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Abstract 
Gene-gene (GxG) interactions play an important role in human genetics, potentially explaining 
part of the “missing heritability” of polygenic traits and the variable expressivity of monogenic 
traits. Many GxG interactions have been identified in model organisms through experimental 
breeding studies, but they have been difficult to identify in human populations. To address this 
challenge, we applied two complementary variance QTL (vQTL)-based approaches to identify 
GxG interactions that contribute to human blood traits and blood-related disease risk. First, we 
used the previously validated genome-wide scale test for each trait in ~450,000 people in the UK 
Biobank and identified 4 vQTLs. Genome-wide GxG interaction testing of these vQTLs enabled 
discovery of novel interactions between (1) CCL24 and CCL26 for eosinophil count and plasma 
CCL24 and CCL26 protein levels and (2) HLA-DQA1 and HLA-DQB1 for lymphocyte count and 
risk of celiac disease, both of which replicated in ~140,000 NIH All of Us and ~70,000 
Vanderbilt BioVU participants. Second, we used a biologically informed approach to search for 
vQTL in disease-relevant genes. This approach identified (1) a known interaction for 
hemoglobin between two pathogenic variants in HFE which cause hereditary hemochromatosis 
and alters risk of cirrhosis and (2) a novel interaction between the JAK2 46/1 haplotype and a 
variant on chromosome 14 which modifies platelet count, JAK2 V617F clonal hematopoiesis, 
and risk of polycythemia vera. This work identifies novel disease-relevant GxG interactions and 
demonstrates the utility of vQTL-based approaches in identifying GxG interactions relevant to 
human health at scale. 
 
Main 
In gene-gene interactions, or epistasis, the effect of a variant depends on the genotype at another 
locus.1 Gene-gene interactions are significant in human genetics, as they may explain missing 
heritability of polygenic traits and variable expressivity of monogenic diseases.2–4 Systematically 
studying gene-gene interactions in humans is challenging due to the lack of sufficient power and 
the curse of multiplicity.5 Therefore, prior work has aimed to prioritize which variants to test for 
interactions.6–11 These studies have identified that genetic variants associated with variance of a 
trait – variance quantitative trait loci (vQTLs) – are more likely to be involved in a gene-gene or 
gene-environment interactions. Here, by prioritizing vQTLs – first genome-wide and second in 
disease-relevant genes – we identify gene-gene interactions altering blood traits (hemoglobin, 
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platelet count, lymphocyte count, and eosinophil count) and disease risk among up to 462,468 
people in the UK Biobank (Supplementary Fig 1). 
 
We began by evaluating whether a vQTL approach can identify a known gene-gene interaction 
between PNPLA3 p.I148M (rs738409) and rs72613567:TA in HSD17B13 as a proof of 
concept.12 We modeled the variance effects of 76 SNPs with minor allele frequency (mAF) > 
10% in PNPLA3 for aspartate aminotransferase using double generalized linear models (dglm).13 
The p.I148M variant was a vQTL, with the most significant dispersion of all extracted variants in 
PNPLA3 (βdispersion = 0.18, 95% confidence interval (CI) = [0.14, 0.22], P = 6.74x10-18) 
(Supplementary Fig 2). 
 
In order to find genome-wide vQTLs for hemoglobin, platelet count, lymphocyte count, and 
eosinophil count, we performed the genome-wide Scale test7 for each trait in the UK Biobank. A 
variant was identified as a vQTL if it had a genome-wide significant association with the square 
of the residual of a trait without a significant mean effect after multiple-hypothesis correction 
(See Methods). We identified four vQTLs, with two for lymphocyte count and two for 
eosinophil count (Supplementary Table 1). For each of these four variants, we performed a 
genome-wide association study for gene-gene interactions with the trait of interest using 
REGENIE14 and found two significant interactions. 
 
The first gene-gene interaction discovered was between vQTL rs10281069 and rs112610805 for 
eosinophil count (Fig 1a, βint = 0.0025 109 cells/L, 95% CI = [0.0013, 0.0037], P = 5.44x10-5). 
rs10281069 is a known protein expression quantitative trait locus of CCL24, while rs112610805 
is a known expression quantitative trait locus (eQTL) of CCL26 levels.15 CCL24 and CCL26 are 
both chemokines expressed in blood that affect eosinophil recruitment and activation.16 This 
positive interaction is suppressing, as in the complete model with the interaction term, eosinophil 
count is negatively associated with both rs10281069 (β = -0.0035 109 cells/L, 95% CI = [-
0.0046, -0.0025], P = 4.65x10-11) and rs112610805 (β = -0.0021 109 cells/L, 95% CI = [-0.0028, 
-0.0013], P = 8.29x10-8). The variants are in linkage equilibrium (Fig 1b; D’ = 0.28, R2 = 0.04). 
We observed the same positive suppressing interaction among 50,092 individuals in BioVU (βint 
= 0.006 109 cells/L, 95% CI = [0.002, 0.008], P = 0.001) and 138,860 individuals in All of Us  
(βint = 0.0029 109 cells/L, 95% CI = [0.0013, 0.0049], P = 2.42x10-6). 
 
To understand the mechanism of the interaction, we tested for an interaction between the variants 
in CCL24 and CCL26 and chemokine abundance using plasma proteomics data from 50,562 
participants in the UK Biobank.17 Both rs112610805 and rs10281069 were associated with lower 
plasma CCL24 (Supplementary Table 2) and positively interact (Fig 1c, βint = 0.37, 95% CI = 
[0.35, 0.39], P = 4.99x10-247). For CCL26, rs112610805 and rs10281069 were associated with 
higher plasma CCL26 (Supplementary Table 2), and we observed a compensatory negative 
interaction (Fig 1d, βint = -0.05, 95% CI = [-0.08, -0.02], P = 2.89x10-4). These data suggest that 
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the suppressive interaction between rs10281069 and rs112610805 on eosinophil count arise from 
their opposing effects on CCL24 and CCL26 chemokine levels. 
 
The second gene-gene interaction from the Scale test was between vQTL rs3819720 and 
rs4713570, affecting lymphocyte count. The variants rs3819720 and rs4713570 are known to 
associate with both splicing and expression for HLA-DQB118 and  HLA-DQA119, respectively. 
Both rs3819720 and rs4713570 have a positive association with lymphocyte count in UK 
Biobank (Supplementary Table 3). Their interaction is significant and negative (Fig 2a, βint = -
0.03 109 cells/L, 95% CI = [-0.04, -0.02], P = 5.85x10-15). These variants are both on 
chromosome 6 and are in linkage equilibrium (Fig 2b, D’ = 0.0608, R2 = 0.0003). We observed 
the same relationship – a significant negative interaction for lymphocyte count – in 52,823 
people in BioVU (βint = -0.02 109 cells/L, 95% CI = [-0.03, -0.0067], P = 0.003) and in 138,912 
people in All of Us (βint = -0.05 109 cells/L, 95% CI = [-0.007, -0.0009], P = 0.02). 
 
HLA-DQA1 and HLA-DQB1 are genes that encode the alpha and beta chains of the HLA-DQ 
heterodimer, a key component of the major histocompatibility class II complex. Different 
combinations of HLA-DQA1 and HLA-DQB1 alleles can lead to preferential binding of specific 
peptides. Both variants are associated with autoimmune diseases such as type 1 diabetes and 
celiac disease.20,21 The suppressing interaction between rs3819720 and rs4713570 on lymphocyte 
count may be a result of a negative feedback mechanism in lymphocyte proliferation or 
formation of suboptimal HLA-DQ heterodimers when both variants are present.  
 
As both rs3819720 and rs4713570 are associated with increased risk of celiac disease, we then 
sought to determine in the UK Biobank whether the variants interact to alter risk of celiac 
disease. rs3819720 and rs4713570 were both positively associated with prevalent celiac disease. 
The interaction between rs3819720 and rs4713570 for prevalent celiac disease was significant 
and enhancing (βint= 0.31, 95% CI = [0.21, 0.42], P = 1.70x10-5). Among homozygotes for the 
risk allele for rs4713570, the odds of celiac disease increased from 2.45 (95% CI = [1.45, 3.91], 
P = 1.69x10-4) for homozygotes for the rs3819720 reference allele to 25.86 (95% CI = [20.26, 
33.00], P = 1.65x10-150) for homozygotes for the rs3819720 alternate allele (Fig 2c). These data 
together suggest that variants in HLA-DQA1 and HLA-DQB1 interact to reduce lymphocyte 
count in the blood and increase celiac disease risk possibly due to effects on the HLA-DQ 
heterodimer. 
 
The scale test identified two other variants – rs340809 and rs13395354– as vQTLs for 
eosinophils count and lymphocyte count respectively (Supplementary Table 1). rs340809 is an 
intronic variant in IL5RA, which encodes a subunit of the IL-5 receptor; the IL-5 receptor binds 
IL-5, which is the major activator of eosinophils. rs13395354 overlaps with a promoter region 
for BCL2L11 in five T-cell types and fetal thymus cells.19 BCL2L11 encodes BIM (Bcl-2 
Interacting Mediator of cell death), which is a pro-apoptotic protein expressed in lymphocytes. 
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Despite the variants’ biologic plausibility, we found no significant gene-gene interactions for 
these vQTLs. We also found no gene-environment interactions using previously defined 506 
exposures by Hillary et al.11 These two vQTLs may interact with an unmeasured environmental 
factor or rare genetic variants, or they may represent false positives due to their suggestive mean 
effects (Supplementary Table 1).  
 
While the Scale test allows us to find vQTLs in an unbiased manner genome-wide, the burden of 
multiple-hypothesis correction may limit our ability to find vQTLs. Therefore, we used a 
biologically informed approach to search for vQTL in genes relevant to monogenic diseases 
which affect blood traits (Supplementary Table 4). We only evaluated variants with a minor 
allele frequency (mAF) > 10% within these select genes to ensure sufficient power. We found 
significant vQTLs after Bonferroni correction for JAK2, RUNX1, IL33, and HFE, but not for 
CHEK2 or ENG (Supplementary Table 4). For these vQTLs, we performed a genome-wide test 
in the UK Biobank using the trait of interest for gene-gene interactions as described above 
(Supplementary Table 4).14  
 
First, we investigated the interaction hits for HFE and hemoglobin. Each of the vQTLs in HFE 
for hemoglobin interacted with one variant, rs4645. rs4645 had an enhancing interaction on the 
positive effect of the vQTL rs2858993 (Fig 3a, βint = 0.067 g/dL, 95% CI = [0.060, 0.075], P = 
1.09 × 10-71). Moreover, rs4645 had a significant positive interaction with the two other vQTLs 
within HFE (rs12346 and rs2794719) for hemoglobin (Supplementary Table 6). Given that 
deleterious mutations in HFE cause type 1 hereditary hemochromatosis, we then tested whether 
the interaction also applied to the two most common pathogenic variants in HFE: C282Y 
(rs1800562) and H63D (rs1799945).22 We modeled the interaction between rs4645 and 
pathogenic allele count (i.e., compound heterozygotes carry two pathogenic alleles). The 
interaction between rs4645 and pathogenic allele count was significant (Fig 3b, βint = 0.044 
g/dL, 95% CI = [0.037, 0.053], P = 3.24x10-27), as was the interaction between rs4645 and each 
pathogenic variant separately (H63D: βint = 0.017 g/dL, 95% CI = [0.0036, 0.030], P = 0.01; 
C282Y: βint = 0.023 g/dL, 95% CI = [0.0066, 0.038], P = 5.45 x10-3). We observed the same 
positive interaction between rs4645 and pathogenic variant count among 70,623 individuals in 
BioVU (βint = 0.075 109 cells/L, 95% CI = [0.037, 0.112], P =1.41x10-4) and 138,940 individuals 
in All of Us  (βint = 0.11 109 cells/L, 95% CI = [0.05, 0.17], P =2.29x10-4). 
 
We then compared the prevalence of liver cirrhosis – a complication of iron overload in 
hemochromatosis – stratified by alternate allele copies for rs4645 and pathogenic alleles in the 
UK Biobank. While rs4645 allele count was not associated with prevalent liver cirrhosis (β = 
0.0083, 95% CI = [-0.094, 0.11], P = 0.87), the interaction of rs4645 and pathogenic allele count 
enhanced risk of prevalent liver cirrhosis (βint = 0.48, 95% CI = [0.33, 0.62], P < 0.001). Among 
individuals with two pathogenic alleles, the odds of liver cirrhosis was 4.94 (95% CI: [3.50, 
6.98], P < 0.001) for those with two alternate alleles for rs4645. Odds decreased to 1.30 (95% CI: 
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[0.92,1.82], P = 0.13) for individuals with one alternate rs4645 allele and 0.90 (95% CI: [0.60, 
1.35], P = 0.62) for those with no alternate rs4645 alleles (Fig 3c). 
  
We suspected that linkage disequilibrium underlies the observed interaction, as the enhancing 
modifier rs4645 and HFE are both on chromosome 6 (Fig 3d). Using the 1000G Project, we 
found that rs4645 is in linkage disequilibrium with C282Y (R2 = 0.14, D’ = 0.98), but not with 
H63D (R2 = 0.66, D’ = 0.003). When we modeled the interactions of C282Y and rs2858993 
(vQTL) jointly with rs2858993’s interaction with rs4645, the interaction between C282Y and 
rs2858993 was significant (βint = 0.03 g/dL, 95% CI = [0.02, 0.05], P = 1.08x10-4) while the 
interaction between rs4645 and rs2858993 was not (βint = -0.003 g/dL, 95% CI = [-0.014, 
0.0086], P = 0.61). Therefore, linkage disequilibrium with C282Y likely explains rs4645’s 
significant interactions with vQTLs in HFE and rs1799945 (Supplementary Fig 3). It is known 
that C282Y causes more severe type 1 hereditary hemochromatosis than H63D,23 and these data 
suggest that differences in pathogenicity between hereditary hemochromatosis variants explain 
the observed cis epistasis between rs4645 and the HFE variants. 
 
Second, we examined the interaction hits of rs17425819, a vQTL in JAK2 for platelet count. 
rs17425819 had a significant variance effect (βdispersion = 0.050 109 cells/L, 95% CI = [0.013, 
0.087], P = 7.65x10-3). rs35417585 had a significant negative interaction with rs17425819 (Fig 
4a, βint = -1.13 109 cells/L, 95% CI = [-1.57, -0.69], P = 4.37x10-7). In contrast to the cis 
interaction observed between the HFE variants on chromosome 6, the interaction occurring 
between rs17425819 on chromosome 9 and rs35417585 on chromosome 14 exemplifies a trans 
interaction. The vQTL rs17425819 is in linkage disequilibrium with rs59384377 which tags the 
JAK2 46/1 haplotype (Fig 4b; D’ = 0.93, R2 = 0.86). The 46/1 haplotype predisposes individuals 
to somatic mutations in JAK2 and myeloproliferative neoplasms such as polycythemia vera (PV) 
via the JAK2 V617F somatic mutation.24–26 Unsurprisingly, given strong linkage disequilibrium 
between the vQTL and rs59384377, rs59384377 also had a significant negative interaction with 
rs35417585 (Supplementary Fig 4; P = 1.39x10-6). In 70,745 individuals in BioVU, rs35417585 
and rs59384377 also had a significant negative interaction for platelet count (βint = -0.49 109 
cells/L, 95% CI = [-0.82, -0.16], P = 0.001). The interaction did not replicate in 91,946 
individuals in All of Us with available data (βint = 0.71 109 cells/L, 95% CI = [-0.384, 1.80], P = 
0.20). 
 
We then sought to determine if rs35417585 also reduces risk of PV among people with the 46/1 
haplotype in the UK Biobank. rs35417585 was not associated with PV alone (P=0.07), and the 
interaction between rs35417585 and rs59384377 was significant (βint= -0.21, 95% CI = [-0.43, -
6.0x10-5], P = 0.04), with rs35417585 associated with reduced risk of PV among those with the 
46/1 haplotype (Fig 4c). Among those homozygous for the JAK2 46/1 haplotype, the odds of PV 
was 4.51 (95% CI = [3.23, 6.28], P < 0.001) for individuals homozygous for the rs35417585 
reference allele. Odds decreased to 3.37 (95% CI = [2.19, 5.19], P < 0.001) and 3.05 (95% CI = 
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[1.12, 8.30], P = 0.03) for rs35417585 heterozygotes and rs35417585 alternate allele 
homozygotes respectively. This interaction with PV is likely driven by JAK2 V617F clonal 
hematopoiesis, defined as a copy-neutral loss of heterozygosity of the p-arm of chromosome 9 or 
a somatic single nucleotide variant causing JAK2 V617F CHIP.27–29 Among 29,965 homozygotes 
for the JAK2 46/1 haplotype, each additional copy of the rs35417585 alternate allele reduced risk 
of JAK2 V617F clonal hematopoiesis by 1.25-fold (95% CI = [1.12, 1.75]).  
 
Literature evidence suggests that alterations to fatty acid metabolism in PV and JAK2 clonal 
hematopoiesis may contribute. rs35417585 is nearest to the HEATR4 gene, but is also a splicing 
and expression quantitative trait locus of ACOT1, ACOT2, and ACOT4.19 The ACOT gene family 
encodes Acyl-CoA thioesterases, which hydrolyze coenzyme A esters into free fatty acids and 
coenzyme A. Prior work studying the metabolic differences of peripheral blood sera between 32 
PV patients and 20 healthy controls suggests that derangements to fatty acid metabolism may 
provide a proliferative advantage in PV.30 Genetic variation affecting expression of the ACOT 
family may provide protection against PV in some individuals with the JAK2 46/1 haplotype. 
 
Finally, we used the theoretical expectation of additive-by-additive effect size range in the 
GWAS SNP-SNP interaction model to determine if we had power to detect pairwise interactions 
in the UK Biobank, as Jabalameli et al performed in 23AndMe for height.10 We estimate that we 
have over 80% power to detect an interaction effect of magnitude approximately 0.05 times the 
standard deviation of the trait for minor allele frequencies about 10% and 80% power to detect 
an interaction effect of magnitude approximately 0.5 times the standard deviation of the trait for 
minor allele frequencies of 1% (Supplementary Fig 4). This suggests that the study's large 
sample size is sufficient to ensure a high probability of detecting gene-by-gene interactions up to 
minor allele frequencies of 10%; indeed, all of the interactions discovered in this cohort were 
between variants with minor allele > 10%.31 
 
This work has several limitations. First, the study uses data from predominantly individuals of 
European ancestry (i.e., UK Biobank) for the discovery of vQTLs and gene-gene interactions. 
The inclusion of multiple ancestries when using vQTLs to find gene-gene interactions can 
increase type 1 errors, as variants with differing allele frequencies by ancestry may be vQTLs 
without any underlying interaction.32 Second, we chose a conservative threshold of mAF > 10% 
to examine variants, as we are underpowered to detect interactions for less common variants. As 
more individuals are sequenced, the power to detect gene-gene interactions will increase, 
enabling us to study interactions between rarer variants.  
 
In conclusion, our study demonstrates the utility of vQTLs in prioritizing gene-gene interactions 
for blood traits and disease risk in the UK Biobank. We identified significant interactions 
affecting hemoglobin levels, platelet count, and eosinophil and lymphocyte counts and disease 
risks for hereditary hemochromatosis, polycythemia vera, and celiac disease. While linkage 
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disequilibrium with large main effect variants can explain apparent epistasis, such as for HFE, 
the interactions between JAK2 and HEATR4, CCL24 and CCL26, and HLA-DQA1 and HLA-
DQB1 reveal novel modifiers of traits and disease risk. Future studies may apply vQTL-based 
approaches to a broader range of phenotypes and in more diverse populations. Ultimately, a more 
comprehensive understanding of gene-gene interactions may improve our ability to predict 
disease risk and advance personalized medicine. 
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Figure Captions 

Fig. 1: Genetic variants in CCL24 and CCL26 affect eosinophil count and plasma 
chemokine levels. a) Eosinophil count (109 cells/L) stratified by genotypes at rs10281069 
(CCL24) and rs112610805 (CCL26). The x-axis shows rs10281069 genotypes (C/C, C/T, T/T), 
with separate lines for rs112610805 genotypes (C/C in blue, C/CAAAA or CAAAA/CAAAA in 
orange). The y-axis shows mean eosinophil count. Error bars represent 95% confidence intervals 
(1.96*SE). Numbers beside each point indicate sample sizes for each genotype combination. b) 
Genomic context of rs10281069 and rs112610805. The plot shows the relative positions of 
CCL24, CCL26, and RHBDD2 genes. The two variants are in linkage disequilibrium (D' = 0.28, 
R² = 0.04). The x-axis shows the base position on chromosome 7. c) Plasma CCL24 levels 
(normalized) stratified by rs10281069 (CCL24) and rs112610805 (CCL26) genotypes. The x-
axis shows rs10281069 genotypes, with colors representing rs112610805 genotypes as in (a). 
Sample sizes are indicated beside each box. Error bars represent 95% confidence intervals 
(1.96*SE). d) Plasma CCL26 levels (normalized) stratified by rs10281069 (CCL24) and 
rs112610805 (CCL26) genotypes similar to (c). 
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Fig 2: HLA-DQA1 and HLA-DQB1 variants affect absolute lymphocyte count and celiac 
disease risk. a) Absolute lymphocyte count (109 cells/L) stratified by genotypes at rs3819720 
(an expression quantitative trait locus of HLA-DQB1) and rs4713570 (an expression quantitative 
trait locus of HLA-DQA1). The x-axis shows rs3819720 genotypes (G/G, G/A, A/A), with 
separate lines for rs4713570 genotypes (C/C in blue, C/T in orange, T/T in green). The y-axis 
shows mean absolute lymphocyte count (109 cells/L). Error bars represents 95% confidence 
intervals (1.96*SE). Numbers beside each point indicate sample sizes for each genotype 
combination. b) Genomic context of rs4713570 and rs3819720. The plot shows the relative 
positions of HLA-DQA1, HLA-DQB1, and neighboring HLA genes (TAP2, HLA-DOB, HLA-
DQB2, HLA-DQA2) on chromosome 6. The x-axis shows the base position. c) Forest plot of 
odds ratios for celiac disease risk by genotype combinations of rs3819720 and rs4713570. The x-
axis shows the odds ratio. For each genotype combination, the plot shows the number of 
individuals (N), odds ratio with 95% confidence interval (95% CI), and P-value (P). The 
rs3819720 G/G and rs4713570 C/C combination serves as the reference group. 
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Fig. 3: HFE variants affect hemoglobin levels and cirrhosis risk. a) Hemoglobin levels (g/dL) 
stratified by genotypes at rs2858993 and rs4645 in HFE. The x-axis shows rs2858993 genotypes 
(T/T, T/A, A/A), with separate lines for rs4645 genotypes (C/C in blue, C/T in orange, T/T in 
green). The y-axis shows mean hemoglobin levels. Error bars represent 95% confidence intervals 
(1.96*SE). Numbers beside each point indicate sample sizes for each genotype combination. b) 
Hemoglobin levels (g/dL) stratified by the number of pathogenic variants in HFE (0, 1, or 2). 
The x-axis shows the number of pathogenic variants, with separate lines for rs4645 genotypes 
(C/C in blue, C/T in orange, T/T in green). The y-axis shows mean hemoglobin levels. Error bars 
represent 95% confidence intervals (1.96*SE). Numbers beside each point indicate sample sizes 
for each category. c) Forest plot of odds ratios for cirrhosis risk by number of pathogenic HFE 
variants and rs4645 genotype. The x-axis shows the odds ratio of cirrhosis. For each 
combination, the plot shows the number of individuals (N), odds ratio with 95% confidence 
interval (CI), and P-value (P). The group with 0 pathogenic HFE variants serves as the reference. 
d) Genomic context of rs4656 and rs2858993 in HFE. The plot shows the relative positions of 
these variants within the HFE gene, including the locations of the H63D and C282Y mutations. 
Neighboring genes (H2BC4, H2AC6) are also shown. The x-axis indicates the base position on 
the chromosome. 
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Fig. 4: JAK2 and HEATR4 variants affect platelet count and polycythemia vera risk. a) 
Platelet count (109 cells/L) stratified by genotypes at rs17425819 (JAK2) and rs35417585 
(HEATR4). The x-axis shows rs17425819 genotypes (C/C, C/T, T/T), with separate lines for 
rs35417585 genotypes (A/A in blue, A/G in orange, G/G in green). The y-axis shows mean 
platelet count. Error bars represent 95% confidence intervals (1.96*SE). Numbers beside each 
point indicate sample sizes for each genotype combination. b) Genomic context of rs59384377 
and rs17425819 in JAK2, and rs35417585 in HEATR4. The plot shows the relative positions of 
these variants within their respective genes. The x-axis indicates the base position on the 
chromosome. rs59384377 and rs17425819 are in linkage disequilibrium (D' = 0.93, R2 = 0.86). 
c) Forest plot of odds ratios for polycythemia vera risk by rs59384377 (JAK2) and rs35417585 
(HEATR4) genotype combinations. The x-axis shows the odds ratio. For each combination, the 
plot shows the number of individuals (N), odds ratio with 95% confidence interval (CI), and P-
value (P). The rs59384377 A/A and rs35417585 A/A combination serves as the reference group. 
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Methods 
UK Biobank Study Samples and Laboratory Data 
The UK Biobank is a prospective epidemiological study, which includes genetics, health 
outcomes, and clinical laboratory measurements.33 We included individuals with phenotypes for 
the following laboratory measurements: platelet count (field ID: 30080), hemoglobin (field ID: 
30010), eosinophil count (field ID: 30150), and lymphocyte count (field ID: 30120). Data was 
accessed and analyses were performed on UK Biobank’s Research Analysis Platform. 
 
UK Biobank Genetic Data 
The directly genotyped variants were from release version 2, performed using the Applied 
Biosystems UK BiLEVE Axiom array (n = 49,950) or the Applied Biosystems UK Biobank 
Axiom array (n = 438,427). Imputed variants were inferred using the TOPMed reference panel 
from release 3. Both were aligned to GRCh37. The phased variants were from a dataset 
containing 200,031 samples with whole genome sequencing aligned to GRCh38 (cite phasing 
doc).  
 
UK Biobank Proteomic Data 
The UK Biobank performed the Olink proteomics assay on 54,219 individuals. Further details of 
the Olink proteomics assay, data processing and quality control can be found in prior papers.17 
Each protein level was inverse-rank normalized before analyses and association testing. All 
available individual-level plasma proteomics values were extracted for CCL24 and CCL26. 
Association testing adjusted for  age, age2, sex, genetic ancestry, the first 5 genotyping principal 
components, and proteomic batch effects. 
 
Diagnoses 
Polycythemia vera was defined by the ICD10 code D45. Cirrhosis was defined as ICD10 codes: 
K74.5, K74.3, K74.0, and K74.6.34 Celiac disease was defined by the ICD10 code K90. 
 
Variant Quantitative Trait Loci Testing with dglm 
Variance quantitative trait loci (vQTLs) were identified using dglm v.1.8.6 in R version 4.4.0. 
The package dglm uses one generalized linear model (GLM) to fit the specified response and a 
second GLM to fit the deviance of the first model. vQTLs in each gene of interest 
(Supplementary Table 4) were identified if they had a significant dispersion p-value after 
Bonferroni correction (0.05/number of variants in the gene with minor allele frequency > 10%). 
The models were adjusted for age at blood draw, age at blood draw2, sex, genetic ancestry, and 
the first 5 genotyping principal components. 
 
Single Variant Association 
All single variant associations were performed using an executable in the DNAnexus platform. 
The executable implements Regenie (v3.3), a linear mixed model, which incorporates both fixed 
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and random effects to account for population stratification and relatedness.14 A random selection 
of 500,000 variants for step one with a minor allele count >5,000 were included for step one. 
Variants with a minor allele frequency (mAF)  < 0.001 and a genotyping rate < 0.1 were 
excluded for the second step. Samples that did not report assigned male or female at birth were 
also excluded. All laboratory traits were rank-based inverse-normal transformed and used at the 
dependent variable. Age at blood draw, age at blood draw2, genetic sex, and the first ten ancestry 
principal components were included as covariates. 
 
Scale Test: Genome-Wide Associations with Variance 
To perform the Scale test, we rank inverse normal transformed the blood traits using scipy 
v1.14.1. Then, we performed two single variant association models with Regenie v3.3. The first 
phenotype was for the rank-inverse-normal-transformed trait, which identified variants 
associated with a mean effect. The second phenotype was the square of the residual of the rank-
inverse-normal-transformed trait after adjusting for age at blood draw, age at blood draw2, sex, 
genetic ancestry, and the first 5 genotyping principal components; this phenotype identified traits 
associated with a variance effect. A variant was identified as a vQTL if it had a genome-wide 
significant association with the variance of a trait (P < 5x10-8) without a significant mean effect 
after multiple-hypothesis correction (P > 5x10-8). vQTLs were then extracted and tested in an 
interaction model. 
 
Regenie Interaction Modeling 
All interaction modeling was performed using the executable, variant lists, and covariates 
implemented in the single variant association. In the second step of the process, REGENIE also 
conducted an interaction scan between the test variants and interaction variant, employing an 
additive model. 
 
Variant Extraction 
Genotype calls were extracted from multi-sample BGENs using Plink (v2.00a3.1LM), loaded in 
an executable available in the DNAnexus platform. Variant calls were extracted from the multi-
sample phased vcfs using bcftools (v.1.15.1). Variants with a minor allele frequency >10% were 
extracted from genes of interest (Supplementary Table 4) for dglm modeling. Variants that 
were hits from the interaction modeling were extracted for plotting and sensitivity analyses. 
 
JAK2 Clonal Hematopoiesis Detection 
Individuals with JAK2 clonal hematopoiesis in the UK Biobank were identified based on (1) 
somatic mutations detected from whole exome sequencing data in JAK2 V617F, as described in 
Vlasschaert et al or (2) the mosaic chromosomal alteration of copy-neutral loss of heterozygosity 
on the p-arm of chromosome 9 using genotyping array data as described in Loh et al.27,28  
  
BioVU Validation Cohort 
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BioVU is Vanderbilt's biorepository of DNA extracted from discarded blood collected during 
routine clinical testing. The genomic data is linked to de-identified medical records in the 
Synthetic Derivative. 70,745 people in Vanderbilt’s BioVU cohort were genotyped on the 
Infinium Multi-Ethnic Genotyping Array (MEGAchip).35 We included individuals with the 
following laboratory measurements: platelet count (OMOP Concept ID: 3024929), hemoglobin 
(OMOP Concept ID: 3000963), eosinophil count (OMOP Concept ID: 3028615), and 
lymphocyte count (OMOP Concept ID 3004327). We used the median of all of an individuals’ 
laboratory values if an individual had multiple values. We excluded laboratory values greater 
than 3-fold above the upper limit of normal, since BioVU is a hospital-based cohort (e.g., 
individuals may have infections causing elevated lymphocyte counts not representative of their 
normal lymphocyte count). Data was accessed and analyses were performed on BioVU’s 
Terra.bio platform. 
 
All of Us Validation Cohort 
The All of Us Research Program is a biobank that collects a wide range of data from participants, 
including detailed health information, biological samples, and genomic data. Sequencing reads 
were aligned to the GRCh38 reference genome. Informed consent for all participants was 
conducted either in person or through an eConsent platform approved by the Institutional Review 
Board (IRB) of the All of Us Research program. We identified 138,938 individuals with whole-
genome sequencing data and available laboratory values (same laboratory measurements and 
OMOP Concept IDs as in BioVU). Data was accessed and analyses were performed on the NIH 
All of Us Researcher Workbench cloud platform. 
  
Linkage Disequilibrium using LDLink 
Variant R2 and D’ values were queried using LDLink’s LDpair tool using all available 
populations (https://ldlink.nih.gov/?tab=ldpair).  
 
Statistical and Plotting Methods 
Lollipop plots were generated using trackViewer version 1.40.0 in R version 4.4.0.  
 
Power Analysis 
Power calculations were based on the non-central chi-squared distribution. We considered a 
range of minor allele frequencies (MAFs) and interaction effect sizes, in units of standard 
deviations, to explore how these parameters influence power. The effect sizes of the two 
individual SNPs were set to 0.01. For each combination of MAFs and interaction effect size, we 
calculated the expected mean and variance of the trait, SNP, and interaction term under the null 
hypothesis of no interaction. Then, using these parameters, we estimated the non-centrality 
parameter and calculated power as the probability of rejecting the null hypothesis given the non-
centrality parameter. We generated power curves for a range of interaction effect sizes as a 
function of the MAFs of the two SNPs. These analyses were performed assuming a sample size 
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of 400,000 (similar to the UK Biobank), a significance level of 5x10-8, and a normally distributed 
trait with a mean of 0 and a standard deviation of 1. 
 
Data Availability 
Genetic data is available for the UK Biobank at https://ukbiobank.dnanexus.com, for NIH 
AllofUs at https://workbench.researchallofus.org, and BioVU data on the Synthetic Derivative 
on app.terra.bio. Supplementary tables are available here: 
https://docs.google.com/spreadsheets/d/1SJelCr6tP6devAAgFhpBWeq1XBVC8bbEbZzkk2Ql-
2g/edit?usp=sharing. 
 
Code Availability 
Code is available at https://github.com/bicklab/gxg-interaction-modeling. Information about 
regenie is available at https://rgcgithub.github.io/regenie.  
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