It is made available under a CC-BY 4.0 International license .

- 1 Family income is associated with regional brain glucose metabolism in middle-aged adults
- 2

3 RUNNING TITLE

- 4 Family income and brain
- 5
- 6 Kyoungjune Pak^{1,2*}, Seunghyeon Shin^{3*}, Hyun-Yeol Nam³, Keunyoung Kim^{1,2}, Jihyun Kim¹, Myung
- 7 Jun Lee^{2,4}
- 8
- 9 ¹Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University
- 10 Hospital, Busan, Republic of Korea
- ¹¹ ²School of Medicine, Pusan National University, Busan, Republic of Korea
- ¹² ³Department of Nuclear Medicine, Samsung Changwon Hospital, Sungkyunkwan University School
- 13 of Medicine, Changwon, Republic of Korea
- ⁴Department of Neurology and Biomedical Research Institute, Pusan National University Hospital,
- 15 Busan, Republic of Korea
- 16
- 17 Kyoungjune Pak^{*} and Seunghyeon Shin^{*} contributed equally in this work.
- 18
- 19 Kyoungjune Pak (Corresponding author)
- 20 Dept. of Nuclear Medicine, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan
- 21 49241, Republic of Korea
- 22 Tel: +82-51-240-7389
- 23 ilikechopin@me.com
- 24
- 25 Seunghyeon Shin (Corresponding author)
- 26 forladou@naver.com
- 27

- 28 Hyun-Yeol Nam
- 29 monarch23@naver.com
- 31 Keunyoung Kim
- 32 nmpnuh@gmail.com
- 34 Jihyun Kim
- 35 march4900@hanmail.net
- 37 Myung Jun Lee
- 38 mslayer9@gmail.com

- -

It is made available under a CC-BY 4.0 International license .

55 ABSTRACT

56	Socioeconomic status is a multifaceted construct that plays a prominent role in shaping our
57	environment by defining our access to healthcare, nutrition, and enrichment, as well as represents
58	social standing. Therefore, to address the effects of family income, and education level on brain
59	glucose metabolism, we analyzed a large cohort of healthy middle-aged adults who underwent brain
60	¹⁸ F- FDG PET, and survey of family income and education level. We retrospectively analyzed data of
61	healthy males who underwent health check-up program. Health check-up program included 1) Brain
62	¹⁸ F-FDG PET, 2) anthropometric measurements, 3) survey of family income and education level, and
63	4) measures of stress, anxiety, and depression. The effects of family income and education level on
64	regional SUVR were investigated using Bayesian hierarchical modelling. A total of 233 healthy males
65	were included in this study. Family income was positively correlated with education level. There was
66	no significant indirect effect of family income or education level via stress, anxiety, or depression on
67	regional brain glucose metabolism. Family income is positively associated with brain glucose
68	metabolism in caudate, putamen, anterior cingulate, hippocampus, and amygdala, while education
69	level does not show any significant association with brain glucose metabolism in middle-aged adults.
70	In conclusion, family income is positively associated with brain glucose metabolism in caudate, putamen,
71	anterior cingulate, hippocampus, and amygdala, while education level does not show any significant
72	association with brain glucose metabolism. This finding might reflect the link between family income,
73	and reward sensitivity, stress in middle-aged adults.
74	
75	
76	
77	
78	
79	
80	

81

It is made available under a CC-BY 4.0 International license .

82 INTRODUCTION

83	Brain is a social organ ¹ . No human brain exists outside of a particular socioeconomic
84	context ² . Socioeconomic status (SES) is a multifaceted construct that plays a prominent role in
85	shaping our environment by defining our access to healthcare, nutrition, and enrichment, as well as
86	represents social standing ³ . SES is predictive of a broad range of important life outcomes ² . Higher
87	SES is associated with better health both physically, and mentally. The incidence of heart disease,
88	stroke, cancer, diabetes, as well as depression, anxiety, and psychosis is positively related with SES 4 .
89	Also, intelligence and academic achievement exhibit positive gradients with SES ² .
90	Even after 3 months of social housing, dopamine receptor (DR) availability was increased in
91	dominant monkeys, compared with subordinate monkeys or the baseline state of the individual housing 5 .
92	In addition, subordinate monkeys were found to be vulnerable to the reinforcing effects of cocaine, while
93	dominant monkeys were found to be resistant to its effects ⁵ . Therefore, these neurobiological alterations in
94	DR availability by social context can lead to different behavioral phenotypes ⁵ .
95	Examination of the relationship between SES, and the brain has primarily focused on the
96	earlier or later stages of the lifespan when the brain is most vulnerable, which are characterized by
97	notable changes in brain structure and function ⁶ . Early by the age of seven months, infant language
98	showed an inverse correlation with lower SES background ⁷ . Also, adolescents from lower SES
99	background have less access to enriching opportunities and resources, which could shape how
100	adolescents respond to or pursue rewarding experiences ⁸ . In the elderly, the relationship between SES
101	and brain is complicated due to 'cognitive reserve', the ability to maintain cognitive abilities despite
102	pathological changes ⁹ . Several SES scales have been developed over the years, each using different
103	indicators to measure SES. However, there are several common components used to incorporate SES
104	scale; education level, occupation, income, geographic location, and self-reported of SES ^{10, 11} .
105	Therefore, to address the effects of family income, and education level on brain glucose
106	metabolism, we analyzed a large cohort of healthy middle-aged adults who underwent brain ¹⁸ F-
107	Fluorodeoxyglucose (FDG) positron emission tomography (PET), and survey of family income and
108	education level. Human brain utilizes glucose as its main source of energy, thus, brain glucose

It is made available under a CC-BY 4.0 International license .

109 metabolism, assessed by PET with ¹⁸F-FDG could be utilized for quantifying neuronal activity in the

110 human brain ¹². We used Bayesian hierarchical modeling to estimate the effects of family income, and

111 education level on brain glucose metabolism and hypothesized that family income, and education

- 112 level is positively associated with brain glucose metabolism.
- 113

114 MATERIALS AND METHODS

115 Subjects

116 We retrospectively analyzed data from 473 healthy males who underwent health check-up

117 program at Samsung Changwon Hospital Health Promotion Center in 2013. After excluding subjects

118 with neuropsychiatric disorders (n=5) or malignancies (n=3), those with missing data of family

119 income or education level (n=232), 233 subjects were included in this study. Health check-up

120 program included 1) Brain ¹⁸F-FDG PET, 2) anthropometric measurements, 3) survey of family

121 income and education level, and 4) measures of stress, anxiety, and depression. Subjects in this study

122 were included in a previous study of the effect of aging on brain glucose metabolism 13 . The study

123 protocol was approved by the Institutional Review Board of Changwon Samsung Hospital. The

124 requirement for informed consent was waived owing to the retrospective study design.

125 Brain ¹⁸F-FDG PET and Image analysis

126 Subjects were asked to avoid strenuous exercise for 24 hours and fast for at least 6 hours

127 before PET study. PET/CT was performed 60 mins after injection of ¹⁸F-FDG (3.7 MBq/kg) with

128 Discovery 710 PET/CT scanner (GE Healthcare, Waukesha, WI, USA). Continuous spiral CT was

129 obtained with a tube voltage of 120kVp and tube current of 30-180mAs. PET scan was obtained in 3-

130 dimensional mode with full width at half maximum of 5.6 mm and reconstructed using an ordered-

131 subset expectation maximization algorithm. PET scans were spatially normalized to MNI space using

132 PET templates from SPM5 (University College of London, UK) with pmod version 3.6 (PMOD

133 Technologies LLC, Zurich, Switzerland). Automated Anatomical Labeling 2 (AAL2) atlas ¹⁴ was

- 134 used to define region-of-interests (ROIs). The mean uptake of each ROI was scaled to the mean of
- 135 global cortical uptake of each individual, and defined as standardized uptake value ratio (SUVR). For

It is made available under a CC-BY 4.0 International license .

- 136 a full-volume analysis, the statistical threshold was set at a cluster level and corrected with false
- 137 discovery rate with p < 0.05 in a regression model (correction with age) after smoothing SUVR
- 138 images with a Gaussian kernel of FWHM 8mm (Statistical Parametric Mapping 12, Wellcome Centre
- 139 for Human Neuroimaging, UCL, London, UK).
- 140 **Family income and Education level**
- 141 Self-reported family income for the last 12 months (Korean won, KRW) was converted to
- 142 US dollars (USD) with an exchange rate of 1,388 KRW. Education level was defined as the highest
- 143 level of education completed by each subject; completion of 1) elementary school (6 years), 2) middle
- school (9 years), 3) high school (12 years), 4) 2-year college (14 years), 5) 4-year college (16 years), 6)
- 145 graduate school (18 years).
- 146 Measures of stress, anxiety, and depression
- 147 Stress measures for Korean National Health and Nutrition Examination Survey (KNHANES)
- 148 consists of 9 self-reported items with higher scores indicating more stress ranging from 9 to 45 15 .
- 149 Beck Anxiety Inventory is a 21 self-report measures with higher scores indicating more anxiety
- 150 ranging from 0 to 63¹⁶. Centre for Epidemiologic Studies Depression Scale (CES-D) consists of 20
- 151 self-reported items with higher scores indication more depressed ranging from 0 to 60^{17} .
- 152 Neurosynth Image Decoder

To test the association of family income dependent brain glucose metabolism with Neurosynth terms, we used Neurosynth Image Decoder (https://neurosynth.org/decode). The t value map of the association between brain glucose metabolism and family income was uploaded on Neurosynth Image Decoder, and four meta-analytic uniformity maps of with the most similarity were downloaded.

158 Statistical analysis

Spearman correlation was used to determine the association of family income with education level, and measures of stress, anxiety, and depression. We standardized the continuous variables of age, education level, family income, and log-transformed regional SUVR. Mediation analysis was performed, where each potential mediator (stress, anxiety, and depression) was tested separately in

It is made available under a CC-BY 4.0 International license .

163	each model with family income or education level as a predictor and regional SUVR as the outcome.
164	The effects of family income and education level on regional SUVR were investigated using Bayesian
165	hierarchical modelling with brms ¹⁸⁻²⁰ that applies the Markov-Chain Monte Carlo sampling tools of
166	RStan ²¹ . We set up a model for family income and education level with regional SUVR as a
167	dependent variable and family income and education level as predictors adjusting for age. These fixed
168	effects (family income, education level, and age) were calculated individually and subject and ROI
169	were added as random intercepts to allow SUVR to vary between subjects and ROIs. Bayesian models
170	were estimated using four Markov chains, each of which had 4,000 iterations including 1,000 warm-
171	ups, thus totaling 12,000 post-warmup samples. The sampling parameters were slightly modified to
172	facilitate convergence (max treedepth = 20). Total, direct, and indirect effects were calculated.
173	Statistical analysis was carried out in R Statistical Software ver 4.4.1 (The R Foundation for Statistical
174	Computing).
175	
176	
170	RESULIS
177	RESULTS Subjects' characteristics
177 178	Subjects' characteristics A total of 233 healthy males (mean age: 42.6±3.5 years) were included in this study. The
177 177 178 179	RESULTS Subjects' characteristics A total of 233 healthy males (mean age: 42.6±3.5 years) were included in this study. The distribution of regional SUVR is shown in Figure 1. The mean family income was 61,319±17,978
170 177 178 179 180	RESULTS Subjects' characteristics A total of 233 healthy males (mean age: 42.6±3.5 years) were included in this study. The distribution of regional SUVR is shown in Figure 1. The mean family income was 61,319±17,978 USD; 32 had less than 50,000 USD, 193 between 50,000 USD and 100,000 USD, 8 more than
170 177 178 179 180 181	RESULTS Subjects' characteristics A total of 233 healthy males (mean age: 42.6±3.5 years) were included in this study. The distribution of regional SUVR is shown in Figure 1. The mean family income was 61,319±17,978 USD; 32 had less than 50,000 USD, 193 between 50,000 USD and 100,000 USD, 8 more than 100,000 USD. The mean education level was 13.6±2.1 years; 1 completed elementary school; 133,
170 177 178 179 180 181 182	KESULTSSubjects' characteristics A total of 233 healthy males (mean age: 42.6±3.5 years) were included in this study. Thedistribution of regional SUVR is shown in Figure 1. The mean family income was 61,319±17,978USD; 32 had less than 50,000 USD, 193 between 50,000 USD and 100,000 USD, 8 more than100,000 USD. The mean education level was 13.6±2.1 years; 1 completed elementary school; 133,high school; 28, 2-year college; 58, 4-year college; 13, graduate school. The subjects' characteristics
170 177 178 179 180 181 182 183	 Subjects' characteristics A total of 233 healthy males (mean age: 42.6±3.5 years) were included in this study. The distribution of regional SUVR is shown in Figure 1. The mean family income was 61,319±17,978 USD; 32 had less than 50,000 USD, 193 between 50,000 USD and 100,000 USD, 8 more than 100,000 USD. The mean education level was 13.6±2.1 years; 1 completed elementary school; 133, high school; 28, 2-year college; 58, 4-year college; 13, graduate school. The subjects' characteristics are summarized in Table 1. Family income was positively correlated with education level (rho=0.2580;
 170 177 178 179 180 181 182 183 184 	RESULTS Subjects' characteristics A total of 233 healthy males (mean age: 42.6±3.5 years) were included in this study. The distribution of regional SUVR is shown in Figure 1. The mean family income was 61,319±17,978 USD; 32 had less than 50,000 USD, 193 between 50,000 USD and 100,000 USD, 8 more than 100,000 USD. The mean education level was 13.6±2.1 years; 1 completed elementary school; 133, high school; 28, 2-year college; 58, 4-year college; 13, graduate school. The subjects' characteristics are summarized in Table 1. Family income was positively correlated with education level (rho=0.2580; p<0.0001), while the measures of stress (rho=0.0084; p=0.8979), anxiety (rho=-0.1224; p=0.0620),
 170 177 178 179 180 181 182 183 184 185 	Subjects' characteristics A total of 233 healthy males (mean age: 42.6±3.5 years) were included in this study. The distribution of regional SUVR is shown in Figure 1. The mean family income was 61,319±17,978 USD; 32 had less than 50,000 USD, 193 between 50,000 USD and 100,000 USD, 8 more than 100,000 USD. The mean education level was 13.6±2.1 years; 1 completed elementary school; 133, high school; 28, 2-year college; 58, 4-year college; 13, graduate school. The subjects' characteristics are summarized in Table 1. Family income was positively correlated with education level (rho=0.2580; p<0.0001), while the measures of stress (rho=0.0084; p=0.8979), anxiety (rho=-0.1224; p=0.0620), and depression (rho=-0.0338; p=0.6070) did not show the significant association with family income
 170 177 178 179 180 181 182 183 184 185 186 	RESULTS Subjects' characteristics A total of 233 healthy males (mean age: 42.6±3.5 years) were included in this study. The distribution of regional SUVR is shown in Figure 1. The mean family income was $61,319\pm17,978$ USD; 32 had less than 50,000 USD, 193 between 50,000 USD and 100,000 USD, 8 more than 100,000 USD. The mean education level was 13.6 ± 2.1 years; 1 completed elementary school; 133, high school; 28, 2-year college; 58, 4-year college; 13, graduate school. The subjects' characteristics are summarized in Table 1. Family income was positively correlated with education level (rho=0.2580; p<0.0001), while the measures of stress (rho=0.0084; p=0.8979), anxiety (rho=-0.1224; p=0.0620), and depression (rho=-0.0338; p=0.6070) did not show the significant association with family income (Figure 1).
 170 177 178 179 180 181 182 183 184 185 186 187 	RESULTS Subjects' characteristics A total of 233 healthy males (mean age: 42.6 ± 3.5 years) were included in this study. The distribution of regional SUVR is shown in Figure 1. The mean family income was $61,319\pm17,978$ USD; 32 had less than 50,000 USD, 193 between 50,000 USD and 100,000 USD, 8 more than 100,000 USD. The mean education level was 13.6 ± 2.1 years; 1 completed elementary school; 133, high school; 28, 2-year college; 58, 4-year college; 13, graduate school. The subjects' characteristics are summarized in Table 1. Family income was positively correlated with education level (rho=0.2580; p<0.0001), while the measures of stress (rho=0.0084; p=0.8979), anxiety (rho=-0.1224; p=0.0620), and depression (rho=-0.0338; p=0.6070) did not show the significant association with family income (Figure 1). Mediation of the association between family income, education level, and Brain glucose

188 metabolism

It is made available under a CC-BY 4.0 International license .

- 189 The direct effect of family income on brain glucose metabolism was significant in amygdala,
- 190 hippocampus, pallidum, putamen (p<0.05), however, that of education level was not significant in any
- 191 regional brain glucose metabolism. There was no significant indirect effect of family income or
- 192 education level via stress, anxiety, or depression on regional brain glucose metabolism.
- 193 Family income, education level and Brain glucose metabolism
- 194 In a Bayesian model, family income was associated with brain glucose metabolism of fusiform,
- 195 putamen, thalamus, anterior cingulate, pallidum, amygdala, hippocampus, and caudate showing some of
- 196 their 95% posterior intervals overlapping with zero. However, educational level was not associated
- 197 with regional brain glucose metabolism (Figure 2). Full-volume analysis revealed the consistent
- 198 finding that shows the positive association of family income with brain glucose metabolism of
- 199 caudate, putamen, hippocampus, amygdala, and anterior cingulate (Figure 3).
- 200 Localization of family income-dependent brain glucose metabolism and Neurosynth terms
- Meta-analytic uniformity maps of reward (correlation coefficient 0.251), monetary (correlation coefficient 0.204), incentive (correlation coefficient 0.198), and motivation (correlation coefficient 0.182) showed the most similarity with family-income dependent brain glucose metabolism. The spatial correlation between family income-dependent brain glucose metabolism and four meta-analytic uniformity maps showed the significant similarity (Figure 4).
- 206

207 **DISCUSSION**

208 Our main finding is that family income is positively associated with brain glucose metabolism in 209 caudate, putamen, anterior cingulate, hippocampus, and amygdala, while education level does not

210 show any significant association with brain glucose metabolism in middle-aged adults.

No human brain exists outside of a particular socioeconomic context ². SES is an important factor relating to health and behaviors in mammals, including humans ³. SES also defines our social standing and has a significant impact on how our environment is shaped ³. Several SES scales have been developed over the years, each using different indicators to measure SES. The Hollingshead scale provides a composite score of social status based on the subject's education level, and

It is made available under a CC-BY 4.0 International license .

216	occupation ¹⁰ . The Barratt Simplified Measure of Social Status (BSMSS) scale incorporates education
217	level, and occupation of the subject, subject's parents, and spouse, recognizing that social status is
218	partly determined by the opportunities provided by one's background ¹¹ . SES predicts a wide range of
219	significant life outcomes. Higher SES is associated with better physical health; incidences of cancer,
220	heart disease, stroke, diabetes, psychosis, depression, and anxiety decline with SES, and lifespan is
221	positively correlated with SES ⁴ . However, SES is often included in neuroimaging studies as a
222	'nuisance variable', covariates of no interest ²² . Also, examination of the relationship between SES,
223	and the brain has primarily focused on the earlier or later stages of the lifespan when the brain is most
224	vulnerable, which are characterized by notable changes in brain structure and function ⁶ . In addition,
225	SES variables such as education level, family income, or occupation may not have a consistent
226	association with brain across subjects with varying ages and social contexts ²³ . Therefore, we evaluated
227	the association of the elements of SES (family income, and education level) with regional brain glucose
228	metabolism in middle-aged adults.

229 In a study of social dominance in monkeys, dominant monkeys had higher DR availability 230 compared to subordinate monkeys after three months of social housing ⁵. Comparing with the baseline 231 state of the individual housing, DR availability was increased only in dominant monkeys, not in 232 subordinate monkeys after the social structure was established ⁵. In addition, subordinate monkeys were more susceptible to the reinforcing effects of cocaine ⁵. Also, in humans, SES scores measured with the 233 Hollingshead scale ²⁴ or BSMSS ²⁵ were positively correlated with DR availability in the striatum, 234 235 suggesting that the higher social status, a greater sense of perceived social support, and lower levels of social avoidance are associated with higher DR availability²⁵. Therefore, social context can have 236 237 profound effects on brain dopaminergic function in both nonhuman primates and humans. In addition, 238 according to a recent study, adolescents with higher SES background showed greater reward-driven 239 activation than those with lower SES background in the caudate, putamen, suggesting that lower SES 240 environments reduce reward sensitivity ²⁶. Also, in adults with lower SES background, the response to 241 negatively valenced stimuli was higher from cortex, and the response to rewarding stimuli was lower 242 from anterior cingulate, striatum than those with higher SES background, probably due to the altered

It is made available under a CC-BY 4.0 International license .

243 functional connectivity implicated in reward processing and impulse regulation ²⁷. Considering that 244 most previous studies analyzed the effect of SES of parents in the childhood, this study investigated 245 the association between family income and brain glucose metabolism more directly, as all subjects 246 included in this study are employed adults who underwent health check-up program as corporate 247 welfare. Therefore, the strong link between family income and glucose metabolism of caudate, 248 putamen, and anterior cingulate in this study might reflect the neuronal activation of reward system, 249 interpreted as the increased reward sensitivity in higher family income, which is consistent with the 250 findings from Neurosynth Image Decoder.

251 In adults who reported financial hardship, the volume of hippocampus and amygdala was 252 smaller than those who did not report financial hardship. Financial hardship is a potent stressor, and 253 might affect the volume of hippocampus and amygdala via the action of the hypothalamic-pituitary-254 adrenal axis and other stress-related pathways²⁸. Also, equivalent income was associated with the 255 volume of hippocampus-amygdala complex²⁹, reflecting the impact of chronic stress derived from disadvantageous life conditions ³⁰. Similar with previous studies, family income was positively 256 257 associated with brain glucose metabolism in hippocampus, and amygdala, however, no significant 258 indirect effect of family income or education level via stress, anxiety, or depression was observed in 259 this study.

260 Surprisingly, there was no brain region showing the significant association with education level 261 both from ROI analysis and full volume analysis in this study, although family income and education level 262 was significantly correlated. According to previous studies, education level was positively correlated 263 with brain glucose metabolism⁹ and gray matter volume²⁹ of anterior cingulate. The cognitive 264 reserve hypothesis posits that brains with higher reserve could tolerate more aging or pathological 265 effects, thereby minimizing the symptoms in elders with higher education level⁹. However, the 266 subjects included in previous studies (mean age of 67.1, 52.4 years) are older than this study (mean 267 age 42.6 years). Therefore, the effect of education level on the brain might not be substantial until the 268 age of 40s before the aging process accelerates.

269	This study has several limitations. Firstly, only males were included in this study, thus these
270	results may not directly generalize to females. Secondly, this retrospective study was based on health
271	check-up program. Therefore, a brain MRI was not included in the program, and MRI-based
272	coregistration and partial volume correction of PET scans could not be done. Thirdly, self-reported
273	family income for the last 12 months was included in this study, however, there are several other
274	measures of financial status such as income-to-needs ratio, or equivalent income. Lastly, it is unclear
275	whether this observed association between family income and brain glucose metabolism reflects a
276	neurobiological predisposition, or a neurobiological alteration induced by the attainment of income.
277	In conclusion, family income, and education level show heterogenous relationships with brain
278	glucose metabolism. Family income is positively associated with brain glucose metabolism in caudate,
279	putamen, anterior cingulate, hippocampus, and amygdala, while education level does not show any
280	significant association with brain glucose metabolism. This finding might reflect the link between
281	family income, and reward sensitivity, stress in middle-aged adults.
282	
283	ACKNOWLEDGEMENTS
284	No
285	
286	CONFLICT OF INTEREST
287	The authors declare no conflict of interest
288	
289	REFERENCES
290	1. Insel TR, Fernald RD. How the brain processes social information: searching for the social
291	brain. Annu Rev Neurosci 2004; 27: 697-722.
292	
293	2. Farah MJ. The Neuroscience of Socioeconomic Status: Correlates, Causes, and Consequences.
294	<i>Neuron</i> 2017; 96 (1): 56-71.
295	

296	3.	Adler NE, Boyce T, Chesney MA, Cohen S, Folkman S, Kahn RL et al. Socioeconomic status
297		and health. The challenge of the gradient. Am Psychol 1994; 49(1): 15-24.
298		
299	4.	Adler NE, Stewart J. Health disparities across the lifespan: meaning, methods, and
300		mechanisms. Ann N Y Acad Sci 2010; 1186: 5-23.
301		
302	5.	Morgan D, Grant KA, Gage HD, Mach RH, Kaplan JR, Prioleau O et al. Social dominance in
303		monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 2002; 5(2):
304		169-174.
305		
306	6.	Hedman AM, van Haren NE, Schnack HG, Kahn RS, Hulshoff Pol HE. Human brain changes
307		across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Hum
308		Brain Mapp 2012; 33 (8): 1987-2002.
309		
310	7.	Betancourt LM, Brodsky NL, Hurt H. Socioeconomic (SES) differences in language are
311		evident in female infants at 7months of age. Early Hum Dev 2015; 91(12): 719-724.
312		
313	8.	Farah MJ. Socioeconomic status and the brain: prospects for neuroscience-informed policy.
314		Nat Rev Neurosci 2018; 19(7): 428-438.
315		
316	9.	Arenaza-Urquijo EM, Landeau B, La Joie R, Mevel K, Mezenge F, Perrotin A et al.
317		Relationships between years of education and gray matter volume, metabolism and functional
318		connectivity in healthy elders. Neuroimage 2013; 83: 450-457.
319		
320	10.	Hollingshead AA. Four-factor index of social status. 1975.
321		
322	11.	Barratt W. The Barratt simplified measure of social status (BSMSS): Measuring SES. 2006.

It is made available under a CC-BY 4.0 International license .

323

324	12.	de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H et al. Prediction of
325		cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/poitron-
326		emission tomography (FDG/PET). Proc Natl Acad Sci U S A 2001; 98(19): 10966-10971.
327		
328	13.	Pak K, Malen T, Santavirta S, Shin S, Nam HY, De Maeyer S et al. Brain Glucose
329		Metabolism and Aging: A 5-Year Longitudinal Study in a Large Positron Emission
330		Tomography Cohort. <i>Diabetes Care</i> 2023; 46 (2): e64-e66.
331		
332	14.	Rolls ET, Joliot M, Tzourio-Mazoyer N. Implementation of a new parcellation of the
333		orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage 2015; 122: 1-5.
334		
335	15.	Kweon S, Kim Y, Jang MJ, Kim Y, Kim K, Choi S et al. Data resource profile: the Korea
336		National Health and Nutrition Examination Survey (KNHANES). Int J Epidemiol 2014; 43(1):
337		69-77.
338		
339	16.	Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety:
340		psychometric properties. J Consult Clin Psychol 1988; 56(6): 893-897.
341		
342	17.	Siddaway AP, Wood AM, Taylor PJ. The Center for Epidemiologic Studies-Depression (CES-
343		D) scale measures a continuum from well-being to depression: Testing two key predictions of
344		positive clinical psychology. J Affect Disord 2017; 213: 180-186.
345		
346	18.	Bürkner P-C. Bayesian Item Response Modeling in R with brms and Stan. Journal of
347		Statistical Software 2021; 100(5): 1-54.
348		

350		<i>Statistical Software</i> 2017; 80 (1): 1-28.
351		
352	20.	Bürkner P-C. Advanced Bayesian multilevel modeling with the R package brms. The R
353		Journal 2018; 10 (1): 395-411.
354		
355	21.	RStan: the R interface to Stan. https://mc-stan.org/, 2022, Accessed Date Accessed 2022
356		Accessed.
357		
358	22.	Farah MJ. Biological Psychiatry and Socioeconomic Status. Biol Psychiatry 2019; 86(12):
359		877-878.
360		
361	23.	Tucker-Drob EM, Bates TC. Large Cross-National Differences in Gene x Socioeconomic
362		Status Interaction on Intelligence. Psychol Sci 2016; 27(2): 138-149.
363		
364	24.	Wiers CE, Shokri-Kojori E, Cabrera E, Cunningham S, Wong C, Tomasi D et al.
365		Socioeconomic status is associated with striatal dopamine D2/D3 receptors in healthy
366		volunteers but not in cocaine abusers. Neurosci Lett 2016; 617: 27-31.
367		
368	25.	Martinez D, Orlowska D, Narendran R, Slifstein M, Liu F, Kumar D et al. Dopamine type 2/3
369		receptor availability in the striatum and social status in human volunteers. Biol Psychiatry
370		2010; 67 (3): 275-278.
371		
372	26.	Decker AL, Meisler SL, Hubbard NA, Bauer CCC, Leonard J, Grotzinger H et al. Striatal and
373		Behavioral Responses to Reward Vary by Socioeconomic Status in Adolescents. J Neurosci
374		2024; 44 (11).
375		
376	27.	Gianaros PJ, Manuck SB, Sheu LK, Kuan DC, Votruba-Drzal E, Craig AE et al. Parental

377		education predicts corticostriatal functionality in adulthood. Cereb Cortex 2011; 21(4): 896-	
378		910.	
379			
380	28.	Butterworth P, Cherbuin N, Sachdev P, Anstey KJ. The association between financial hardship	
381		and amygdala and hippocampal volumes: results from the PATH through life project. Soc	
382		Cogn Affect Neurosci 2012; 7(5): 548-556.	
383			
384	29.	Lotze M, Domin M, Schmidt CO, Hosten N, Grabe HJ, Neumann N. Income is associated	
385		with hippocampal/amygdala and education with cingulate cortex grey matter volume. Sci Rep	
386		2020; 10 (1): 18786.	
387			
388	30.	McEwen BS, Gianaros PJ. Central role of the brain in stress and adaptation: links to	
389		socioeconomic status, health, and disease. Ann NY Acad Sci 2010; 1186: 190-222.	
390			
391			
392			
393			
394	FIGU	RE LEGENDS	
395	Figure	1. The distribution of regional SUVR and the association between family income (USD) and	
396	educat	tion level (years).	
397			
398	Figure	2. Posterior intervals of the regression coefficients for family income and education level	
399	predicting brain glucose metabolism. The thick lines represent the 80% posterior intervals, the thin		
400	lines r	epresent the 95% posterior intervals, and the circles represent posterior means.	
401			
402	Figure	3. Full volume analysis showing the positive association of family income with brain glucose	
403	metab	olism	

It is made available under a CC-BY 4.0 International license .

404

- 405 Figure 4. Spatial correlation between family income-dependent brain glucose metabolism and meta-
- 406 analytic blood oxygenation level-dependent functional MRI activation patterns for four terms with the
- 407 most similarity retrieved from the Neurosynth Image Decoder.

408

409

Inf.Parietal Mid.Cingulate Inf.Occipital Mid.Occipital Sup.Occipital Mid.Frontal Inf.Frontal Precuneus Cerebellum Precentral Mid.Temporal Insula Orbitofrontal Sup.Frontal Sup.Temporal Sup.Parietal Postcentral Post.Cingulate Inf.Temporal Fusiform Putamen Thalamus Ant.Cingulate Pallidum 9.18.24313859: this version poster September 22, 4024 The convrigent holder or this he author/funder, with the serve to a serve to splay the proprint in performance. Hippocampus Caudate

-0.010

Family income

Inf.Parietal Mid.Cingulate Inf.Occipital Mid.Occipital Sup.Occipital Mid.Frontal Inf.Frontal Precuneus Cerebellum Precentral Mid.Temporal Insula Orbitofrontal Sup.Frontal Sup.Temporal Sup.Parietal Postcentral Post.Cingulate Inf.Temporal Fusiform Putamen Thalamus Ant.Cingulate Pallidum Amygdala Hippocampus Caudate

Education level

y = -4

y = 0

y = 8

y = 12

