanting” is being 
manipulated. Indeed, it was found that individuals who reported higher levels of 
anhedonia exhibited a reduced willingness to make choices requiring greater effort in 
exchange for greater reward4.  
  
Real-time fMRI Neurofeedback 
Before entering the MR scanner, subjects were reminded of the NF task instructions, 
and provided with a list including at least three strategies they wish to begin with. The 
strategies were incorporated into the choice screen by the experimenter using in-house 
software, that in addition accompanied the preparation of all structural, functional and 
ROI files needed for the NF training session. Subjects were instructed to move as little 
as possible. 
  

Reward-ML network functional localization 
Prior to NF training, subjects performed the MID task, which was employed as a 
functional localizer for reward-ML NF subjects. Following MID performance, fMRI 
images were pre-processed using SPM12 (www.fil.ion.ucl.ac.uk/spm). Preprocessing 
steps included realignment, reslicing and spatial smoothing with an isotropic Gaussian 
kernel of 4-mm full width at half maximum (FWHM). For each run, a GLM was 
constructed with anticipation (high, low, neutral), cue response, and consumption 
(high, low, neutral) as explanatory regressors. Error trials were included as regressors 
of no interest, along with six head motion parameters. A second (subject)-level GLM 
was averaged over two runs, from which individual statistical t-maps of reward 
anticipation contrast (high>neutral reward anticipation) were extracted. 
  
For the bilateral Nac, predefined meta-analytic 8-mm masks (Figure S1) were 
transformed into the subject’s functional native space, by subjecting the ROIs with the 
inverse transformation of a segmented anatomical image of the respective participant 
using SPM12 (http://www.fil.ion.ucl.ac.uk) and custom-made Matlab scripts. Within 
these ROIs, the peak activation of reward anticipation contrast t-maps was identified. 
Then, 5 mm spheres were constructed around the peak activation voxels, comprising 
the subject’s individual Nac ROIs. 
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Due to the VTA's small size, anatomical complexity and its vicinity to CSF segments, we 
applied the following iterative algorithm: 
First, we multiplied the subject’s MID reward anticipation t-map with the probabilistic 
VTA map (transformed into the subject’s native space), which was previously used for 
VTA localization in NF contexts9 (see Figure S1). The resulting map captured for each 
voxel the combined likelihood of being related to reward anticipation for the specific 
participant, and of being located inside the dopaminergic VTA (as opposed to the 
substantia nigra). 
Then, beginning with radius r=3mm (with a 2mm incremental increase for each 
iteration), we: 

a)  Constructed a spherical ROI around the peak voxel in the multiplied map, 
with current radius = r. 

b)  Masked the spherical ROI from (a) with a binarized version of the 
probabilistic VTA mask (thus excluding voxels with zero likelihood of 
being inside the VTA). 

c)  Checked whether the number of voxels of ROI (b) is less than or equal to 
5 voxels. If the number of voxels was lower, (a) to (c) was repeated until 
the number of voxels in ROI was larger than 5. 

This heuristic method, which intersects the likelihood maps of reward anticipation and 
neuroanatomical probability of VTA localization, with a minimum voxel count of 5, 
resulted in individual ROIs with voxel count roughly equal to a spherical ROI with a 2.5-
3mm radius, with all voxels within the VTA. 
  
Finally, to improve signal-to-noise ratios, an individual CSF probability map was 
binarized based on a threshold of 0.8 and used to exclude high-probability CSF voxels 
from all ROIs. 
  
Functional localization of randomized networks 
To determine whether post-NF immunological effects derive specifically from reward 
mesolimbic system modulation during NF training, rather than from mere NF practice 
(which, as mentioned earlier, includes some aspects of reward as well), effects of 
reward-ML system NF were compared to a control group. Building on our previous 
theoretical analyses of NF control conditions10, we employed a new control condition to 
determine specificity of NF outcome effects. This control condition was termed 
Randomized Network NF (Figure S2). Participants in this group were randomly 
allocated to upregulate one of four non-mesolimbic functional networks, each 
consisting of three 5-mm radius ROIs taken from meta-analyses. ROIs within each 
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network were created as follows: First, the subgroup-specific ROIs of each participant 
were transformed from MNI to functional native space as described above for the Nac. 
Then, similarly to reward ML, NF participants, CSF probability maps were binarized 
based on a 0.8 threshold, and were used to exclude high-probability CSF voxels from 
the ROIs. 
  

NF double-blinding and randomization: 
Participants, experimenters and outcome assessors were all blinded to NF group 
allocation throughout the experiment. Specifically, the primary hypothesis of the study 
(the link between reward-related processes and immune functions) was withheld from 
participants. In addition, instructions before training did not mention the reinforced 
neural target or its functional definition, nor did we mention preferred process-specific 
mental strategies. To ensure experimenter blinding to NF group allocation, the real-
time NF software (OpenNFT) was adapted to not present ROIs on the experimenter 
screen. ROI creation and integration into the NF software were performed automatically 
in Matlab in a completely blinded fashion, which did not reveal group allocation to 
experimenters. Participants were randomly assigned to one of the three study groups 
via in-house Matlab (https://www.mathworks.com) function. These modifications 
rendered the NF intervention indistinguishable across groups. Outcome assessors of 
neural, mental strategies and immunological outcome measures were blinded 
throughout data analysis (group allocation was coded as either A,B or C, and each 
group’s identity (reward-ML-NF, Randomized-network-NF and no-NF) was revealed 
only after all outcome measures and effects were assessed. 
  
Real-time fMRI neurofeedback set-up and preprocessing 
A PC running "Open NFT״ software11 (http://opennft.org/) received each functional 
volume from the MR console computer as raw .dicom file, and performed the standard 
OpenNFT preprocessing steps on the data, based on SPM12 functions 
(www.fil.ion.ucl.ac.uk/spm) that were adapted for real-time purposes. Specifically, 
spatial realignment to the first image, estimation of six movement parameters 
(translation and rotation), reslicing, and spatial smoothing with an isotropic Gaussian 
kernel with 4-mm full width at half maximum (FWHM) were performed. First order 
auto-regressive correction was applied to reduce temporal autocorrelation caused by 
physiological noise12, and an incremental general linear model (iGLM) was used to 
remove residual motion and linear trends13. Spike detection and high-frequency noise 
removal were performed through a modified Kalman filter14. Whole-brain activation 
maps were estimated using iGLM statistical analysis15, with NF task protocol conditions 
(Figure 1b) as regressors of interest. ROI BOLD levels were calculated for each 'Rest’ 
and ‘Upregulate’ period at the termination of the regulation screen, and transformed in 
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real-time to feedback scores, as detailed below. Full details of OpenNFT processing 
steps can be found in ref11. 
  
On-line calculation and presentation of feedback 
The intermittent feedback was calculated for each cycle as follows: First, to account for 
the Hemodynamic Response Function (HRF) delay, the first four EPI functional volumes 
of Rest and upregulate epochs were discarded from analysis (TR=2 s.). Then, for each 
ROI, median level of each epoch was calculated and scaled according to the following 
formulas: 

 
 
With  and  being the minimum and maximum BOLD% values registered up until the 
current TR. Then, the regulation effect for the current trial was calculated as the 
difference between scaled values of ‘Upregulate’ and ‘Rest’ epochs: 

 
This results in a number between -1 and 1, indicating the scaled difference between 
regulation and rest screens, with 1 indicating a maximum upregulation effect, and -1 a 
maximum downregulation effect based on non-parametric statistics. Following this, the 
regulation effects of the entire target network were calculated as the mean regulation 
level across the three network ROIs: 

 
These regulation effects were transformed into the feedback level, defined as a number 
between 1 and 10, by multiplying by 10, and imposing a lower limit of 1. Accordingly, 
all downregulation effects (and very slight up-regulation effects proportional to 0-0.1 
regulation levels) were similarly depicted as 1. Finally, the feedback score was displayed 
to the participant next to an image of a smiley face, while the strength of the smile was 
proportional to the feedback level (1 – a neutral smiley; 10 – a maximally smiling face). 
  

Documentation of online mental strategies and updating of choice screens 
(Figure S3) 
Before the first run of a NF training session, participants defined and named three 
strategies they planned to employ during the next NF run based on their previous 
experience. The experimenter incorporated the new strategy names into a run-specific 
choice screen via in-house scripts that were uploaded by the OpenNFT real-time 
software as the screen image for choice epochs. Critically, an additional open category 
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(“other”) always appeared as a fourth option. By including such an option, we ensured 
that participants were not restricted to their predefined options, allowing them to act 
on any momentary intuitions during runs. At the beginning of each trial, participants 
chose via key press which strategy they wished to employ in the next regulation screen. 
Between runs, subjects were given the opportunity to replace one or more of the 
predefined strategies, or to remain with the same three options, according to their 
accumulated experience (see “between-run instructions” in ‘Supplementary Materials’ 
section). At the end of the training session, an output log file was exported, containing 
the names of each strategy employed, during each trial of the training session. 
  
Characterization of mental strategies 
To characterize mental strategies logged during choice screens for each trial, we 
developed a new classification method aimed at exhaustively assessing the mental 
features of strategies, while placing special focus on reward-related and affective 
features that could arise during reward-ML NF regulation periods. 

 
The Mental Strategies Questionnaire for NeuroFeedback (MSQ-NF) is constructed 
hierarchically with general meta-categories each containing several features, 
resulting in a total of 45 features (Figure S3). Features were selected to account for 
the main mental modalities, contents and dimensions as defined in the affective and 
cognitive psychological literature, such as exteroception and interception, affect (e.g. 
discrete emotions, arousal and valence dimensions), imagery and memory features, 
as well as lingual, motor, arithmetic and social aspects. 
  
The documentation procedure described earlier produced a trial-locked list of applied 
strategies named by each subject, which appeared on their choice screens. Using this 
list as a mnemonic aid of trial-specific choices, at the end of each NF training session 
participants: (i) provided a detailed verbal description of each strategy headline from 
the documentation list, and (ii) filled out the MSQ-NF for each applied strategy via 
‘Qualtrics’, by stating whether the strategy was or was not characterized by each MSQ 
feature. This labelling process results in a binary matrix, with NF trials in rows and MSQ 
features in columns. The trials-by-MSQ features matrix was used to characterize the 
changing mental features across all Upregulate’ epochs of the practice. 
  
Questionnaires 
To further assess the involvement of trait motivational capacities and tendencies in the 
physiological regulation of immune functions, participants filled out three trait 
questionnaires: 
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-    Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ)3, 
measuring the behavioural appetitive system and reward sensitivity. SPSRQ 
is a 24-item questionnaire with two subscales – reward and punishment. It is 
one of the most widely used measures to assess individual differences in 
motivational tendencies, including behavioural inhibition in response to 
novelty or punishment cues and cognitive worry in response to failure or 
punishment cues. Response to each item is provided in a yes/no 
dichotomous manner. 

-    ‘Neuroticism-Extraversion-Openness Five-Factor-Inventory (NEO-FFI)2 
measuring five factors of personality traits, which includes subscales relating 
to reward and motivational behaviour. NEO-FFI is a widely used self-reported 
psychological personality inventory, which includes 60 questions (an 
abbreviated version of the 240-item NEO-PI-R). This 'Big Five' model 
includes the traits: extraversion, neuroticism, openness, agreeableness and 
conscientiousness, and comprises a meeting point for disparate human 
personality models. Its scales have been associated with various 
physiological and psychiatric features as well as with motivational 
tendencies16. 

-    the Tridimensional Personality Questionnaire (TPQ)1, a personality inventory 
measuring three major personality dimensions: Novelty Seeking (NS), Harm 
Avoidance (HA) and Reward Dependence (RD). 

  
These three questionnaires were previously used by Gonen and colleagues17 to classify 
individual participants via K-means clustering procedure as having avoidance or 
approach tendencies. The three questionnaires were filled at the beginning of the first 
experimental session. 
  

fMRI acquisition 
All scans were performed on a 3.0 Tesla Siemens MRI system (MAGNETOM Prisma, 
Germany) using a 64-channel head coil. Structural scans included a T1-weighted 3D 
Sagittal MPRAGE pulse sequence (TR/TE = 1980/2.62 mesc., flip angle = 8º, pixel size = 
0.9X0.9mm, FOV = 224×224 mm, slice thickness = 0.9 mm). 
  
Functional whole-brain scans were performed in interleaved order with a T2*-weighted 
gradient multi-echo planar imaging pulse sequence (TR/TE=2000/35ms, IPAT 
acceleration factor=2; flip angle=84º, FOV=220×220mm, matrix size = 96*96, voxel size: 
2X2 mm, slice thickness = 2mm, no gap, 56 slices per volume). 

  

fMRI pre-processing 
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Neuroimaging data were converted to BIDS format and pre-processed via fMRIprep 
software package (version 20.0.2)18, and then pre-processed as described below: 
  
fMRI anatomical preprocessing 
Anatomical images were corrected for intensity non-uniformity (INU) with 
`N4BiasFieldCorrection`, distributed with ANTs 2.2.0. The T1w-reference was then 
skull-stripped with a Nipype implementation of the `antsBrainExtraction.sh` workflow 
(from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of 
cerebrospinal fluid (CSF), white-matter (WM) and grey matter (GM) was performed on 
the brain-extracted T1w using `fast` (FSL 5.0.9, fsl_fast). A T1w-reference map was 
computed after registration of T1w image (after INU-correction) using 
`mri_robust_template` (FreeSurfer 6.0.1, fs_template). Volume-based spatial 
normalization to one standard space (MNI152NLin2009cAsym) was performed through 
nonlinear registration with `antsRegistration` (ANTs 2.2.0), using brain-extracted 
versions of both T1w reference and the T1w template. The following template was 
selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 
2009c; Template used for anatomical alignment and registration: 
MNI152NLin2009cAsym. 
  
fMRI functional preprocessing 
The following preprocessing was performed: First, a reference volume and its skull-
stripped version were generated using a custom methodology of fMRIPrep. A B0 
nonuniformity map (or fieldmap) was estimated based on a phase-difference map 
calculated with a dual-echo GRE (gradient-recall echo) sequence, processed with a 
custom workflow of SDCFlows inspired by the `epidewarp.fsl` script 
(http://www.nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl) and further 
improvements in HCP Pipelines. The fieldmap was then co-registered to the target EPI 
(echo-planar imaging) reference run and converted to a displacement field map 
(amenable to registration tools such as ANTs) with FSL's `fugue` and other ‘SDCflows’ 
tools. Based on the estimated susceptibility distortion, a corrected EPI (echo-planar 
imaging) reference was calculated for a more accurate co-registration with the 
anatomical reference. The BOLD reference was then co-registered to the T1w reference 
using `flirt` (FSL 5.0.9) with the boundary-based registration (bbr) cost-function. Co-
registration was configured with nine degrees of freedom to account for distortions 
remaining in the BOLD reference. Head-motion parameters with respect to the BOLD 
reference (transformation matrices, and six corresponding rotation and translation 
parameters) were estimated before any spatiotemporal filtering using `mcflirt` (FSL 
5.0.9). The BOLD time-series (including slice-timing correction when applied) were 
resampled onto their original, native space by applying a single, composite transform 
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to correct for head-motion and susceptibility distortions. These resampled BOLD time-
series will be referred to as 'pre-processed BOLD in original space', or simply pre-
processed BOLD. The BOLD time-series was resampled into standard space, 
generating a pre-processed BOLD run in MNI152NLin2009cAsym space. First, a 
reference volume and its skull-stripped version were generated using a custom 
methodology of fMRIPrep. Several confounding time-series were calculated based on 
the pre-processed BOLD: framewise displacement (FD), DVARS and three region-wise 
global signals. FD and DVARS were calculated for each functional run, both using their 
implementations in Nipype (following the definitions by power_fd_dvars). The three 
global signals were extracted within the CSF, the WM, and the whole-brain masks. 
Additionally, a set of physiological regressors was extracted to allow for component-
based noise correction (CompCor). Principal components were estimated after high-
pass filtering the pre-processed BOLD time-series (using a discrete cosine filter with 
128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical 
(aCompCor). tCompCor components were then calculated from the top 5% variable 
voxels within a mask covering the subcortical regions. This subcortical mask was 
obtained by heavily eroding the brain mask, which ensures it does not include cortical 
GM regions. For aCompCor, components are calculated within the intersection of the 
aforementioned mask and the union of CSF and WM masks calculated in T1w space, 
after their projection to the native space of each functional run (using the inverse 
BOLD-to-T1w transformation). Components are also calculated separately within the 
WM and CSF masks. For each CompCor decomposition, the k components with the 
largest singular values are retained, such that the retained components' time series are 
sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, 
combined, or temporal). The remaining components are removed from consideration. 
The head-motion estimates calculated in the correction step were also placed within 
the corresponding confounds file. The confound time series derived from head motion 
estimates and global signals were expanded with the inclusion of temporal derivatives 
and quadratic terms for each (confounds_satterthwaite_2013). Frames that exceeded a 
threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated as motion outliers. 
All resamplings could be performed with a single interpolation step by composing all 
the pertinent transformations (i.e. head-motion transform matrices, susceptibility 
distortion correction when available, and co registrations to anatomical and output 
spaces). Gridded (volumetric) resamplings were performed using 
`antsApplyTransforms` (ANTs), configured with Lanczos interpolation to minimize the 
smoothing effects of other kernels. Non-gridded (surface) resamplings were performed 
using `mri_vol2surf` (FreeSurfer). 
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Finally, fMRIprep pre-processed images were spatially smoothed using a Gaussian 
kernel at 4 mm FWHM, via nilearn package (Abraham et al., 2014) in Python. 

Immunological assessments 
Blood samples were collected from all participants at the TLVMC (Ichilov). Blood 
withdrawal time points (TP) were scheduled before the 1st and 4th NF sessions (TP1, 
TP4), and 14 and 28 days following HBV vaccination (TP5, TP6, respectively) for the 
measurement of HBV antibody levels. A subset of subjects (N=34) arrived for TP-7 to 
provide a blood sample 3 months following HBV vaccination, to examine long-term 
immunological effects. Following blood withdrawal, samples were centrifuged and 
plasma was extracted, aliquoted, and then stored at -80ºC. Blood samples were 
transferred to the Rolls lab for antibody titer analysis, as described below.  
 
Outcome measures 
The primary neural outcome measure of the study was reward-ML activations during 
the NF task (described in section “ROI analysis: characterization of regulation effects”). 
There were two main immunological outcome measures: post-vaccination HBVab 
change (described in “Immunological analysis: HBV antibody change”) and 
inflammatory activity manifested in changes in blood cytokines levels. The latter is 
outside the scope of the current paper, which focuses on vaccination efficiency. There 
are two types of secondary outcome measures for the study. The first is a long-term 
assessment of vaccination efficiency measured as HBVab levels three months following 
HBV vaccination. The second type consists of variables that could explain the main 
outcomes of the intervention (i.e. the primary neural and immunological outcome 
measure). These were: reward-related mental features of mental strategy application 
during NF regulation; neurobehavioural indices of trait reward anticipation and 
consumption measured by the MID task before NF training; trait behavioural incentive 
motivation as measures by the EEfRT before NF training; and motivational tendencies 
of participants as measures by K-means cluster analysis of designated questionnaires 
data. The statistical assessment of all outcome measures is specified below. 
 
fMRI-NF ROI analysis: characterization of regulation effects 
Neuroimaging data were analysed via the FMRIB software library (FSL)19, as specified 
below. 
 

Functional localization of reward-ML ROIs 
To define the VTA and Nac ROIs, we analyzed our functional localizer – the MID 
task. First, to validate the online functional localization procedure described 
earlier, we examined whether the High>Neutral reward anticipation contrast, 
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used online to functionally localize the reward ml system at the individual 
subject level, indeed elicits significant activations in mesolimbic regions on the 
group level. Based on group-level analyses, we extracted ROIs of the reward-ML 
network for the characterization of neural effects during NF training. While the 
offline subject-level analyses conducted offline were essentially equivalent to the 
real-time functional localization method, they benefitted from superior offline 
preprocessing via fMRIprep (described above), and from the statistical power the 
group analysis yields, resulting in a more robust localization of reward-ML ROIs 
that are consistent across subjects. 
  
Figure S1 depicts cluster-corrected (p(FWE)<0.05) whole-brain BOLD 
activations during high vs neutral reward anticipation. As reported in previous 
studies7,20, reward anticipation yielded significant activations in mesolimbic and 
cortical regions, including the VTA and the bilateral Nac, the Anterior Cingulate 
Cortex (ACC), and the thalamus. 
  
As for the online functional localization procedure, offline reward-ML ROIs were 
created by intersecting the predefined meta-analytic masks (Figure S1, overlaid 
in white) with the BOLD activity patterns in the High>Neutral reward 
anticipation contrast (Orange-yellow colour dimension), resulting in a reward 
anticipation-related mesolimbic ROIs of the VTA and bilateral Nac, presented in 
Figure S1, lower panel (See figure legend for a description of intersection steps). 
These ROIs were used in the fMRI-NF analysis described below. 

 
Production of whole-brain activity maps 
First-level data processing was carried out using FEAT (FMRI Expert Analysis 
Tool) Version 6.00, part of FSL (www.fmrib.ox.ac.uk/fsl). Time-series statistical 
analysis was carried out using ‘FILM’ with local autocorrelation correction21. The 
general linear model of a NF run included regressors of interest of the four task 
conditions: (1) Choice (8 s), (2) Rest (20 s), (3) Upregulate (40 s), and (4) feedback 
(8 s). To account for noise, confound regressors from the fMRIprep 
preprocessing were included as covariates of no interest. The following 
nuisance regressors were included: six head movement regressors (translation 
and rotation), framewise displacement predictor, first six anatomical CompCors, 
as well as mean CSF and white matter global signal predictors. Additionally, we 
introduced scrubbing regressors into the noise model based on framewise 
displacement variable, regressing out time points with FD > 0.5. Runs 
containing more than 20% scrubbed timepoints, were completely excluded from 
further analyses due to high levels of head movements. For NF training data, no 
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runs exceeded this threshold. All predictors were convolved with a canonical 
hemodynamic response function, and data were subjected to FSL default high-
pass filter cutoff (128 s). 
  
The three main Contrasts of Parameter Estimates (copes) were then computed: 
“Choice”, which represented activity patterns during choice of mental 
strategies; “Regulate>Rest”, which represented regulation effects – the 
difference in activity patterns between Upregulate and Rest screens; and 
“Feedback”, which represented activity pattern during rewarding feedback 
regarding regulation success during feedback screens. 
  
Effects of each session were averaged using a fixed effects model, by forcing the 
random effects variance to zero in FLAME (FMRIB's Local Analysis of Mixed 
Effects)21–23. Finally, group-level effects for session 4 were carried out using 
FEAT: Z (Gaussianised T/F) statistic images were thresholded using clusters 
determined by Z>3.1 and a (corrected) cluster significance threshold of P=0.05. 

 
NF reward-ML network regulation effects - group differences 
To assess NF regulation effects across groups and sessions, a linear mixed 
effects model was conducted using the ‘lmer’ function from the lme4 package in 
R version 4.2.1 (https://www.R-project.org/)24. Models were used to estimate 
differences in activity in the VTA and the Nac ROIs across groups and sessions. 
Importantly, since one third of subjects began NF training only in session 2, 
session 1 was discarded from the analysis of group differences (as including it 
prevented the model from converging due to failure of assessing random 
effects).  
 
Quantification of individual regulation effects for brain-immune 
correlation analyses 
Our pre-registered brain-immune correlation hypothesis describes the neural 
measure as ROI activity levels in session-4, without mentioning if and how 
baseline regulation levels (i.e. at the beginning of the training) will be taken into 
account. We note that, similar to the characterization of the immunological 
effect as HBVab change between post-vaccination and baseline HBVab levels, 
we applied a common individualized measure of subject-specific regulation 
effects, by quantifying the slope (increase or decrease) of ROI activity across all 
runs, from session 1 to session 427–30. Accordingly, regulation effects per 
participant were calculated as the slope of a linear regression of 
‘Upregulate>Rest’ BOLD percent signal changes in each ROI across runs, 
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resulting in two regulation effect measures per individual, one for the VTA and 
one for the Nac. For non-mesolimbic control regions, ‘Upregulate>Rest’ effects 
in ROIs of each functional network in the randomized-network control group 
were calculated as in the reward-ML ROIs and averaged within each run to 
constitute one mean regulation value of the whole network. Then, individual 
regulation effects were calculated as described for the reward-ML ROIs. 

 
Immunological analysis: HBV antibody change 
Antibody titer to Hepatitis B surface antigen (anti-HBs) were determined, using a 
Chemiluminescent Microparticle Immunoassay (CMIA) located in the Virology lab at 
the Rambam Health Care Campus. In any case antibody titer exceeded the maximal 
detection range (1000 mU/ml), the sample was diluted in antibody-negative plasma (at 
a ratio of 1:10-1000). The samples were also quantitatively tested for hepatitis B surface 
antigen (HBsAg), to exclude any participant who might have been infected with 
Hepatitis B at the time of vaccination. No participant was excluded based on this 
criterion. 
 
HBVab levels were log-transformed. Then, post-vaccination immune response was 
represented as the difference between mean HBVab levels during sessions 5 and 6 and 
mean baseline measurements, at sessions 1 and 4. This resulted in a single value per 
participant that quantified immune dynamics following NF induction and HBV 
vaccination coupling. Twelve subjects (evenly dispersed between all groups) did not 
respond to HBV vaccination (according to the standard clinical immunization threshold 
of HBVab levels below 10 mU/ml25) and were therefore excluded from further analyses. 
Of note, this data exclusion criterion was no pre-registered. Nonetheless, as the lack of 
an immunological response to HBV vaccination is a phenomenon that was previously 
documented, we assumed our vaccination-induced manipulation failed for these 
subjects regardless of NF training (indeed, 5 out of 12 non-responders were from the 
no-NF group). Therefore, non-responders were excluded from any immunological or 
brain-immune association analyses. 
 
To test differences between groups, we conducted a one-way ANOVA, using f_oneway 
function from the Scipy package26 in Python (http://www.python.org) version 3.8.12, 
with group as between-subjects factor (reward ml NF/rand. ROI NF/no NF) and post-
vaccination HBVab log change as dependent variable. Correlations between individual 
ROI regulation effects and HBVab change were determined using Python version 
3.8.12. 
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Neurobehavioural measures of reward anticipation and consumption during 
MID task 

Extraction of Whole-brain BOLD activation maps 
For each MID run (out of two experimental runs), first-level GLM for an event-
related design was carried out. Regressors of interest included the three 
anticipation phases: anticipation of no reward (0 NIS), anticipation of low reward 
(2 NIS) and anticipation of high reward (10 NIS). Similarly, for outcome phases, 
we included one regressor per condition (high, low and neutral outcome 
regressors). Additionally, for the low and high reward conditions, the two 
outcome regressors were parametrically modulated by the actual outcome 
amount received at each trial. Target presentation (one regressor) and 
anticipation, and target and outcome phase during error trials (3 regressors) 
were modeled as regressors of no interest. In total, the first-level model included 
12 regressors of interest. A canonical HRF was applied for convolving 
explanatory variables. To account for noise, confound regressors from the 
preprocessing step were included as covariates of no interest. The noise model 
was identical to the NF task analyses described earlier. One subject was excluded 
from analyses due to extreme head movement (i.e. > 20% scrubbed time points 
according to a cutoff of FD>0.5). Three additional subjects did not complete two 
full experimental runs and were therefore excluded as well, resulting in 81 
subjects for group analyses. 
  
COPEs (Contrasts of Parameter Estimates) for reward anticipation and reward 
outcome were calculated. For reward anticipation, we calculated the contrast 
anticipation of high reward versus anticipation of no reward, which was used for 
the functional localization process of the reward-ML network described earlier. 
For the reward outcome, we included in the first-level model the parametric 
modulator for high reward (in addition to the general reward consumption 
regressors). Then, effects per participant were averaged across the two runs 
using second-level analysis. This was carried out using a fixed effects model, by 
forcing the random effects variance to zero in FLAME. 
  
Third-level effects were calculated to assess reward anticipation and outcome 
group effects. For each contrast, individual copes of all participants were 
included in a mixed-effects model using FSL FEAT Version 6.00. Z (Gaussianised 
T/F) statistic images were thresholded using clusters determined by Z>3.1 and a 
(FWE corrected) cluster significance threshold of P=0.05. 

  
ROI analyses  
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Neural reward responsivity measures were extracted for reward anticipation and 
reward consumption from first-level whole-brain contrast maps via FSL 
“featquery” and converted to percent signal change. For reward anticipation, 
activations were extracted from the VTA and Nac. For reward outcome, a 
ventromedial prefrontal cortex (vmpfc) ROI was used. Vmpfc was defined as a 
5mm radius spherical ROI around peak activation in the medial pfc section in 
the whole-brain reward outcome group effects (MNI: X=-4, Y=59, Z=-1). 
Associations between these two neural measures and immune effects were 
estimated via correlational analyses reported in the main text and in 
‘Supplementary Information’ section 

 
Behavioural incentive motivation during EEfRT 
In line with previous studies that employed EEfRT4,20, mean proportions of hard-task 
choices were created for all subjects across each level of probability. Proportions of 
hard-task choices were averaged over all reward probabilities per individual as a 
measure of effort expenditure. This measure was used for correlational analyses 
reported in the ‘Supplementary Information’ section. 

 

Mental Strategies characterization 
Choice screen log files of choices and trial-locked MSQ labelling were integrated across 
all sessions and participants, resulting in 3240 NF trials across 45 MSQ features 
(between 45 and 60 trials per participant). A value of ‘1’ indicated that a particular 
feature characterized a trial, while ‘0’ indicated that it did not, and ‘Nan’ values 
indicated neither, either based on the participant's explicit judgment or if labelling was 
not performed by the participant. To answer our research questions that focused on 
regulation prior to HBV-vaccination, only MSQ data from the 4th session were analyzed, 
which included 962 NF trials. Features that characterized less than 10% of trials were 
considered irrelevant to our NF training setting, and thus were discarded from further 
analyses, resulting in 29 MSQ features. Excluded features were: ‘visceral sensations', 
'low arousal', 'other bodily sensation', 'tactile exteroception', 'pulse', 'breathing', 'taste 
imagery', 'other emotion', 'muscle sensation', 'anger', 'taste exteroception', 'disgust', 
'vision exteroception', 'fear', 'auditory exteroception' and 'smell exteroception'. These 
data were used to assess the link between reward-related mental features and reward-
ML activity as described in the ‘Results’ section. 

 
K-means clustering of motivational tendencies from questionnaires data 
To classify motivational tendencies, participants were divided into two groups 
characterized by either approach or avoidance tendencies, based on a two-step K-
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means clustering of questionnaire data. 70 subjects were included in the analysis (15 
subjects did not complete at least one of the three questionnaires included in the 
analysis, and were therefore excluded). A two-step non-hierarchical K-means cluster 
analysis was performed via Python’s ‘KMeans’ function from sklearn package31, 
imposing two distinct clusters based on the clustering used in17. First, the analysis was 
performed based on normalized scores of all traits measured by thirteen sub-scales 
derived from three personality questionnaires (NEO-FFI, SPSRQ and TPQ) per 
participant. The traits that did not demonstrate a significant difference between the two 
clusters based on an independent t-test conducted as part of the two-step K-means 
procedure were excluded. Excluded subscales were openness from the NEO-FFI, 
Novelty Seeking from the TPQ, and Reward Sensitivity from the SPSRQ. Next, a second 
K-means cluster analysis was performed (again, with two clusters) which included the 
subscales in which a significant difference was found between clusters: Neuroticism, 
Extraversion, Conscientiousness and Agreeableness from NEO-FFI, Reward 
Dependence and Harm Avoidance from TPQ, and Punishment Sensitivity from SPSRQ. 
This process resulted in two clusters characterized by distinct tendencies of approach 
(N=43) or avoidance (N=27). Based on this clustering, we assessed the link between 
approach/avoidance motivational tendencies, reward-ML modulation effects and 
adaptive immune functions. 
 
Data availability statement 
Requests for de-identified data can be directed at the corresponding author (Talma 
Hendler, talma@tlvmc.gov.il ) . All requests for data sharing will be reviewed by the Tel-
Aviv Sourasky Medical Center Institutional Review Board (IRB) committee, to verify 
whether the request is subject to any intellectual property or confidentiality 
obligations.	Requests will be reviewed on the basis of scientific merit, ethical review, 
available resources and regulatory requirements, and will be responded within 90 days. 
After approval of a proposal, anonymized individual-level data will be made available 
for reuse in accordance with the signed consent IRB form. A signed data access 
agreement with the collaborator is required before accessing shared data.	 
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