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ABSTRACT 19 

Objectives: To develop an accurate, state-of-the-art algorithm for the incidental detection of 20 

pancreatic cystic lesions (PCLs) on computerized tomography (CT) and magnetic resonance 21 

imaging (MRI) scans.  22 

Methods: A SwinT-Unet-based architecture was developed for the incidental detection of 23 

PCLs. The algorithm was trained and validated on a robust dataset of retrospective CT and 24 

MRI studies collected from HT Médica centers located in eight different cities using scanners 25 

fabricated by four different manufacturers.  26 

Results: Our algorithm was able to detect 91.6% of the confirmed PCLs in the initial dataset 27 

with 91.6% sensitivity and 92.3% specificity, while 91.7% of the healthy controls were also 28 

correctly identified. Furthermore, our tool was remarkably capable of classifying these PCLs 29 

as mucinous or non-mucinous, determining their location within the pancreas with an 30 

accuracy of 88.5%, and identifying the presence of calcifications or scars within the PCLs 31 

with an accuracy of 96%.  32 

Conclusions: By integrating radiological data and state-of-the-art artificial intelligence 33 

techniques, we have developed an efficient tool for the incidental identification and initial 34 

characterization of PCLs, which present a substantial prevalence within the global 35 

population. Our algorithm facilitates early diagnosis of pancreatic abnormalities, which could 36 

have a profound impact on patient management and prognosis, particularly in the case of 37 

PCLs with malignant potential.  38 

 39 
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INTRODUCTION 43 

Pancreatic cancer (PC) currently ranks as the twelfth most common type of cancer globally 44 

[1], and it is further expected to become the second leading cause of cancer-related mortality 45 

by 2030 [2]. Moreover, PC is one of the most lethal types of cancer, with a 5-year survival 46 

rate inferior to 10% [3]. The delayed onset of PC symptoms, often appearing when metastasis 47 

has already occurred, results in up to 85% of patients no longer being eligible for surgical 48 

resection, which has a profound negative impact on their prognosis [4,5].  49 

Many research efforts are currently focused on the identification of biomarkers for early PC 50 

detection, aiming to improve patient outcomes. However, only one of these biomarkers, the 51 

serum carbohydrate antigen 19-9, has been approved by the US Food and Drug 52 

Administration (FDA), and only as a therapy response and disease relapse monitoring 53 

marker, as its predictive value is too low for population screening purposes [6]. Nonetheless, 54 

there is an opportunity for early PC diagnosis in patients presenting pancreatic cystic lesions 55 

(PCLs), as some of them are well-known precursors for this malignancy. The widespread 56 

adoption of advanced imaging techniques, particularly computed tomography (CT) and 57 

magnetic resonance imaging (MRI), has led to an increased identification of conditions 58 

unrelated to the initially suspected diagnosis. These incidental findings can indeed be 59 

fortunate discoveries when they entail the early detection of a potentially treatable 60 

malignancy. Unsuspected PCLs have a prevalence of 2.6% in CT scans [7] and of 13.5–61 

19.6% in MRI studies [8,9], and both show a strong correlation with advanced age. 62 

Unexpectedly, a recent study found a much higher prevalence (49.1%) of incidental PCLs in 63 

healthy individuals, which also increased with body mass index and age [10].  64 
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PCLs can have a non-neoplastic (pseudocysts) or a neoplastic nature. Among the latter, 65 

serous cystadenomas (SCA) are typically regarded as benign [11], while mucinous cysts are 66 

often associated with malignant potential. Intraductal papillary mucinous neoplasms (IPMN) 67 

and mucinous cystic neoplasms (MCN) are two well-known PC precursors. IPMNs can arise 68 

from the side branches, the main pancreatic duct, or a combination of both, with a notably 69 

higher prevalence of PC found in main duct IPMNs [12]. Thus, this distinction has a direct 70 

impact on patient management and prognosis. PC cases arising from PCLs have been 71 

proposed to follow a systematic model in which malignancy progression occurs over several 72 

years, thus offering an opportunity for early diagnosis [13,14]. However, differentiation 73 

between the different types of PCLs is challenging, and although the presence of some 74 

specific features can be indicative of malignancy [15,16], these signs are sometimes not 75 

enough to confidently distinguish between benign and malignant PC precursors. 76 

Nevertheless, early detection of PCLs is essential to improve patient outcomes and reduce 77 

the economic strain on healthcare systems, as it would allow more informed, enhanced 78 

decision-making regarding lesion management and monitoring, thus potentially preventing 79 

progression to PC. 80 

Artificial intelligence (AI) tools are poised to play a crucial role in the early detection of 81 

PCLs in CT and MR images. These algorithms have the potential to accurately identify and 82 

define lesion boundaries and to extract essential qualitative and quantitative information from 83 

their features, thus improving diagnostic precision. The implementation of these tools would 84 

also help to streamline the workflow in radiology departments, providing valuable assistance 85 

to radiologists in the diagnostic process and reducing their workload. The capability of 86 

convolutional neural networks (CNNs) to learn the spatial hierarchies of features from input 87 
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data in an automatic and adaptive manner makes them exceptionally useful for extracting 88 

information from medical images. This capability allows CNNs to learn complex patterns at 89 

different levels of abstraction, recognize patterns independently of their spatial location, and 90 

even identify new patterns not obvious to the human eye. Moreover, depending on the 91 

specific dataset they are trained on, CNNs can work with multiple types of imaging studies 92 

(ultrasound, CT, MRI, etc.) and perform a wide variety of tasks (detection, segmentation, 93 

classification, etc.). Applied to medical images, the AI model presented in this manuscript, 94 

based on the SwinT-Unet architecture, offers exceptional segmentation accuracy and 95 

remarkable generalization ability, allowing the discrimination of structures at the pixel level. 96 

The results showed an outstanding performance of our algorithm, achieving 91.6% 97 

sensitivity and 92.3% specificity in the incidental detection of PCLs, while also 98 

demonstrating a remarkable capacity to further characterize the lesion by classifying it as 99 

mucinous or non-mucinous, accurately determining its location within the pancreas, and 100 

identifying the presence of calcifications or scars within the PCLs. Our findings confirm a 101 

significant prevalence of PCLs within our study population, highlighting the crucial support 102 

a tool like ours might provide through the early diagnosis of pancreatic abnormalities and the 103 

significant impact this would have on patient management and prognosis, particularly in the 104 

case of PLCs with malignant potential. 105 

 106 

MATERIALS AND METHODS 107 

Patients  108 
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The total cohort included 43.3% women (table 1). This initial cohort was divided into two 109 

subgroups: the control group included 56.3% of the patients (37.9% women, table 2), while 110 

the second group, comprising patients who had been diagnosed with a PCL, included 43.7% 111 

of the study population (table 3). Both groups showed a similar age distribution, and women 112 

and men were equally represented in the PCL group, which was further characterized to 113 

analyze the performance of our algorithm.  114 

 115 

Imaging 116 

Image studies were acquired at different HT Médica medical centers located in the Spanish 117 

cities of Jaén, Córdoba, El Ejido, Huelva, Cádiz, Jerez de la Frontera, Algeciras, and Sevilla, 118 

from January 2018 to December 2021, using scanners developed by the following 119 

manufacturers (tables 1–3): Canon Medical Systems (Otawara, Japan), GE Healthcare 120 

(Chicago, IL, United States), Philips (Amsterdam, The Netherlands), and Siemens 121 

Healthineers (Erlangen, Germany). Demographic data of the patients, including age and 122 

gender, were collected from HT Médica’s radiological information system. 123 

 124 

Segmentation and feature extraction 125 

A team of radiologists, each of them with more than five years of experience, manually 126 

delineated the pancreas and PCLs in all the images, slice by slice, using the 3D modeling tool 127 

available in the Philips IntelliSpace Portal (v12.1). The segmentations were subsequently 128 

exported in RTSTRUCT format. To ensure agreement between raters, collaborative 129 
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segmentation, and consensus resolution were employed, minimizing discrepancies in the 130 

assessment process. 131 

 132 

Algorithm development 133 

The proposed model (fig1) is based on the SwinT-Unet [17] architecture, a further 134 

development from the U-Net [18] that aims to predict objects on an image with pixel-wise 135 

accuracy. Our model includes an encoder block, to reduce input resolution, and a U-Net 136 

decoder with dual-scale information modules. The encoder is an attention-based model with 137 

blocks that capture information at multiple scales, similar to that proposed by Atek et al. [17]. 138 

The input image is processed through multiple Swin transformer blocks performing attention 139 

operations and feature transformation. These blocks are responsible for feature extraction at 140 

various scales, allowing the model to capture both the fine details and high-level abstract 141 

features. After information passes through the encoder, the architecture adopts a U-Net-like 142 

structure [18] to perform segmentation. The decoder takes the features extracted by the 143 

encoder and uses them to generate a segmentation mask of the same resolution as the original 144 

input. Additionally, the decoder incorporates dual-scale information modules to merge 145 

features from different resolution levels that allow the model to integrate detailed and 146 

contextual information at different scales, thus improving segmentation accuracy, especially 147 

in areas with fine details or small features. This ability to process features and key points at 148 

different levels is crucial for the network to learn the features that best characterize big 149 

organs, such as the liver, as well as small lesions with different shapes and textures, such as 150 

PCLs. The network was specifically trained to learn the position and shape of the liver, 151 

kidneys, and pancreas, as well as a wide range of benign, pre-malignant, and malignant 152 
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lesions present in the training set corresponding to the aforementioned organs. The model 153 

proposed here further includes two more steps: (1) a pre-processing step, prior to the 154 

inference of the neural network, that normalizes the input image by applying a Soft-Tissue 155 

Normalization [19], and (2) a post-processing step after the inference the filters out potential 156 

detections of the network that have no anatomical meaning, such as lesions belonging to an 157 

organ which they are not in direct contact with or predictions present in parts of the study 158 

where the abdomen is not visible yet. 159 

 160 

Statistical analysis  161 

The Kolmogorov–Smirnov test was used to assess normality. Categorical variables are 162 

presented as total numbers and percentages, and continuous variables are presented as 163 

medians and interquartile ranges (IQRs) for non-normally distributed data. The chi-square 164 

(χ2) test was used to analyze group differences for categorical variables, while the Mann–165 

Whitney U test was used for continuous variables. Results were considered statistically 166 

significant if p<0.05. Statistical analyses were conducted using the SPSS Statistics, version 167 

29.0.0.0 (IBM, Armonk, NY, United States).  168 

 169 

RESULTS 170 

Patient’s characteristics  171 

The median age of the patients included in the present study was 66 years old. The 61–80 172 

age range was the most represented, consistent with the expected increase in CT and MRI 173 

scans performed as the population ages. Women accounted for 43.3% of the initially 174 
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evaluated patients (table 1). The recruited cohort was divided into two groups: one group 175 

with confirmed PCLs, including 43.7% of the patients, and a control group of healthy 176 

individuals. Both groups showed a similar age distribution, and women and men were equally 177 

represented in the PCL group (tables 2 and 3).  178 

Among these PCL lesions, 61.1% of them were identified as non-mucinous (serous cystic 179 

neoplasms (SCN), pseudocysts) and 38.9% were classified as mucinous (MCNs, IPMNs). 180 

Within the non-mucinous group, 93.8% of them were SCNs or pseudocysts; additionally, 181 

3.8% of non-subclassified benign lesions and 2.5% of undetermined non-mucinous lesions 182 

were detected (table 4). The prevalence of both mucinous and non-mucinous lesions 183 

increased with age, with mucinous cases associated with a higher median age (p<0.001). 184 

Notably, a higher percentage of patients with mucinous lesions fell within the 61–80 age 185 

range, consistent with the expectation of a higher lesion incidence in older patients [10]. 186 

 187 

Incidental finding of PCLs 188 

Out of the initial dataset, 43.7% of the cases were confirmed as true positives for a PCL, 189 

based on radiological evidence. This prevalence is in alignment with the existing literature, 190 

which reports the presence of PCLs in up to 49.1% of the adult population [10]. Our 191 

algorithm successfully detected 91.6% of the lesions, while 8.4% were missed (false 192 

negatives). Furthermore, among the control population, the algorithm accurately identified a 193 

healthy pancreas in 91.7% of the cases but presented 7.7% of false positives. 194 

Overall, our SwinT-Unet-based model showed 91.6% sensitivity and 92.3% specificity in the 195 

detection of PCLs. These results confirm the high precision and reliability of our AI-based 196 
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approach in distinguishing between cystic lesions and non-cystic structures within the 197 

pancreas, underscoring the potential of AI technology to enhance the accuracy and efficiency 198 

of pancreatic lesion detection, thereby facilitating early diagnosis and treatment planning for 199 

patients with pancreatic abnormalities. 200 

 201 

Characterization of PCLs: mucinous vs. non-mucinous classification and location 202 

While the majority of pancreatic cysts carry a low risk of malignancy, some are recognized 203 

as premalignant lesions capable of progressing into mucin-producing adenocarcinoma. 204 

Consequently, the identification of these cysts often triggers heightened anxiety in the patient 205 

and prompts additional medical investigations to assess the potential for malignancy [20,21]. 206 

While the primary objective in this study was the incidental detection of PCLs, the 207 

classification of these cysts as mucinous (IPMNs, MCNs) or non-mucinous (SCNs, 208 

pseudocysts) [22] was also addressed, achieving an accuracy of 73.3% in the classification 209 

of PLCs as mucinous (fig2). 210 

Furthermore, we analyzed the spatial distribution of the PCLs within the pancreas, with the 211 

algorithm demonstrating a high accuracy (88.5%) in categorizing the cysts as head, body, or 212 

tail, according to their location. Specifically, the algorithm was capable of correctly 213 

determining the location of the lesion at the head or the uncinate process of the pancreas with 214 

an accuracy of 86%, at the body with an accuracy of 92.6%, and at the tail with an accuracy 215 

of 75.7%.  216 

Additionally, we conducted a thorough examination for the presence of calcifications or scars 217 

within the cystic lesions, achieving an accuracy of 96% in their identification. This was 218 
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crucial to assess the presence of potential signs of malignancy or chronic inflammation within 219 

the PCL. To achieve this, several image feature extraction algorithms were applied to study 220 

the high increments of Hounsfield Units (HU) on small sliding windows passed through 221 

patches of the image where the lesion was detected. A map of the increased direction of the 222 

HU within the sliding window is thus generated and, by calculating its maximum, the 223 

candidates to potential scars (understood as groups of pixels with a high HU, since they have 224 

a great bone component that is aligned towards a defined direction within the PCL) are 225 

extracted.  226 

This comprehensive characterization of the PCL provides valuable insights into the diverse 227 

nature of the lesion, supporting clinicians in diagnostic decision-making and risk 228 

stratification for further management strategies. 229 

 230 

DISCUSSION 231 

Considerable efforts have been employed to try to distinguish between the different types of 232 

PCLs, as this step is essential to correctly stratify the malignant potential of the lesion so the 233 

best patient management can be provided. Duh et al. developed an AG-Net model capable of 234 

identifying PCLs on CT scans with 93.1% sensitivity and 81.8% specificity, further 235 

classifying them into two groups (IPMN and MCN vs pseudocysts and SCAs) [23]. Vilas-236 

Boas et al. designed a CNN for the automatic detection of mucinous PCLs. The algorithm, 237 

trained on images retrieved from EUS examination videos, achieved 98.5% accuracy, 98.3% 238 

sensitivity, and 98.9% specificity in the classification of PCLs as mucinous or non-mucinous 239 

[24]. Yang et al. developed a random forest (RF) model capable of differentiating between 240 
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serous and mucinous pancreatic cystadenomas based on the analysis of radiomics texture 241 

features extracted from CT scans. Their algorithm achieved 0.83 accuracy, 0.85 sensitivity, 242 

and 0.83 specificity for a slice thickness of 5 mm [25]. Shen et al. compared the performance 243 

of a support vector machine (SVM) model, an RF algorithm, and an artificial neural network 244 

(ANN) in differentiating among SCAs, MCNs, and IPMNs using eight clinical factors and 245 

nine radiomics features extracted from CT scans [26]. The RF classifier offered the best 246 

results, achieving an accuracy of 79.59% and F1 scores of 0.7500 for the differentiation of 247 

IPMNs, 0.8182 for MCNs, and 0.8077 for SCAs. Gao et al. designed a CNN to identify 248 

pancreatic anomalies, including PCLs, on MRI images [27]. The authors employed 504 249 

original pre-treatment MRI studies to train their model. As most of the patches within the 250 

images corresponded to carcinoma, they augmented the number of images for the other 251 

conditions with the help of a generative adversarial network (GAN), creating synthetic 252 

images based on real ones up to a total of 35735 patches for the training dataset. The CNN 253 

trained on this augmented dataset offered its best results when a synthetic to real images ratio 254 

of 40:1 was used, achieving an AUC of 0.9147 for the identification of carcinomas, 0.8486 255 

for benign ductal diseases, 0.9126 for benign cystic diseases, 0.7189 for inflammatory 256 

diseases, 0.9301 for pancreatic neuroendocrine tumors, and 0.8880 for solid pseudopapillary 257 

tumors. 258 

The number of studies exploring the incidental finding of PCLs via AI approaches is much 259 

reduced. Kooragayala et al. employed a publicly available natural language processing (NLP) 260 

software to identify incidental findings on CT scan reports [28]. The authors created a list of 261 

specific terms (including IPMN, pancreatic cyst, and pancreatic ductal dilation) to identify 262 

pancreatic findings that were used as parameters to train the algorithm on a subset of 28 263 
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patients who had undergone pancreatic resection for known pancreatic lesions. This 264 

algorithm achieved an accuracy of 0.987 on a validation set of 400 CT scan reports. Their 265 

optimized model was subsequently applied to 18769 CT studies from patients admitted at 266 

their institution for trauma and findings of interest were identified in 232 of them, including 267 

potential IMPNs (48 patients), pancreatic cysts (36 patients), concerning masses (30 268 

patients), traumatic findings (44 patients), pancreatitis (41 patients), and ductal abnormalities 269 

(19 patients).  270 

By utilizing CT and MRI scans originally intended for the identification or evaluation of 271 

conditions not related to pancreatic abnormalities, the algorithm we present in this study 272 

offers a novel approach to the detection of PCLs. Our tool confirmed the incidental presence 273 

of PCLs in 43.7% of the study population, in accordance with previously reported data [10]. 274 

Out of all confirmed cases, the SwinT-Unet-based algorithm correctly identified 91.6% of 275 

them with a remarkable 91.6% sensitivity and 92.3% specificity, improving the results 276 

reported by Duh et al., which were obtained with an algorithm specifically designed for the 277 

classification of PCLs, not for their incidental detection. Furthermore, our algorithm is 278 

capable of providing a comprehensive characterization of the PCL through its classification 279 

as mucinous or non-mucinous with 73.3% accuracy. Although this result did not improve 280 

those previously reported [24–27], the tool presented here can further characterize the PCL 281 

by categorizing the lesion according to its location in the head, body, or tail of the pancreas 282 

with 88.5% accuracy, as well as identifying the presence of calcifications or scars within the 283 

PCL with 96% accuracy. Taken together, all this information provides a comprehensive 284 

characterization of the lesion that, without any doubt, will be very valuable to clinicians for 285 

the planning of tailored patient management strategies.  286 
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The results presented in this study were achieved using a robust dataset consisting of CT and 287 

MRI studies obtained from eight different medical centers using scanners fabricated by four 288 

different manufacturers. However, they are limited by the somewhat reduced number of 289 

imaging studies included.  290 

 291 

CONCLUSIONS 292 

Our study presents comprehensive findings regarding the incidental detection and 293 

characterization of PCLs through the integration of radiological data and advanced AI 294 

techniques. The results reveal a substantial prevalence of PCLs within the studied population, 295 

highlighting the importance of thorough radiological evaluations in clinical practice. 296 

Our AI model, based on the SwinT-Unet architecture, showed a remarkable performance in 297 

detecting PCLs with a sensitivity of 91.6% and a specificity of 92.3%. Furthermore, our study 298 

contributes to the in-depth characterization of PCLs by distinguishing between mucinous and 299 

non-mucinous types, aiding in risk stratification and clinical decision-making, and the 300 

identification of calcifications or scars within the cystic lesions, an aspect crucial for the 301 

assessment of potential signs of malignancy or chronic inflammation within the PCL. These 302 

outcomes not only emphasize the clinical utility of our approach but also highlight the 303 

potential of AI-driven approaches in enhancing the accuracy and efficiency of pancreatic 304 

lesion detection, which will undoubtedly have a profound impact on patient management and 305 

prognosis, particularly in the case of PCLs with malignant potential.  306 

 307 

  308 
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FIGURES 430 

 431 

Fig1. Schematic representation of the Swin-Unet architecture. The algorithm integrates 432 

a Swin transformer-based encoder and a symmetrical Swin transformer-based decoder, 433 

connected by two successive Swin transformer blocks (bottleneck). 434 

 435 
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 437 

Fig2. Original images and predictions made by our algorithm. (A) Mucinous PCL. (B) 438 

Non-mucinous PCL. Healthy pancreas is shown in purple, while the lesions appear in yellow. 439 

 440 
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TABLES 442 

Table 1. Demographic and manufacturer distribution of the total cases included in the study. 443 
 

Total Cases p 

Age (years) 66 (55-74) 
 

0-18 0 <0.001 

19-40 3.7% 
 

41-60 32% 
 

61-80 60% 
 

81-100 4.3% 
 

Women  43.3% 0.021 

Manufacturer 
 

<0.001 

Siemens 47% 
 

Philips 26.3% 
 

GE Medical systems 15.7% 
 

Canon Medical Systems 11% 
 

 444 

  445 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.18.24313888doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.18.24313888


25 
 

Table 2. Demographic and manufacturer distribution of the control cases included in the study. 446 
 

Control Cases p 

Age (years) 65 (56-72) 
 

0-18 0 <0,001 

19-40 4.1 % 
 

41-60 32% 
 

61-80 61.2% 
 

81-100 1.8% 
 

Women  37.9% 0.002 

Manufacturer 
 

<0,001 

Siemens 40.8% 
 

Philips 27.8% 
 

GE Medical systems 16% 
 

Canon Medical Systems 15.4% 
 

 447 

 448 

 449 

 450 
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Table 3. Demographic and manufacturer distribution of the PCL cases included in the study.  454 
 

PCL Cases p 

Age (years) 68 (54-76) 
 

0-18 0 <0.001 

19-40 3.1% 
 

41-60 32.1% 
 

61-80 57.3% 
 

81-100 7.6% 
 

Women  50.4% 0.930 

Manufacturer 
 

<0.001 

Siemens 55% 
 

Philips 24.4% 
 

GE Medical systems 15.3% 
 

Canon Medical Systems 5.3% 
 

PCL: Pancreatic Cystic Lesion 455 
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Table 4. Clinical and demographic characteristics of mucinous and non-mucinous PCLs. 457 
 

Mucinous PCL 
 

Non-mucinous PCL 
 

p 

SCN  - 70% 
 

Pseudocyst - 23.8% 
 

Benign non-subclassifiable  - 3.8%  

Undetermined  - 2.5%  

IPMN  90.2% - 
 

MCN  9.8% - 
 

Age (years) 72 (64-79) 63 (51-74) <0.001 

0-18  0 0 
 

19-40  0 5% 
 

41-60  19.6% 40% 
 

61-80  68.6% 50% 
 

81-100  11.8% 5% 
 

Women  54.9% 47.5% 0.409 

PCL: Pancreatic Cystic Lesion; SCN: Serous Cystic Neoplasms; IPMN: Intraductal Papillary Mucinous 458 
Neoplasms; MCN: Mucinous Cystic Neoplasms. 459 

 460 
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