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Abstract 

Understanding local-scale transmission dynamics of SARS-CoV-2 is crucial for planning effective 
prevention strategies. This study analyzed over 26,000 genomes and their associated metadata 
collected between January and October 2021 to explore the introduction and dispersal patterns of 
SARS-CoV-2 in Greater Houston, a major metropolitan area noted for its demographic diversity. 
We identified more than a thousand independent introduction events, resulting in clusters of varying 
sizes, with earlier clusters presenting larger sizes and posing greater control challenges. 
Characterization of the sources of these introductions showed that domestic origins were more 
significant than international ones. Further examination of locally circulating clusters across 
different subregions of Greater Houston revealed varied transmission dynamics. Notably, 
subregions that served as primary viral sources sustained the local epidemic effectively, evidenced 
by: (1) a smaller proportion of new cases driven by external viral importations, and (2) longer 
persistence times of circulating lineages. Overall, our high-resolution spatiotemporal reconstruction 
of the epidemic in Greater Houston enhances understanding of the heterogeneous transmission 
landscape, providing key insights into regional response strategies and public health planning. 

Significance Statement 

The growing recognition of genome sequencing as critical for outbreak response has led to a rapid 
increase in the availability of sequence data. In this context, we put forward an analytical workflow 
within the Bayesian phylodynamic framework to identify and trace imported SARS-CoV-2 clusters 
using large-scale genome datasets. By utilizing metrics such as the Source-Sink Score, Local 
Import Score, and Persistent Time, our approach characterizes transmission patterns in each 
subregion and elucidates transmission heterogeneity. As new variants continue to emerge, the 
insights provided by our analysis are crucial for addressing the challenges of current and future 
pandemics effectively. 

Main Text 
 
Introduction 
 
Genome epidemiology has significantly advanced our understanding and efforts to combat 
emerging infectious diseases (1–3). In the context of SARS-CoV-2, previous research has 
demonstrated its capability to clarify the virus's origins and spread (4, 5), reconstruct local 
transmission chains (6), assess the effectiveness of non-pharmaceutical interventions (7), and 
identify key predictors of viral lineage movements (8). These epidemiological insights, translated 
from the virus’s evolutionary history, are crucial for shaping public health policies and would not 
have been possible without extensive sequencing efforts. By August 2024, over 16 million genome 
sequences had been submitted to the Global Initiative on Sharing All Influenza Data (GISAID) (9). 
Although these expansive COVID-19 datasets facilitate high-resolution inferences about local 
transmission dynamics, they also present significant computational challenges (10). In response, 
new algorithms, software, and computational workflows have emerged since the onset of the 
pandemic, including tools for rapid phylogenetic tree construction (11, 12) and the Thorney BEAST 
module for more efficient generation of time-resolved trees (13, 14). 
 
Houston, the largest city in the Southern United States, anchors the Greater Houston metropolitan 
area and is one of the most demographically diverse cities in the country (15). It is also one of the 
most economically segregated cities, marked by sharp divisions in income, education, and 
occupation (16). According to Covid Act Now, Houston faces considerable challenges due to its 
high population density, significant proportion of non-English speakers, and notable income 
disparity. These factors strain the city's health system, making Houston more vulnerable to a SARS-
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CoV-2 outbreak than over 90% of U.S. metropolitan areas (17). This vulnerability highlights the 
urgent need to understand local patterns of SARS-CoV-2 dispersal and how these patterns vary 
across different socioeconomic regions. 
 
The COVID-19 pandemic has been characterized by the emergence and spread of genetically 
distinct virus variants that exhibit increased transmissibility compared to earlier lineages (18). The 
Delta variant, in particular, not only spreads more rapidly (19) but also leads to higher rates of 
hospitalization (20) and demonstrates greater immune evasion (21) than the previously dominant 
Alpha variant. In Houston, the emergence of Delta occurred in a context of heterogeneous prior 
immunity, resulting from both previous infections and vaccinations. The first case of the Delta 
variant in Houston Methodist Hospital was identified in mid-April 2021, during a period of declining 
COVID-19 cases (22). However, beginning in early July, there was a sharp increase in cases driven 
by the Delta variant, with these cases doubling in frequency approximately every seven days (22). 
Several critical questions remain unanswered, which cannot be resolved without genomic 
epidemiological inference: How long is the lag between a variant's introduction and its first clinical 
detection? What is the primary source of these variants? What role did Houston play in the 
introduction of Delta to the U.S.? 
 
With the support of the Houston Health Department (HHD), we accessed an extensive dataset 
comprising over 10,000 Delta genomes sampled from Houston between January 2021 and October 
2021, each linked with metadata such as zip code, age, and sex. This dataset provides a valuable 
opportunity to investigate transmission dynamics in Houston. It enables us to examine how 
population structure influences disease spread and to assess variations in SARS-CoV-2 
transmission across different subregions. 
 
A notable phylodynamic workflow developed by Simon Dellicour (23) facilitates large-scale 
phylogeographic analysis through two principal steps: first, a preliminary discrete trait analysis (24) 
on fixed empirical topologies identifies introduction events; second, it estimates the circulation 
dynamics of local viral clusters (25, 26). We adapted this analytical workflow to examine the spatial 
invasion dynamics of SARS-CoV-2 in Greater Houston, as illustrated in Figure 1. Utilizing viral 
genetic sequence data isolated from patients, our study aimed to determine the timing and number 
of viral introductions during the outbreak. We specifically investigated whether international or 
domestic importation played a more significant role. Additionally, we modeled the transmission 
structure among different demographic groups, including sex and age. Finally, we explored the 
spatiotemporal variation of viral dispersal across various subregions, such as Independent School 
Districts or counties, in Greater Houston. 
 

Results 
 
Detect Distinct Introduction Events and Identify Locally Circulating Clusters 
 
Our dataset comprised 26,138 SARS-CoV-2 complete genomes, including 9,186 sampled from 
Houston and 16,952 contextual sequences. We conducted a discrete phylogeographic analysis on 
the time-calibrated phylogeny to identify distinct SARS-CoV-2 introduction events into Houston. 
This analysis revealed a total of 1,479 independent introduction events (95% highest posterior 
density [HPD]: 1,402 to 1,556). Notably, the sizes of resulting circulating clusters were highly 
skewed (Figure S1). The majority of introductions (909 events, 95% HPD: 853 to 968) resulted in 
singletons, while a few introductions led to clusters exceeding 2,000 cases. Temporal analysis 
further revealed that earlier introductions were more likely to result in larger clusters (Figure 2A). 
Specifically, during EPI Week 17, 55.6% of introductions resulted in clusters larger than 10, 33.3% 
in clusters smaller than 10, and 11.1% were singletons. By EPI Week 30, the distribution had shifted 
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significantly, with 86.2% resulting in singletons, 13.8% forming clusters smaller than 10, and no 
clusters larger than 10. 
 
We classified viral imports into Houston based on their origin: domestic or international. At the onset 
of the outbreak, we observed scattered introductions from both sources. After late April, domestic 
importations rapidly increased and became the dominant type (Figure 2B). There were a total of 
1,359 domestic imports (95% HPD: 1,279 to 1,432), significantly outnumbering the 119 
international imports (95% HPD: 109 to 132). However, international imports peaked earlier and 
were associated with larger mean cluster sizes (Figures S2 and S3). 
 
Subtrees extending from the introduction nodes were identified as locally circulating clusters. We 
selected 181 clusters, each containing five or more isolates, for further analysis of local dispersal. 
In total, these separate clusters included 7,657 sequences from the Greater Houston area, with the 
two largest clusters containing 2,198 and 2,031 sequences, respectively. 
 
Phylogeny-Trait Correlation Among Locally Circulating Clusters 
 
We explored the correlations between phylogenetic structures and demographic traits—specifically 
age and sex—to enhance our understanding of the factors influencing transmission dynamics. Our 
null hypothesis is that these traits are randomly associated with the phylogenetic structures. A low 
p-value (p < 0.05) refutes this hypothesis, indicating a strong correlation and suggesting limited 
viral dispersal between different traits. 
 
We tested the association between 181 locally circulating clusters and demographic traits (Figure 
3). In 20 clusters, the age group traits were tightly correlated with the phylogeny (p < 0.05). In 
contrast, only 6 clusters showed a similar tight correlation for sex traits. Generally, sex groups 
appear more interspersed within the phylogeny, suggesting that viral transmission is more 
constrained within age groups than between sex groups. 
 
Demographic Determinants of Transmission 
 
Locally circulating clusters encompassed 7,657 genomes distributed among diverse age groups: 
2,412 young adults (ages 19–35), 2,342 middle-aged adults (ages 36–55), 995 infants and children 
(ages 0–12), 963 seniors (ages 56 and over), 919 teenagers (ages 13–18), and 26 individuals of 
unknown age. The sex distribution included 3,954 males, 3,687 females, and 16 individuals of 
unknown sex. 
 
We jointly estimated a single discrete trait model to all circulating clusters to quantify viral dispersal 
among age and sex groups. We found young and middle-aged adults were identified as the primary 
drivers of viral transmission (Figure 4A). The eight most significant transitions included: from young 
to middle-aged adults at a rate of 4.775 transitions per year, and vice versa at 2.194 transitions per 
year; from middle-aged adults to infants and children at 1.946 transitions per year; to seniors at 
1.567 transitions per year; to teenagers at 1.494 transitions per year; from young adults to seniors 
at 1.363 transitions per year; to teenagers at 1.245 transitions per year; and to infants and children 
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at 1.174 transitions per year. Each of these transitions was strongly supported by a Bayes Factor 
exceeding 100. The detailed list for diffusion rate among age groups are available is Table S1. 
 
In the sex-based model (Figure 4B), we observed that the transition rate from females to males 
(1.652) was higher than from males to females (0.437). The detailed list for diffusion rate among 
sex groups are available is Table S2. 
 
Heterogeneous Dynamics of Viral Dispersal in Subregions of Greater Houston 
 
We estimated a jointly fitted single discrete model to reconstruct the viral dispersal history in Greater 
Houston. This model categorized location traits into 29 groups, including 21 Independent School 
Districts in Harris County and 8 nearby counties. The joint model (Figure 5A) for these subregions 
revealed 82 transitions that were decisively supported by Bayes factors (>100). The transition from 
Fort Bend County to the Houston ISD had the highest transition rate, at 23.780. This was followed 
by transitions from Houston ISD to Cypress-Fairbanks ISD, with a rate of 10.203, and from 
Montgomery County to Houston ISD, with a rate of 6.923. The detailed list of rates can be found in 
Table S3. 
 
We calculated the Source-Sink Scores (SSS) to identify populations as either viral sources or sinks, 
based on the net viral flow weighted by outbreak size. Using this metric, we ranked subregions 
from the most dominant sources to sinks (Figure 5B). We identified Houston ISD, with a Source-
Sink Score of 0.629 (95% HPD: 0.549 to 0.708), Fort Bend County, with a score of 0.550 (95% 
HPD: 0.381 to 0.651), and Cypress-Fairbanks ISD, with a score of 0.069 (95% HPD: -0.020 to 
0.171), as the primary sources for local dispersal in the Greater Houston area, where Source-Sink 
Scores were greater than 0. Further, we calculated Local Import Scores (LIS) to assess the relative 
influence of viral introductions versus local transmission in driving the epidemic (Figure 5C). Viral 
sources exhibited the lowest Local Import Scores, indicative of strong, locally sustained 
transmission. In contrast, viral sinks with higher Local Import Scores relied more on external 
introductions. Additionally, we estimated the median Persistence Time (PT) of viral transmission 
chains within each subregion (Figure 5D). The primary viral sources demonstrated the longest 
persistence times, showing more successful local transmission. 
 

Discussion  
 
The global spread of SARS-CoV-2 triggers new outbreaks, but the majority of cases result from 
local transmission. Quantitatively understanding the local transmission dynamics is crucial for 
informing effective prevention. 
 
In collaboration with the Houston Health Department, we analyzed over 26,000 genomes and their 
associated metadata to study the introduction and dispersal of SARS-CoV-2 in Greater Houston—
a major metropolitan area known for its demographic diversity—between January and October 
2021. Our analysis identified 1,479 independent introduction events (95% HPD: 1,402 to 1,556). 
Characterizing the sources of these introductions revealed that domestic origins were the 
predominant source overall (Figure 2). However, international importations led to more successful 
local transmission, as evidenced by larger cluster sizes. We also assessed how demographic 
structures influence the dynamics of disease spread. The tip-trait association test suggests that 
viral transmission is more restricted within age groups than between sexes (Figure 3). Additionally, 
the discrete trait analysis modeled transmission between different demographic categories (Figure 
4). Finally, we reconstructed the spatiotemporal dispersal of pre-identified local outbreak clusters 
(Figure 5), revealing heterogeneous transmission dynamics across subregions of Greater Houston. 
Specifically, in Houston ISD, Fort Bend County, and Cypress-Fairbanks ISD - identified as key viral 
sources - introductions accounted for a smaller percentage of new cases and exhibited longer 
chains of local transmission. 
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Our analysis quantitatively confirms that the Delta outbreak in Houston was driven by multiple 
independent introduction events. These importations led to widespread local transmission, 
resulting in clusters of varying sizes, with earlier clusters being larger and more difficult to eliminate. 
This pattern aligns with previous findings on COVID-19 introductions in the UK (8, 27), New York 
City (28), and Denmark (5). At the onset of the outbreak, introductions came from both domestic 
and international sources. After late April, however, domestic importations surged and became 
dominant. Since we observed no clear predominance of international sources throughout the 
outbreak, we believe that Houston likely did not serve as a primary entry point into the U.S., unlike 
New York, California, and Florida, which have been identified as major entry points in previous 
research (4). Nevertheless, we cannot overlook the impact of international importation, particularly 
in the early stages, as it generally led to larger clusters and more sustained local transmission, 
placing a significant burden on public health intervention. 
 
Tip-trait association quantifies the degree to which viral phenotypic characters are correlated with 
shared ancestry, as represented by a viral phylogenetic tree (29). A common application of this 
phylogeny-trait correlation is to explore spatial structure (30); specifically, whether sequences 
group together in a phylogeny based on geographic location. In this study, we examine the 
correlations between phylogeny and population structures to better understand how demographic 
factors influence transmission dynamics. Human movements and interactions were generally more 
constrained by age group than by sex. For example, children are typically found in daycare centers 
or middle schools, teenagers in high schools, adults at their workplaces, and seniors in nursing 
homes. Our analysis on circulating clusters statistically supports that traits age groups are more 
tightly correlated with the tree topology, indicating more constrained transmission within these 
groups. Furthermore, we estimated the discrete trait model to describe the transmission between 
age and sex groups. We found that young and middle-aged adults were identified as the primary 
drivers of viral transmission. SARS-CoV-2 disproportionately affects men more than women (31), 
and our findings revealed that the transition rate from females to males was higher than from males 
to females. This aligns with medical observations that males are more susceptible than females 
(32). 
 
Previous report showed the COVID-19 epidemic in Houston exhibits distinct patterns, including 
varying infection probabilities and hospitalization rates (22, 33). Here, we reconstructed spatial 
dispersal of SARS-CoV-2 across 29 subregions of Greater Houston using discrete trait analysis, 
applying the Source-Sink Score, Local Import Score, and Persistent Time to characterize 
transmission patterns in each subregion. These metrics, integrated with Bayesian phylogeographic 
inference, allowed us to calculate their values along with their highest posterior density intervals, 
providing a measure of confidence in our estimates. Our analysis revealed a consistent pattern 
across all subregions: regions with higher Source-Sink Scores were associated with lower Local 
Import Scores and higher Persistent Times. This pattern aligns with previous analyses of viral 
transmission in Seattle (34), where a structured coalescent model (35) found that South King 
County exhibited longer persistence of local transmission compared to North King County, where 
external viral importations drove a larger proportion of new cases. As the Source-Sink Score 
provides a heuristic understanding for identifying whether a region functions as either a source or 
sink of viral transmission, these findings collectively suggest that a well-established and sustained 
local epidemic is crucial for a region to act as a source of pathogen spread to other areas. Targeted 
public health interventions in these identified source regions—such as temporary closures of 
schools, limitations on large public gatherings, enhanced testing and contact tracing, and increased 
access to healthcare resources—could not only mitigate local transmission but also have a broader 
impact by reducing the spread of the virus across the entire Greater Houston area. Such focused 
strategies can enhance the efficiency of outbreak control measures and allocate resources more 
effectively to areas with the greatest influence on regional transmission dynamics. 
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Materials and Methods 
 
SARS-CoV-2 Genomic Dataset 
 
With the support of the Houston Health Department (HHD), we accessed a large dataset of SARS-
CoV-2 genomes sampled in Houston (>10,000), along with linked metadata, including ZIP code, 
age group, and sex. The first reported Delta variant case in Houston occurred in mid-April 2021. 
Our contextual dataset (non-Houston) was divided into two phases: Phase one included all 
worldwide sequences available in GISAID (www.gisaid.org) sampled before April 15, while Phase 
two sampled 1% of worldwide sequences available after April 15 (Figure S4). This sampling 
scheme balanced the need to include early sequences with the practical limits of handling a rapidly 
growing dataset.  
 
The combined dataset of Delta sequences from Houston and contextual sources was then aligned 
to the reference genome (GenBank ID: NC_045512.2) using minimap2 v2.24 (36). We filtered out 
low-quality sequences with mapped completeness below 93% and trimmed alignments outside the 
reference coordinates 265:29674, padding with Ns to mask out the 3’ and 5’ UTRs. We then 
calculated the genetic base-pair differences between the alignments and the reference genome. 
For samples collected within the same Epi-Week, we excluded sequences with genetic differences 
greater than 3.0 standard deviations from the mean, aiming to preliminarily filter out those with a 
poor clock signal. In total, 26,138 alignments passed the filtering criteria. The contextual sequences 
were categorized as either domestic (excluding Houston) or international. Our dataset included 
9,186 sequences from Houston, 5,334 from domestic sources, and 11,618 from international 
sources (Figure S5). 
 
Time-Scaled Phylogenetic Inference 
 
We inferred the time tree of our dataset in two steps. First, a maximum-likelihood phylogeny was 
estimated using IQ-TREE 2.3.2 (37) with the default settings. Subsequently, the resulting tree was 
time-calibrated using BEAST v1.10.5 (38). Given the size of our dataset, Thorney BEAST (13, 14) 
was applied to significantly reduce computational time by employing an alternative likelihood 
function. XML files for the BEAST runs were prepared using R scripts. Phylogeny file editing were 
performed using the tools jclusterfunk v0.0.25 (39) and gotree v0.4.5 (40). To minimize runtime by 
reducing burn-in, a roughly scaled time tree estimated by TreeTime 0.11.2 (41) was included in the 
XML file as the starting tree. We executed five chains of 2.5 billion states each, with a burn-in of 1 
billion states. Trees were sampled every 7.5 million states, resulting in an empirical tree set size of 
1,000. The convergence and mixing of all relevant parameters were inspected using Tracer 1.7 
(42) to ensure that their associated effective sample size (ESS) values exceeded 200. One 
posterior tree (Figure S6) was then randomly selected and used as a fixed time tree for subsequent 
introduction analysis. 
 
Introduction Analysis 
 
We performed a preliminary discrete phylogeographic analysis on the fixed time tree obtained in 
the previous step to identify descent clusters likely arose from independent introductions. Tips of 
the tree were assigned as either ‘Houston’, ‘Domestic’, or ‘International’. XML files for BEAST runs 
were generated using R scripts. We executed five chains of 20 million states each, with a burn-in 
of 4 million states. Trees then were sampled every 160,000 states, resulting in an empirical tree 
set size of 500. The convergence and mixing aspects of all relevant parameters were inspected 
using Tracer 1.7 (42). 
 
We considered an introduction event when a node was assigned the location ‘Houston’, while its 
parent node was labeled as non-Houston (either ‘Domestic’ or ‘International’). We defined locally 
circulating clusters as the subtree extending downward from the introduction node. Introduction 
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time was identified as the midpoint on the branch connecting the introduction node and its parent. 
We summarized the weekly count of introduction events from the posterior tree sets, providing 95% 
highest posterior density estimates for these counts. Phylogeny reading and manipulation, 
including summarizing cluster size, were performed using ape 5.8 (43), treeio 1.20.2 (44) and 
ggtree 1.14.6 (45) packages.  
 
We selected a representative tree (Figure S7) from the posterior tree set that matched the posterior 
median for total importations. From this tree, we extracted 181 distinct locally circulating clusters 
with five or more sequences. In each cluster, tips sampled outside Houston were pruned using the 
ape 5.8 package (43). 
 
Tip-Trait Association Test 
 
For each locally circulating cluster, we used the Association Index (29, 46) to quantify phylogeny-
trait correlations. To assess the significance of these correlations, we generated null distributions 
of the Association Index by randomizing trait assignments on the tips 1,000 times, enabling us to 
perform the tip-trait association test. All scripts for this test were bundled into an R package named 
TTAT, which is publicly available on GitHub at https://github.com/leke-lyu/TTAT. This package 
takes various clades and trait data as input, using metrics such as the Association Index and 
parsimony score to perform the test. The p-values from the tests are displayed in a scatter plot of 
sex group vs. age group using ggplot2 (47). 
 
Jointly Fitted Discrete Trait Model 
 
Discrete trait analysis models the evolution of discrete states on a phylogeny, similar to sequence 
evolution. Assuming all circulating clusters shared underlying characteristics, we jointly estimated 
a single transition rate matrix (28, 48, 49) to describe transitions between traits—location, sex, and 
age groups—with the aim of reconstructing geographic dispersal patterns and identifying 
demographic determinants of transmission. XML files for BEAST runs were created using R scripts. 
For each trait, we ran five chains of 100 million states each, with a burn-in period of 20 million 
states. Trees were subsequently sampled every 800,000 states, ensuring each cluster achieved 
an empirical tree set size of 500. Convergence and mixing of all relevant parameters were 
inspected using Tracer. 
 
Over half of the Greater Houston population resides in Harris County (50). In our phylogeographic 
model, we divided Harris County into 21 Independent School Districts (ISDs) and combined these 
with the eight surrounding counties, resulting in a total of 29 trait categories. When translating ZIP 
codes (the sampling location record) into these subregions, some ZIP codes spanned multiple ISDs; 
for instance, parts of one ZIP code might fall in both ISD M and ISD N. We treated these 
intersections as ambiguous traits, allowing the model to interpret the trait as either M or N. 
Additionally, 16 sequences lacked associated sex records, and 26 sequences lacked age data, 
which we also categorized as ambiguous traits. 
 
Posterior Processing 
 
The joint estimation procedure reconstructed the ancestral states for 181 clusters. Given these 
posterior tree sets, we estimate the following epidemiological metrics: 
 
A. Source Sink Score (51): This metric, ranging between -1 and 1, measures net viral exports, 
weighted by outbreak size. A score approaching 1 suggests that the region primarily functions as 
a viral source. Conversely, a score nearing -1 indicates that the region predominantly acts as a 
viral sink. 
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B. Local Import Score (51): Ranging from 0 to 1, this metric measures the fraction of introductions 
relative to the total count of new cases in a region. A score near 1 indicates that importations 
predominate, while a score near 0 suggests that local transmissions dominate, indicating that the 
epidemic is primarily sustained locally. 
 
C. Persistence Time: This metric measures how long a viral lineage circulates in a region. It is 
calculated by tracing the number of days it takes for a tip to move from its sampled location, going 
backward up the phylogeny until the node location differs from the tip location (34, 52). 
 
Given the size of our dataset, we employed a divide and conquer strategy to efficiently manage the 
input data. The empirical tree sets for each local cluster were divided into separate files, with each 
file containing a tree corresponding to a unique state. Tree files shared the same state were read 
into ‘phylo’ objects using the treeio 1.20.2 package (44). These ‘phylo’ objects were then converted 
into structured data frames using the tidytree 0.4.6 package (53), facilitating the easier estimation 
of epidemiological metrics. 
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Figures and Tables 

 
Figure 1. Conceptual Workflow of Large-Scale Genomic Epidemiology Analysis. 
Phylogenetic Analysis built the phylogeny of the isolated sampled from the focal region within a 
global context. Introduction analysis estimated the timing of viral introductions and identified 
locally circulating clusters. The Joint Fit Model inferred transition rate under a unified transition 
matrix. 
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Figure 2. Dynamics of Viral Introduction into the Greater Houston. A. Estimated weekly 
frequency of viral introductions, with curves colored by the size of the resulting local transmission 
lineages. Shading indicates the associated 95% Highest Posterior Density (HPD). B. Estimated 
weekly frequency of viral introductions, with curves colored to distinguish between domestic and 
international sources. Shading indicates the associated 95% HPD. 
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Figure 3. Phylogeny-Trait Correlation Among 181 Locally Circulating Clusters. Blue circles 
showed the test result of association between locally circulating clusters and age groups. Green 
triangles showed the test result against sex groups. Shapes bellowed the red line (p < 0.05) 
indicated clusters that has tightly correlated with corresponding traits. 
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Figure 4. Discrete Trait Diffusion Models of Age Group and Sex. The age group model (A) and 
the sex model (B) are presented by circular charts. Chord thickness indicates the magnitude of the 
transition rate, while color signifies Bayes Factor support. Only transition rates supported by a 
Bayes Factor greater than 3 (BF > 3) from the discrete trait analysis are displayed. Transmission 
sources are on the left, transmission sinks are on the right. 
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Figure 5. Distinct Transmission Patterns in Subregions of Greater Houston. (A) Discrete 
phylogeographic reconstruction of the dispersal history across 21 independent school districts in 
Harris County and 8 nearby counties. Subregions on the map are colored based on their associated 
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Source Sink Scores. Arrow thickness indicates the magnitude of transition rates. All transitions 
shown on the map were decisively supported by Bayes factors (>100) (B) Source Sink Scores 
(SSS), (C) Local Import Scores (LIS), and (D) Persistence Time (PT) across these subareas. In 
these bar charts, golden error bars represent the associated 95% Highest Posterior Density (HPD), 
providing a measure of uncertainty for each score. SSS ranges from 1 (viral source) to -1 (viral 
sink). LIS ranges from 0 (epidemic is locally maintained) to 1 (epidemic relies on introduction). 
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