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Abstract 
 

Artificial Intelligence (AI) fairness in healthcare settings has attracted significant attention due to the concerns to propagate existing health 
disparities. Despite ongoing research, the frequency and extent of subgroup fairness have not been sufficiently studied. In this study, we 
extracted a nationally representative pediatric dataset (ages 0-17, n=9,935) from the US National Health Interview Survey (NHIS) concerning 
COVID-19 test outcomes. For subgroup disparity assessment, we trained 50 models using five machine learning algorithms. We assessed 
the models’ area under the curve (AUC) on 12 small (<15% of the total n) subgroups defined using social economic factors versus the on the 
overall population. Our results show that subgroup disparities were prevalent (50.7%) in the models. Subgroup AUCs were generally lower, 
with a mean difference of 0.01, ranging from -0.29 to +0.41. Notably, the disparities were not always statistically significant, with four out 
of 12 subgroups having statistically significant disparities across models. Additionally, we explored the efficacy of synthetic data in mitigating 
identified disparities. The introduction of synthetic data enhanced subgroup disparity in 57.7% of the models. The mean AUC disparities for 
models with synthetic data decreased on average by 0.03 via resampling and 0.04 via generative adverbial network methods. 
 
1. Introduction 
Artificial Intelligence (AI) models are increasingly used in healthcare. Many shareholders have high expectations that AI 
would revolutionize healthcare and healthcare research, and there have been some early signs of success. (1, 2) One example 
is using machine learning (ML) methods to detect diabetic retinopathy. Several classification models trained using different 
datasets have achieved good (>90%) sensitivity, specificity, or AUC. (3) The recent development of significant language 
model-based generative AI has further increased the enthusiasm. Since the introduction of Generative Pre-Trained 
Transformers (GPT), several studies have shown that it was able to generate answers that have accuracy to pass the United 
States Medical Licensing Exam. (4-6) 
 
Meanwhile, serious concerns have been raised that AI may perpetuate health disparity (7-9). Real-world data are subjected to 
biases as they may contain missing entries, suffer from class imbalance, be affected by sampling biases, and not have been 
collected for modeling. AI models that are trained on biased information thus can yield biased results. Sampling bias, for 
example, can be introduced in a dataset when only some with a particular characteristic are recruited into a study while others 
are systematically excluded. (10) In this case, an AI algorithm trained on the data can inadvertently make a poor prediction 
for the underrepresented subgroup and further exasperate the inequalities within the health care system. Commonly used 
fairness metrics include the disparity between subgroups regarding AUC (area under curve, measures overall distinguishing 
power), accuracy, and true positive and false positive rates. (11) Some studies assessed the fairness of health risk prediction 
models focusing on specific vulnerable populations such as African Americans. (12) Other studies developed mitigation 
strategies, including generating and adding synthetic data to an existing dataset. (13, 14) 
 
Many knowledge gaps exist despite the strong interest in AI fairness in the biomedical domain. Literature has shown that 
some trained models perform better in one subgroup than another, but it is unclear how often and to what extent subgroup 
disparity exists in health risk prediction. Similarly, more experiments are needed to determine how often and to what extent 
the new mitigation strategies, such as synthetic data generation, can enhance disparity. 
 
In this study, we use pediatric COVID-19 risk prediction as the use case. Since 2020, COVID-19 has affected millions of 
children. Children, including teenagers, tend to have milder COVID-19 symptoms. Nevertheless, COVID-19 became one of 
the leading causes of death among those between 0-19 years of age. (15) Children, like adults, suffer from health disparities. 
For example, most children are healthy, but a small subpopulation has underlying conditions (e.g. diabetes) and is thus 
particularly at risk for (severe) COVID-19. {Bishop, 2024 #1290} 
 
While researchers have discussed the fairness and biases of AI pediatric health risk prediction models, (25) among the studies 
that trained ML models for pediatric COVID-19, (26, 27) few assessed the subgroup disparity of the ML models (i.e., the 
disparity of model performance between different subgroups of the population). Our study is novel in that we sought to assess 
the prevalence of subgroup disparity when modeling COVID-19 test outcomes in children and test if the disparities are 
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statistically significant. In addition, we selected two subgroups with statistically significant disparities to test the 
effectiveness of using synthetic training data to reduce subgroup disparities.  
 
 
2. Methods 
 

2.1 Dataset 

We obtained a set of the US National Health Interview Survey (NHIS) data (2020-2022) from the IPUMS (16) and identified 
a cohort of children (ages 0-17). (Table 1) NHIS is a nationally representative sample. It is “the principal source of information 
on the health of the civilian noninstitutionalized population of the United States and is one of the major data collection programs 
of the National Center for Health Statistics (NCHS), which is part of the Centers for Disease Control and Prevention 
(CDC).”(17) Comparing to electronic medical record data, NHIS has more detailed information on social determinants health 
such as citizenship and health insurance status which we used to define subgroups. 

NHIS data contain thousands of variables, though most are not included in every survey for every age group. In the surveys 
between 2020 and 2022, NHIS added a set of questions related to COVID-19. For the ML experiments described here, COVID-
19 test result (positive vs negative) was chosen as the outcome variable. Some other COVID-19 outcome questions were only 
included in the surveys for one or two quarters, limited to adults, or had very few positive answers. In pre-processing, we 
treated various “unknown” answers (e.g., “unknown-refused” or “unknown-don’t know”) as missing values. Variables with 
high amounts of missing values were removed from consideration as predictive features. We also focused on selecting variables 
discussed as risk factors in the COVID-19 literature. (18-24) The demographics and other characteristics of the study sample 
are shown in Table 1. 

Table 1. Demographics and other characteristics of the NHIS study cohort. NHIS has detailed demographics with limited 
clinical data. 

  N=9935 
Mean/N Std/% 

Age 9.1 5.3 
Gender 
Female 4811 48.2% 
Male 5124 51.6% 
Race 
White 7151 72.0% 
Black 1159 11.7% 
Asian 722 7.30% 
Mixed Race 649 6.50% 
Alaska Native/Native American 250 2.50% 
Ethnicity 
Non-Hispanic/Spanish Origin 8029 80.8% 
Mexican 1147 11.5% 
Other Hispanic 759 7.60% 
Other characteristics 

  

US Citizen 9701 97.6% 
Receives Food Stamps  1879 18.9% 
Free or Reduced Lunch   4338 43.7% 
Have Insurance Coverage 9500 95.6% 
Excellent Health  6451 64.9% 
Very Good Health 2261 22.8% 
Good Health 983 9.9% 
Fair Health 205 2.1% 
Poor Health 35 0.4% 
Received Flu Vaccine 4903 49.4% 
ADD 1026 10.3% 
Asthma 1094 11.0% 
Positive COVID-19 test 2612 26.3% 
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2.2 Subgroup disparity assessment 

For the subgroup disparity assessment, we selected five ML algorithms (gradient boosting machine (GBM), neural network 
(NN), penalized logistic regression (PLR), support vector machine with linear kernel (SVM), and k nearest neighbor (KNN)), 
that are very different in their modeling approach. For example, PLR and SVM with linear kernels yield linear models, while 
GMB, NN, and KNN can model complex, non-linear relationships: PLR is a variant of logistic regression that incorporates 
regularization techniques to prevent overfitting and improve generalization by adding penalty terms to the cost function. SVM 
is an algorithm that finds a hyperplane that best separates different classes in the feature space. GBM is an ensemble algorithm 
that combines multiple decision trees. NN models consist of interconnected nodes intended to mimic human neurons organized 
in layers. KNN is a simple algorithm that predicts the class of a new data point based on the majority class or average value of 
its k-nearest neighbors in the feature space. 

Before fitting each model, the data was randomly split into 90% training and 10%. We then fitted the models on the training 
data with parameter selection using a five-fold cross-validation. The trained model was then applied to the testing data. The 
training and testing were repeated 10 times per ML algorithm. This yielded 50 different models for the evaluation of fairness. 

To assess the subgroup disparity, 12 small (<15% of the total n) subgroups, including 6 racial and ethnic minorities, were 
selected. For each model, we calculated and compared the AUCs (area under the curve, measuring overall distinguishing power) 
of the overall population and each subgroup in the testing data. Theoretically, any difference in  model performance between 
two subgroups can be called subgroup disparity. In this study, we defined subgroup disparity as a model with worse AUC on a 
small subgroup than the overall population.  

We calculated the prevalence and magnitude of subgroup disparity measured as AUC differences. Because the AUCs are 
affected by the ML algorithm and the partition of training and testing data, we used paired t-tests to assess the statistical 
significance of the subgroup disparity between a subgroup and the overall population. 

2.3 Use synthetic data to reduce subgroup disparity 

To reduce subgroup disparity, we tested the use of synthetic data. Two subgroups with AUCs statistically significantly lower 
than the general population were selected. Two methods, oversampling and generative adversarial network (GAN), were used 
to generate synthetic data. For oversampling, we used the built-in resample function in R. A GAN learns to generate synthetic 
data by learning the joint distribution in the actual data through two neural networks, one function as the generator and the 
other as the discriminator. We used the RGAN package in R for this experiment. (28) 

We set the synthetic data sample size to the sample size of the two selected subgroups in the training data. In other words, we 
doubled the sample size of the subgroups by adding synthetic data. We fitted NN models with and without synthetic data but 
evaluated them using the same testing data.  

The training and testing were repeated 10 times with different random 90:10 split of training and testing data. The AUC 
differences in models fitted with and without synthetic data were compared. (Fig. 1) Given the goal of reducing subgroup 
disparity, the evaluation focuses on models with AUC disparities associated with the two selected subgroups. This experiment 
used NN as the ML algorithm because it had one of the best mean AUCs. 
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Figure 1. Experimental design for testing the effect of increasing the sample size of selected small subgroups using synthetic 
data. 
 
 

3. Results 

In the subgroup disparity assessment, we compared the AUCs of 50 models (5 algorithms with 10 different data partitions) in 
the 12 small subgroups vs those in the general population. (Table 2) Our results showed that 50.7% of the time, the AUC of a 
small subgroup was lower than that of the general, suggesting that subgroup disparity is prevalent. There is, however, a large 
variation in the AUC differences: Mean: 0.01, Min: -0.29, Max: 0.41, SD: 0.09. (A positive difference indicates an AUC 
disparity.) 

Table 2. Average AUC and AUC disparity by ML method. A positive number indicates disparity, i.e., the ML model(s) 
performed worse on the subgroup than the overall population. KNN: K nearest neighbor; GBM: Gradient boost machine; PLR: 
Penalized logistic regression; NNET: neural network. 

ML Method Mean AUC on overall population (SD) AUC Disparity (SD) 

KNN 0.58(0.01) -0.01(0.10) 
GBM 0.63(0.01) 0.00(0.09) 
SVMLinear 0.63(0.03) 0.02(0.10) 
PLR 0.64(0.01) 0.03(0.09) 
NN 0.64(0.01) 0.00(0.09) 

The paired-t tests found that in four of the 12 subgroups (Non-Citizen, Good Health, Black, and Native American), the AUC 
disparities were statistically significant. (Table 3) A few of the other subgroups, on the other hand, has better AUCs than the 

Extract NHIS Survey Data 2020-2022

Limit dataset to ages 0-17

Pre-process (remove features with high amounts of 
missing values, one-hot encoding, etc.)  

Partition data into training and testing (90/10 split)

Center and scale data features

Fit model on training data with parameter selection using 
five-fold cross validation

Evaluate ML model performance on testing data (general 
population and 2 selected small subgroups)

Repeat 10 times

Compare model performance on general population vs. 
selected small subgroups, with vs. without synthetic data

Generate synthetic training data for selected 
small subpopulations

Resampling GAN
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general population. We need to note that on small sample sizes, the assessment of AUC is not as reliable as on larger sample 
sizes. 

Table 3. The mean and AUC of each subgroup. Four subgroups had statistically significantly worse AUC than the general 
population. *Since most survey participants have excellent and very good health, good health is a subgroup with less optimal 
outcomes. 

Subgroup  Mean AUC (SD) Mean AUC difference  P value 

Non-Citizen  0.58 (0.13) 0.05 0.02 
Good Health*  0.60 (0.06) 0.02 <0.01 
Black  0.60 (0.06) 0.02 <0.01 
Native American  0.67 (0.14) 0.05 <0.01 
Very Good Health  0.63(0.13) -0.01 0.72 
No Insurance Coverage  0.62(0.12) 0.01 0.74 
Mexican  0.61(0.07) 0.02 0.08 
Other Hispanic  0.61(0.07) 0.01 0.11 
ADD  0.63(0.07) -0.01 0.25 
Asthma  0.64(0.05) -0.02 <0.01 
Asian  0.65(0.07) -0.02 0.01 
Other Race and Multiple 
Race 0.57(0.09) -0.02 0.22 

In the synthetic data experiment, we focused only on models that showed disparity in regard to the two selected subgroups. 
(Figure 2) The addition of synthetic data reduced the subgroup disparity in 57.7% of these models: oversampling reduced AUC 
disparity by 63.6%, and GAN reduced the AUC disparity by 53.3%. In the cases where AUC disparity was reduced, the 
disparity was decreased by an average of 0.03 from 0.08 to 0.05, with the average reduction associated with resampling being 
0.03 and the average reduction associated with GAN being 0.04. As shown in Figure 3, the disparity results from a combination 
of the increase of the subgroup AUC and the decrease in the overall AUC. 

 

Figure 2. The synthetic data experiment showed that most original models had subgroup disparities, and the addition of 
synthetic data to model training led to reduced disparities in most cases where subgroup disparities were observed. 
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Figure 3. The mean AUCs of the selected subgroups vs. overall subgroup in models with subgroup disparity were reduced by 
adding synthetic data.  
 
 

4. Discussion 

4.1. Findings 

Most of the prior publications that measured subgroup disparity of AI prediction in the biomedical domain focused on one or 
two models and reported findings of disparities.     In our experiments, using five different machine learning algorithms, random 
data partitions, and twelve subgroups, we found that subgroup disparity is prevalent (50.7%) when modeling COVID-19 
outcomes in children (0-17 years old). In other words, MLmodels often performs worse on a small subgroup than on the overall 
population. 

However, the high prevalence of subgroup disparity is partly due to random effects associated with partitioning training and 
testing data and the use of random seeds in algorithms. We observed that the mean difference between the subgroup AUCs and 
overall AUCs is only 0.01, with a minimum of -0.29, a maximum of 0.41, and a standard deviation of 0.09. This suggests that 
the average AUC of the small subgroups was only slightly lower than that of the overall population. Sometimes, the small 
subgroups’ AUC are higher and sometimes lower than the overall population AUC.   

The subgroup disparities are not always statistically significant. We found that four out of the twelve subgroups had statistically 
significantly lower AUCs than the general population in the paired t-test. This suggests that these four subgroups had different 
predictor-outcome relationships from the general population.  

Synthetic data has been reported to boost AI model performance and used as a bias-mitigation strategy. We experimented with 
generating synthetic data through oversampling and GAN to reduce the prediction disparities in two subgroups that with 
statistically significant disparities. Our results suggest that the oversampling and GAN methods can but do not always lead to 
lower subgroup disparity.  

4.2. Implications 

When training for healthcare risk prediction models, researchers and developers often optimize for the overall performance, 
such as AUC, accuracy, and positive and negative predictive values. As our analyses suggest, the subgroup disparity is 
prevalent. The mean disparity in our study was small (0.01) but the maximum disparity was very large (0.41). Selecting a model 
with low average or low maximum subgroup disparity would be desirable when choosing a risk prediction model. A model, 
however, cannot be expected to achieve the exact performance in every subgroup since subgroups often have somewhat 
different characteristics and may have somewhat different underlying relationships between predictors and outcomes. 

Statistically significant subgroup disparities may be caused by several factor. (29) In our study, for example, the non-citizens 
and Native Americans have a very small smple size. It has been reported that native youths suffered the most considerable loss 
rate of caregivers. (30) Hill et al discussed immigration status as a health care barrier in the US during COVID-19 in their 2021 
paper. (31) To improve the model performance on these subgroups, we do not only need to increase the sample size but should 
also examine confounders (e.g., body mass index, diabetes diagnosis, length in the US for immigrants) that were not captured 
by the NHIS data on children. 

While it is possible for a given model to perform better on specific smaller subgroups (as shown in our experiments), ML 
algorithms are typically designed to optimize their performance for the majority subgroup. As a result, de-biasing strategies 
have been designed to boost modeling training on the small subgroups through weighing, oversampling, and synthetic data 
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generation. (32) Our results show that over-sampling and GAN-based synthetic data generation could sometimes reduce the 
bias. Even when the reduction was achieved, they do not always completely eliminate the disparities. 

4.3. Limitations 

One limitation is that we only measure AUC, while other ML performance measures include sensitivity, specificity, and 
accuracy may be more relevant in some clinical tasks. We did not choose those other metrics in our experiment because they 
are threshold- specific. However, based on the use case, a threshold-specific metric may be more appropriate.  

Another limitation is the sample size. While a sample of almost 10,000 patients is not too small for ML in general, GAN 
typically requires a larger amount data to train. The size of the small subgroups may be simply too small to take advantage of 
GAN’s capabilities. This is also why we did not select non-citizen and native American subgroups for synthetic data generation.  

A very challenging issue for most existing de-basing algorithms is the multi-minority status. Re-weighting methods, for 
example, are usually designed to enhance the performance of one sensitive variable or subgroup. While we examined multiple 
sensitive variables in this study, we did not consider multi-minority status. 

In addition, there is sometimes a tradeoff between overall group performance and subgroup performance. When we added the 
synthetic data for model training, the average overall AUC was reduced by 0.02, while the disparity in AUC was reduced by 
0.04. In other words, the reduction in disparity came with a cost in overall performance. One way to address this issue may be 
to create a subgroup-specific model that optimize the subgroup performance through transfer learning. (33)  

4.4. Future work 

In future studies, we would like to test other bias mitigation methods on larger samples. We also plan to study the subpopulation 
with multi-minority status, which may be the most vulnerable patient subgroup. 
 
 
5. Conclusions 
 

We assessed AI fairness in the context of pediatric COVID-19 test result outcome prediction as well as experimented with the 
use of synthetic data to reduce subgroup disparities. Our results suggest that subgroup disparity is prevalent in ML models, 
though often not statistically significant, and synthetic data can sometimes enhance subgroup parity. 
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