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ABSTRACT2

Background Breast cancer is a complex disease that affects millions of people and is the leading3
cause of cancer death worldwide. There is therefore still a need to develop new tools to improve4
treatment outcomes for breast cancer patients. Electronic Health Records (EHRs) contain a5
wealth of information about patients, from pathological reports to biological measurements,6
that could be useful towards this end but remain mostly unexploited. Recent methodological7
developments in deep learning, however, open the way to developing new methods to leverage8
this information to improve patient care.9

Methods In this study, we propose M-BEHRT, a Multimodal BERT for Electronic Health Record10
(EHR) data based on BEHRT, itself an architecture based on the popular natural langugage11
architecture BERT (Bidirectional Encoder Representations from Transformers). M-BEHRT models12
multimodal patient trajectories as a sequence of medical visits, which comprise a variety of13
information ranging from clinical features, results from biological lab tests, medical department14
and procedure, and the content of free-text medical reports. M-BEHRT uses a pretraining task15
analog to a masked language model to learn a representation of patient trajectories from data16
that includes data that is unlabeled due to censoring, and is then fine-tuned to the classification17
task at hand. Finally, we used a gradient-based attribution method -to highlight which parts of the18
input patient trajectory were most relevant for the prediction.19
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Results We apply M-BEHRT to a retrospective cohort of about 15 000 breast cancer patients20
from Institut Curie (Paris, France) treated with adjuvant chemotherapy, using patient trajectories21
for up to one year after surgery to predict disease-free survival (DFS). M-BEHRT achieves an22
AUC-ROC of 0.77 [0.70-0.84] on a held-out data set for the prediction of DFS 3 years after surgery,23
compared to 0.67 [0.58-0.75] for the Nottingham Prognostic Index (NPI) and for a random forest24
(p-values = 0.031 and 0.050 respectively).25

In addition, we identified subsets of patients for which M-BEHRT performs particularly well such26
as older patients with at least one lymph node affected.27

Conclusion In conclusion, we proposed a novel deep learning algorithm to learn from multimodal28
EHR data. Learning from about 15 000 patient records, our model achieves state-of-the-art29
performance on two classification tasks. The EHR data used to perform these tasks was more30
homogeneous compared to other datasets used for pretraining, as it exclusively comprised31
adjuvant treated breast cancer patients. This highlights both the potential of EHR data for32
improving our understanding of breast cancer and the ability of transformer-based architectures33
to learn from EHR data containing much fewer than the millions of records typically used in34
currently published studies. The representation of patient trajectories used by M-BEHRT captures35
their sequential aspect, and opens new research avenues for understanding complex diseases36
and improving patient care.37

Keywords: electronic health records, breast cancer, relapse prediction, transformers, keyword, keyword, keyword, keyword38

1 INTRODUCTION

Breast cancer is by far the most commonly diagnosed cancer among women (almost 2.3 million cases39
worldwide in 2022) and the leading cause of cancer death worldwide (1).40

Among the various treatment options, adjuvant chemotherapy is proposed to patients after first-line41
surgery to lower the chance that the cancer will return. It is a widely used treatment option, and is offered42
in many cases, unless the tumor was small, did not show sign of aggressiveness, and no lymph nodes were43
affected. However, recurrence or death are still possible. Accurately identifying the patients most likely44
to relapse is therefore important to inform both treatment selection and future research to propose better45
therapeutic options.46

One of the most commonly used prognostic tools for breast cancer is the Nottingham Prognosis Index47
(NPI), which uses a combination of three clinical features (tumor size, tumor grade, and number of lymph48
nodes) and was proposed in 1982 (2). Since then, many authors have used statistical and machine learning49
algorithms to build breast cancer relapse predictors from clinical features; however NPI still seems to be50
the most robust criterion (3), despite its limitations.51

In the quest for improving the future outcome of patients, there has been a growing interest over the52
years for including information besides clinical features into prognostic tools. These modalities include53
biological measurements (4), magnetic resonance imaging (5), ultrasound images (6), histopathological54
images or gene expression data (7). The papers cited show that combining different modalities improves55
prediction performance.56

However, these modalities are not always available for all patients treated. For this reason, other authors57
have taken advantage of the considerable information present in medical reports that constitute the EHR of58
patients, using named entity recognition techniques to extract relevant terms from clinical notes (8, 9).59
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Among those, transformer-based models inspired by BERT (Bidirectional Encoder Representations60
from Transformer) (10), an architecture that has significantly outperformed previous methods on a large61
variety of natural language processing tasks and continues to drive advancements in the field, have recently62
gathered a lot of interest. Their superiority is explained by the use of self-supervised pretraining tasks,63
such as masked language modeling and next sentence prediction, which allows them to learn better64
representations of the data. These architectures have been successfully transposed to patient trajectories by65
seeing them as sequences of medical events rather than of words (11, 12, 13, 14, 15). To the best of our66
knowledge, however, none of these have considered cancer-related clinical outcomes, possibly because67
they are typically applied to very large cohorts of millions of patients.68

In this paper, we present several new transformer architectures for predicting clinical outcomes from69
multimodal EHR data, which consider patient trajectories as sequences of medical visits represented by70
both tabular data (clinical features, biological measurements, therapies, nature of the visit) and free-text71
medical reports. We evaluate our proposed method on the prediction of disease-free survival in breast72
cancer, on a cohort of several thousands of patients. We pretrain the models on the equivalent of a masked73
language model, which can also be trained on records excluded from the classification training set because74
they were censored.75

2 MATERIALS AND METHODS

2.1 Data76

In this work, we used data extracted from the EHR system from Institut Curie in Paris (France). All data77
collected were pseudonymized. Additionally, individuals under 18 years of age, with a history of previous78
cancer, under guardianship, or unable to provide consent were excluded from this study. Every patient79
included in the study has completed and signed a research informed consent form. The study was approved80
by the Breast Cancer Study Group of Institut Curie and was conducted according to institutional and ethical81
rules concerning research on tissue specimens and patients.82

We built a data base of 15 150 unique patients, treated with adjuvant chemotherapy for breast cancer83
between 2005 and 2012. The data base contains general descriptors of patients (such as age, sex, or weight)84
as well as information about each visit in their medical record: clinical information such as tumor size or85
cancer subtype, biological markers (tumor markers, counts of leukocytes and their subtypes) if they were86
measured, treatment information, and free-text notes. Finally, the patients are annotated with survival and87
recurrence information.88

Free-text notes are unstructured narrative descriptions or notes entered by healthcare professionals. Unlike89
the structured data, which is organized into predefined fields, free text allows healthcare providers to input90
progress reports and relevant patient information recorded during patient journey, in a more natural manner.91
Free text reports from cytopathology or radiology also capture key information from medical images, as92
captured by experts. Those medical reports comprise free-text clinical notes for consultations, as well as93
free-text reports of cytopathology, radiology, surgery, and blood tests. All reports are written in French.94

2.2 Preprocessing95

2.2.1 Tabular data preprocessing96

We first describe how we processed the structured or tabular, a.k.a structured, data describing each97
medical event for each patient.98
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2.2.1.1 Biological measurements99

From biological measurements, we only kept features that have less than 30% of missing values: MONO,100
LEUK, LYMP, PN and CA 15-3. All numerical values have to be discretized to enable tokenization. We101
binarized biological measurements into two values: 1 if the value is outside the normal range for the102
biological measurement, and 2 otherwise. Figure S1 in the Supplementary Material shows the distribution103
of biological measurements; the medical normal range of these biological features can be found in Table S1104
in the Supplementary Material.105

In addition, we also computed the differences ∆t = vt − vt−1 between the current visit’s biological106
value vt and the previous visit’s value vt−1. We then discretized the ∆ values by dividing them by ten107
and rounding. This captures more subtle variations in biological measurements evolution than the mere108
abnormal/normal values.109

2.2.1.2 Clinical information110

From the clinical information, we included both longitudinal and non-longitudinal features: age,111
undergone therapies, and tumor size on the one hand, tumor grade and number of nodes involved at112
diagnostic as well as breast cancer molecular subtypes (Luminal, TNBC, HER2+/RH-, HER2+/RH+) on113
the other. Age is computed at each visit and discretized by rounding to the nearest integer. Descriptive114
statistics of the age, breast cancer subtype, grades, number of lymph nodes involved, tumor size and115
biological measurements are given in Table S1 in the Supplementary Material.116

We combined tumor size, tumor grade and the number of lymph nodes involved into the NPI (2),117
a commonly used, clinically relevant and robust prognostic tool (3). The NPI is computed as NPI =118
0.2× tumor size (cm) + tumor grade + lymph nodes stage, where the lymph nodes stage is computed as119
1 (0 nodes), 2 (1 to 3 nodes) or 3 (> 3 nodes). The lower the score, the higher the chance of survival 5 years120
after surgery. The tumor size is measured at various points in the cancer journey. We kept for this study the121
clinical tumor size assessed at diagnosis when the tumor is palpable, and the pathological tumor size which122
is the histological size of the tumor extracted at the surgery. The NPI is recalculated with each new tumor123
size measurement, hence termed as the dynamic NPI (dNPI). For patients with at least one available feature124
among the three required for calculating the dNPI, we imputed missing tumor sizes using the mode value125
among samples of the same clinical or pathological tumor stage (TNM) status. The number of involved126
lymph nodes is the sum of the number of affected sentinel nodes and axillary nodes. We imputed missing127
number of nodes to zero and missing tumor grade to G2 (grade 2), based on the most frequent values in our128
data. The higher the dNPI, the lower the chance of survival.129

Following Blamey et al. (16), we categorized dNPI into six prognostic groups (PG): Excellent (EPG)130
(NPI ≤ 2.4), Good (GPG) (2.4 < NPI ≤ 3.4); Moderate I (MPG I) (3.4 < NPI ≤ 4.4), Moderate II (MPG131
II) (4.4 < NPI ≤ 5.4), Poor (PPG) (5.4 < NPI ≤ 6.4) and Very Poor (VPPG) (NPI > 6.4).132

Because M-BEHRT can handle missing values (see Section 2.3.1), we did not impute missing values for133
longitudinal features. However, for the baselines, we opted to impute the tumor size, number of nodes,134
grades and cancer subtype by an aberrant value of 999. Using an aberrant value allows the model to135
explicitly identify and differentiate imputed values from the actual data, by analogy with not locating a136
token within a sentence when using M-BEHRT.137

Frontiers 4

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.18.24312984doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.18.24312984


Mbaye et al. Multimodal BEHRT

2.2.1.3 Therapies, department and procedure138

Therapies are inferred by considering the occurrence date for the surgery, the start and end dates for139
hormone-therapy, chemotherapy and anti-HER2 treatment, and the number of doses administered for the140
radiotherapy. This inference incorporates the therapeutic protocol of Institut Curie (see Figure S2 in the141
Supplementary Material). Subtherapies, also inferred from this protocol, provide additional information142
about the specific molecules given in the case of chemotherapy or anti-HER2 therapy, radiation types in143
the case of radiotherapy, and specific surgical procedures including both breast and axillary surgeries. A144
list of all possible values for the therapies and subtherapies fields is given in Table S3 in the Supplementary145
Material.146

Finally, medical visit department and procedure names are available within the headers of free-text147
reports. We normalized department and procedure names by removing accents, punctuation and special148
characters. We merged synonyms into a single word: for example, anapath, anatomopathologie and149
anatomo-cyto-pathologie are merged into anatomo-cyto-pathologie (anatomical cytology in English). To150
do so, we sifted through the corpus vocabulary, identifying and unifying synonyms and/or differently151
written terms to enhance coherence of the medical history. We also removed words that appear fewer than152
100 times in the whole corpus.153

2.2.1.4 Disease-Free Survival at 3 years154

Finally, we defined a binary classification task by labeling each patient with whether they had survived155
disease-free 3 years after the surgery.156

We retained patient history up to one year after first surgery and starting from 6 months before the breast157
cancer diagnosis. This choice of one year after the first surgery as an index date ensures that we use as158
much of the patient’s history as possible, without capturing an actual relapse. We removed patients who159
relapsed before the index date, as well as patients censored before 3 years after the first surgery, as depicted160
in Figure 1. All patients had at least 3 visits in their medical history. This results in 8 089 patients, with161
6.2% having a negative disease-free survival (DFS) status.162

For the evaluation of our models, we held out a test set containing 520 patients, with a proportion of163
negative samples (6.1%) similar to that of the whole data set. For pre-training tasks requiring no labels (see164
Section 2.3.2), we used all patients and their full history.165

2.2.2 Free-text reports preprocessing166

Free-text reports represent unstructured textual descriptions of medical information recorded by medical167
experts. They can be clinical notes, that is to say, information recorded during patient encounters with168
clinicians, or reports made by specialists (laboratory biologists, radiologists, histopathologists) to interpret169
the results of medical exams. The average number of visits, reports, and words per report in our data are170
given in Table S1 in the Supplementary Material.171

Unlike tabular data, that is recorded in a standardized way at least within a hospital, medical reports are172
highly variable, as they allow each healthcare provider to be distinctive in format, style, or terminology.173
Moreover, the semantic related to the medical field is complex, using abbreviations, acronyms, and174
medical jargon (17). Therefore, in addition to common NLP preprocessing steps (normalization, removal175
of noisy entities, adverbs, stopwords and text delimiters), our text preprocessing pipeline includes steps176
that are specific to medical reports. The full text preprocessing pipeline is described on Figure S3 in the177
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Figure 1. Flowchart of study inclusion and exclusion.

Supplementary Material, and we describe in Text S1 in the Supplementary Material the steps that are178
specific to clinical text.179

2.3 Multimodal BEHRT180

Information retrieved from EHR are generally time stamped events. In this study, this information is181
organized as structured or tabular data (for numerical values) collected over time, along with a series182
of free-text medical reports throughout the patient’s journey. As in Natural Language Processing, EHR183
can be transformed into sequences of tokens, where each token represents a unit of information from184
the EHR rather than a linguistic unit. These sequences can then be fed into language models such as185
transformers (18). This was first proposed by Li et al. (11), who introduced BEHRT (BERT for EHR), an186
architecture based on that of BERT (Bidirectional Encoder Representations from Transformers) (10) to187
predict future conditions from a sequence of diagnoses.188

Here we propose Multimodal-BEHRT (M-BEHRT), which combines two transformer-based deep learning189
models of architecture inspired by BEHRT’s: Tabular BEHRT and Text BEHRT. Tabular BEHRT considers190
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that each medical visit is described using structured data: the department in which it took place, the191
corresponding procedure, as well as clinical and biological measurements available at this time. Like BERT192
and BEHRT, Tabular BEHRT combines a pre-training task (Masked Language Model) with a downstream193
task (the classification task), but applies it to a multimodal EHR tabular dataset. Text-BEHRT considers194
that each medical visit is represented by a free-text medical report. Text BERT uses adapted pretrained195
embeddings to build a sequence that serve as input for the classification task. M-BEHRT is a meta-model196
that combines Tabular BEHRT and Text BEHRT through a cross-attention module (19).197

In what follows, we first describe how we construct patient trajectories (Section 2.3.1 from multimodal198
tabular data (Section 2.3.1.1) as well as free-text reports (Section 2.3.1.2). We then describe in Section 2.3.2199
the self-supervised approach used for learning embeddings of multimodal patient trajectories, and in200
Section 2.3.3 the architecture we propose for the binary classification of patient trajectories. Finally, we201
describe the baselines used to evaluate our models in Section 2.4.202

2.3.1 Multimodal sequence construction203

2.3.1.1 Patient trajectory representation from structured data204

By analogy with Natural Language Processing data, a patient’s history can be seen as a document, where205
visits serve as sentences, and the events within the visits act as tokens. In our final data, the medical206
sequence consists of a sequence of visits that are chronogically ordered.207

We used dates from the medical reports to construct medical chronological sequences. Each visit is208
described by the specific department and procedure from which the report originates, which contextualizes209
additional features, which are incorporated as available.210

As illustrated on Panel A of Figure 2, each visit is therefore described by at most 17 features: biological211
measurements that include binary values and deltas of measurements of the 5 biological markers, the212
medical department where the visit took place, the type of procedure the visit corresponded to, the therapy213
and sub-therapy administered, the patient’s age, the dNPI and the breast cancer subtype (which is static but214
repeated at each visit).215

A separate modality layer indicates what kind of feature each measurement corresponds to. Generally216
speaking, this could be set to simply indicating the modality (biological, clinical, visit), but here we chose217
to be specific and encode the feature name. This allows us in particular to deal with missing values, which218
can simply be skipped as the modality layers provides the information of what feature is at each position.219
The modality layer allows the algorithm to treat each modality differently.220

As in BERT and BEHRT, a sequence of visits starts with the special token CLS, and visits are separated221
with the special token SEP.222

Whereas BEHRT captures temporal information by including the age of the patient in a separate layer,223
we kept age as other clinical descriptors in the main input layer, but added another special embedding layer224
that represents the delay between the next visit and the previous. We discretized delays, as in Pang et al.225
(12), into W0-3 (under 1, 2, 3, or 4 weeks) for delays shorter than 4 weeks, M1-12 (under 1 month up to226
under 12 months) for delays shorter than a year and LT (long term) for delays longer than a year.227

One of the notable constraints in BERT-like models is token capacity: they process tokens in fixed-size228
sequences of at most 512 tokens. While this size is arbitrary and varies depending on the exact BERT229
architecture and implementation, it cannot take much larger values, as it is linked to the memory usage of230
the self-attention mechanism of BERT, which grows quadratically with the number of tokens (each token231
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being attentive to every other token). There is therefore a tradeoff between the number of features/tokens232
used to describe each visit, and the number of visits that can be considered. This is alleviated by the233
exclusion of both missing values and biological delta values equal to zero (corresponding to an absence of234
change in measurement), which is possible as the modality layer informs the architecture as to the kind of235
feature each token corresponds to. In practice, if the patient trajectory still exceeds 512 tokens, we only236
consider the first 512 tokens, which represent the initial interactions of the patient with the healthcare237
system, and inform about initial diagnostic visits and treatment decisions. Figure S4 in the Supplementary238
Materials shows how much information is excluded from patient trajectories due to restricting data to the239
512 first tokens.240

Panel A of Figure 2 illustrates this representation of patient trajectories based on tabular data.241

2.3.1.2 Patient trajectory representation from free text242

In addition, we assume that important information is contained within the text itself of the free-text243
reports. We therefore build a sequence of free-text reports, ordered chronologically from the date of the244
diagnosis until the index date (one year after the first surgery). As shown in Table S2 in the Supplementary245
Material, the number of reports per patient and the length of each report are such that these create very246
long documents (on average 34 reports, averaging 159 words each, for a total of more than 5 000 words247
per patient history). However, while BERT has proven to be highly effective in capturing contextual248
relationships and semantic nuances in text, it can only process sequences of at most 512 tokens, due to the249
memory footprint of the self-attention mechanism.250

This constraint again poses challenges when dealing with lengthy documents such as a sequence of251
medical reports (20). Using transformers to classify long documents is still a topic of open research (21).252
The most straightforward approach consists in truncating inputs to fit within the allowed number of tokens,253
typically by using the first, last or middle tokens. However, limiting patient history to 512 tokens may254
result in major information loss and hence produce incomplete representation of medical reports. Other255
approaches such as Big Bird (22) or Nyströmformer (23) use sparse or low-rank approximations of the256
self-attention matrices. However, existing pretrained models typically do not handle more than 4 096257
tokens, which is still too short for some of the patients in our data set. In addition, they have only been258
trained on English corpora whereas our medical notes are in French. Nevertheless, our corpus is much too259
small to train a transformer model from scratch. Finally, many approaches consist in dividing long text into260
chunks smaller than 512 tokens and combining their embeddings, whether through an additional layer of261
self-attention in a hierarchical model (24) or by pooling (25). In the absence of a clear consensus on which262
of these strategies is likely to perform best (21, 25), we chose here to use a simple aggregation strategy.263
More specifically, we construct the embedding of every report by summing the embeddings of all tokens it264
contains, and construct sequences not of token embeddings, but of reports embeddings.265

We obtain token embeddings from DrBERT (26), a state-of-the-art transformer model, based on the266
RoBERTa architecture (27) and trained on a French biomedical corpus which contains 7GB of clinical267
data from multiple sources. We can then train a BERT model on the sequences of reports embeddings.268
To account for temporality, we add an embedding layer of delays between reports. Finally, we use BERT269
special tokens: CLS for the start of a medical history and SEP to separate reports from different visits. This270
representation is illustrated on Panel B of Figure 2.271
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2.3.2 Pretraining task272

To improve the embeddings of patient trajectories built from structured data, we follow the example273
of BEHRT and pre-train a Masked Language Model (MLM) on the representations described in274
Section 2.3.1.1.275

As in Natural Language Processing, the MLM is designed to predict missing or masked tokens within a276
patient’s history, using the bidirectionaly context provided by the surrounding tokens. Its goal is to learn277
contextual representation of the medical events in the patient’s history. For this purpose, in this pre-training278
phase Tabular-BEHRT uses the whole cohort of 15 150 patients and the entire sequence of events for each279
patient, from the date of diagnosis to the date of death or censorship, with a length average of 506(±466)280
tokens. We randomly replaced 15% of the tokens with a special MASK token. We swapped another 2%281
with another token at random; this adds a limited amount of noise, encouraging the model to learn a more282
robust and generalizable representation of patient trajectories. As shown on Panel C of Figure 2, the MLM283
part of M-BEHRT is a transformer-based architecture that generates probabilities for each token in the284
vocabulary, computed using softmax over the model’s output logits, as a multilabel learning task.285

We first split the dataset into a training (90%) and a validation set (10%) in order to prevent overfitting.286
Then, all the embeddings from the training set are randomly initialized and fed to the MLM. We use287
Bayesian optimization to find the best set of hyperparameters, with precision as a criterion. For robustness,288
we run the model five times with five different random seeds for the sequence masking, and use as final289
token embeddings for the downstream classification tasks the mean values of standardized embeddings290
from these five runs.291

The pretraining task solely concerns tabular data, to establish effective representations of tabular events292
within the patient trajectory. For text data, running an MLM on the whole medical corpus would require293
more computational resources than available.294

2.3.3 Binary Classification295

We now describe the architecture of M-BEHRT, a deep neural network to learn binary classifiers from296
patient trajectories. M-BEHRT is the combination of two architectures: Tabular BEHRT, which learns from297
patient trajectories built from structured data; Text BEHRT, which learns from patient trajectories built298
from free text.299

Tabular BEHRT consists in using labeled data to fine-tune for classification the network obtained by300
pre-training on patient trajectories built from structured data. As shown on Panel C of Figure 2, only the301
last layer is different between pre-training and fine-tuning: here the patient history embeddings are fed to a302
single feed-forward layer with sigmoid activation.303

The architecture of Text BEHRT is illustrated on Panel D of Figure 2. It is again a transformer-based304
model, which uses report embeddings obtained through the aggregation of DrBERT embeddings as305
described in Section 2.3.1.2. The same sampling strategy as the one depicted in the previous section is used306
for this task.307

Finally M-BEHRT combines information from tabular data and free-text reports by integrating308
Tabular BEHRT and Text BEHRT using a cross-attention module(19). The cross-attention module extends309
the capabilities of traditional transformer architectures to handle multiple data modalities in a unified310
framework. Hence M-BEHRT is expected to harness the complementarity of the information encoded in311
different modalities to improve predictive power.312
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As shown on Panel E of Figure 2, logits from structured data trajectories and the text trajectories are313
computed using their respective models. The cross-attentions layer calculates attentions with the logits as314
key, value and query. Logits from Text BERHT used as query interact with logits from Tabular BERHT315
that represent key and value. The loss is backpropagated to the cross-attention module. To do so, logits316
must have same size. Therefore, logits from Text BEHRT are first fed through a single feed-forward layer317
to obtain an embedding of the same size as logits from Tabular BEHRT.318

In contrast, cross-attention is used when there are two distinct sets of inputs. One set of inputs (the319
”query”) interacts with another set (the ”key” and ”value”). The model attends to the ”key” sequence to320
inform the processing of the ”query” sequence. This is commonly used in models where input data needs321
to interact, such as translating a sentence in one language to another.322

Because the labeled data is typically imbalanced, we implemented a stratified batches strategy, which323
consists in loading the same proportion of positive and negative samples for each batch, with replacement324
for the positive instances (the minority class). This sampling strategy allows us to train on balanced batches.325

2.4 Comparison baselines326

To evaluate our models, we developed several comparison baselines. The first is the NPI measured327
at the date of diagnosis, a tool that is currently used in the clinic to predict prognosis. In addition, we328
developed baselines using classical machine learning methods: random forests classifiers (RF), logistic329
regression (LR), and support vector machines (SVM). These machine learning models (RF, LR and SVM)330
use the same input data as M-BEHRT, but cannot directly use sequential information. For dynamic tabular331
data (procedure name, department name, binarized biological measurements), sequences of events are332
transformed into number of occurences of events. Clinical features (age, therapies, tumor size, tumor grade,333
breast cancer molecular subtype and number of nodes) are kept static, using their values at the time of334
diagnosis. Regarding free-text reports, we created a table where each feature of the report embeddings335
(of 768 dimensions) becomes a column. We imputed missing values with zero (0) for both of the inputs.336
For M-BEHRT, outputs from tabular data baselines and from text data baselines (specifically their logits)337
constitute inputs to a secondary model (meta-model) which makes the final prediction.338

In order to consider class imbalance and prevent the model from being biased towards the majority class,339
we choosed the strategy of assigning different weights to each class during training. These weights are340
inversely proportional to class frequencies in the training data. By penalizing the majority class, the model341
is ensured to have enhanced performance on minority classes.342

2.5 Model selection343

For model selection, we split the training data (8 289 patients, excluding the held-out data set of 520344
patients) into a training and a validation sets (respectively 90% and 10% of the data). For each method, we345
use Bayesian optimization (28) to find the optimal set of hyperparameters, using the Average Precision346
Score (APS) on the validation set as a performance criterion.347

2.6 Computational resources348

We used Python to code models and analyses pipelines for this study, in particular scikit-learn (29) for349
the classical machine learning models, hyperopt (28) for Bayesian optimization, spaCy (30) for natural350
language processing tasks, and PyTorch (31) for the implementations of Tabular BEHRT, Text BEHRT and351
M-BEHRT, which are built on that of BEHRT (11). The masked language model and DFS classification352
model were computed on NVIDIA A40-46GB Graphical Processing Units (GPU).353
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Figure 2. M-BEHRT architecture. Panel A: representation of patient trajectory using tabular data. Panel B:
representation of patient trajectory using free-text reports. Panel C: architecture of Tabular BEHRT (learning
from patient trajectories represented from tabular data as in Panel A). Panel D: architecture of Text BEHRT
(learning from patient trajectories represented from free-text reports as in Panel B). Panel architecture of
M-BEHRT, learning from both representations by combining Tabular BEHRT and Text BEHRT with cross
attention.

3 RESULTS

3.1 Patient trajectory embeddings354

3.1.1 Tabular patient trajectory embeddings355

We first focus on the Masked Language Model (see Section 2.3.2) and evaluate the quality of the patient356
trajectory embeddings learned during the pre-training phase of Tabular BEHRT.357
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The optimal hyperparameters we identified for the MLM are 5 hidden layers with 12 attention heads,358
a hidden size of 144, an intermediate layer size of 133, a training duration of 120 epochs, using Adam359
optimizer with a learning rate set to 1e-3 and a batch size of 64.360

To assess the performance of the MLM, we ran the model five times with five different random seeds for361
the sequence masking. We also compute a baseline by running the MLM on a data set in which tokens have362
been randomly reordered within each sequence. This approach disrupts the inherent sequential structure363
of the data, and creates a scenario where the model should not be able to rely on contextual relationships364
between tokens. Hence, comparing the MLM’s performance on shuffled sequences against its performance365
on original sequences offers a benchmark for assessing the impact of contextual information on the model’s366
predictive capabilities. The precision of these models (proportion of correctly predicted masked tokens) on367
the held-out validation set is shown on Figure S5 in the Supplementary Material.368

The MLM is able to predict masked tokens with a precision of 72% on the validation set, a performance369
that is not significantly different from the one on the training set, highlighting the absence of overfitting.370
In addition, this precision is significantly higher than the precision of 55% obtained when shuffling the371
sequences, which shows that the MLM does indeed capture contextual information. We also note that the372
precision of the MLM of BEHRT reported by Li et al. (11) on sequences of diagnoses is of 66%. While it373
is difficult to compare this performance to ours due to the different nature of the tasks, it indicates that the374
MLM provides embeddings of sufficient quality to perform supervised learning in a second stage.375

We further evaluate embeddings generated by the MLM by visualizing token embeddings through two-376
dimensional plotting along the first two components of a t-distributed Stochastic Neighbor Embedding377
(t-SNE) as shown on Figure 3. This figure shows how the MLM capture semantic relationships between378
tokens and contextual information. Tokens belong to the same modality (therapies, variation in biological379
features, breast cancer subtypes) tend to cluster together, with the exception of procedures and departments,380
which tend to be mixed together. This is however unsurprising, as some procedures and departments are381
tightly linked; for example, panel F shows that the embedding of the “nuclear medicine” service is quite382
close to the embeddings of “radiology”, “scanner” and “MRI” procedures, while panel D shows that the383
embedding of the “radiotherapy” service is quite close to the embeddings of several procedures all relating384
to the proposal, prescription, initiation, unfolding and ending of treatment by radiotherapy.385

3.1.2 Medical reports embeddings386

We first evaluate the quality of the medical reports embeddings obtained by pooling tokens embeddings387
extracted from DrBERT by visualizing them after their projection into a 2D space using t-SNE. The388
proximity of reports within this space corresponds to their semantic similarity. As shown in Figure 4, this389
visualization provides a comprehensive overview of the clustering patterns, demonstrating the potential of390
DrBERT embeddings in representing French medical text data.391

This figure shows clusters of reports written in the same departments. Additionally, it display promixity392
between clusters that arise from similar departments. The Panel A groups all reports associated with393
radiology, including “mammography”, “MRI”, “ultrasound”, or “scintigraphy”. The same pattern is394
observed in Panel D, which contains the “generic” reports as those related to “discharge”, “external care”395
or “information”, and in Panel B, with clusters relating to cytology (“anatomocytopathology”, “cytology”).396
Lastly, Panel C displays reports from various departments positioned closely together.397
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Figure 3. t-SNE of Tabular BEHRT tokens embeddings as learned by the Masked Language Model. Panels
A through F zoom in on specific section of the plot. Panel A corresponds to a cluster of deltas in biological
measurements. Panel B shows that age tokens cluster together. Panel C shows that therapy token, on the
one hand, and breast cancer subtypes, on the other, cluster together. Panel D and F show two different
clusters of procedures and departments. Panel E show that dNPI tokens cluster together, as well as BERT
special tokens.
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Figure 4. t-SNE of Text BEHRT medical reports embeddings. Each panel correspond to a different
departments’ reports with similar information, cluster together.

3.2 DFS prediction398

3.2.1 Comparison of M-BEHRT with baselines399

We report on Figure 5 the ROC curves on the test set of M-BEHRT trained with optimal hyperparameters400
(see Section 2.5; learning rate of 10−3, batch size of 64, Adam optimizer, 6 epochs of training), as well as401
of the comparison baselines described in Section 2.4.402

Figure 5 shows that all methods perform significantly better than a random classifier (AUC-ROC of 0.5).403
Moreover, M-BEHRT outperforms all comparison machine learning models.404
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Figure 5. ROC curves M-BEHRT with the baselines for the prediction of disease-free survival 3 years
after surgery, on the test set.

3.2.2 Ablation study405

To better understand the contribution of each modality to the performance of M-BEHRT, we first compared406
it to the individual performance of its components Tabular BEHRT and Text BEHRT. Figure 6 reports ROC407
curves for all three approaches, on the test set. The optimal hyperparameters for Tabular BEHRT were a408
learning rate of 10−4, a batch size of 16, Adam optimizer, and 5 epochs of training; for Text BEHRT they409
were a learning rate of 5.10−4, a batch size of 32, Adam optimizer, and 99 epochs of training.410

Although they use different information, Tabular BEHRT and Text BEHRT achieve similar performance411
on both tasks, highlighting that Text BEHRT can capture relevant information in unstructured medical412
reports. The combination of both models through cross-attention slightly improves their respective413
performance, demonstrating the synergistic effect of integrating the strengths of both Tabular and414
Text BEHRT into a single unified model.415

We also performed an ablation study to better understand the contribution of each tabular modality416
to the performance of Tabular BEHRT. Figure 7 shows the areas under the ROC curves obtained on417
the test set when removing some of the modalities from Tabular BEHRT. This figures shows that dNPI418
contributes the most to the performance. However, the addition of the other features, in particular the419
remaining clinical features (including age and more notably therapies), increases performance substantially.420
Biological features contribute the least to performance, although they still contain information, as they421
allow for better-than-random prediction. However, it seems that this information is redundant with that422
captured by the other features. Performance also drops substantially if information about the nature of the423
medical visit (department and procedure) is omitted. These observations are consistant across both tasks.424
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Models AUC Scores

M-BEHRT 0.77
[0.70− 0.84]

NPI 0.67
[0.58− 0.76]

Random Forests 0.67
[0.58− 0.75]

Logistic Regression 0.61
[0.52− 0.71]

SVM 0.61
[0.55− 0.72]

Table 1. AUC scores comparison for M-BEHRT and the baselines for the prediction of disease-free
survival 3 years after surgery, on the test set. M-BEHRT significantly outperforms the other methods
(DeLong test in Figure S22 in the Supplementaty Material).

We also provide in the Supplementary Material a comparison of Tabular BEHRT with baselines that425
only make use of tabular information (Figure S6 in the Supplementary Material) and a comparison of426
Text BEHRT with baselines that only make use of text information (Figure S7 in the Supplementary427
Material). In both cases, the transformer-based approaches outperformed all comparison partners.428

3.2.3 Performance of M-BEHRT per cancer subtype429

Figure 8 presents the AUC-ROC of M-BEHRT on the test set, stratified by patient age, tumor grade,430
molecular subtype, or node status. M-BEHRT is better at predicting DFS at three years on older patients,431
with at least one affected lymph node. Stratification of results by NPI range is available on Figure S8 in the432
Supplementary Material.433

3.2.4 Model interpretation434

To better understand the predictions of M-BEHRT, we used the CAPTUM (32) implementation of the435
integrated gradients (IG) method (33) to attribute the predictions of either Tabular BEHRT or Text BEHRT436
to their input features. This allows us to highlight, for a given input sequence of visits, the elements that437
contributed to the label.438

Overall, Tabular BEHRT mainly uses NPI tokens to correctly identify relapse or death for samples from439
the poor prognosis groups (VPPG and PPG), or to correctly identify DFS for patients from the good440
prognosis groups. What is more interesting, however, is to look at the tokens that Tabular BEHRT uses441
to accurately predict relapse or death for samples from the good and moderate prognosis groups, as they442
might provide critical insights into the aggressiveness and progression of the disease. They point towards443
having a high number of multidisciplinary consultation meetings (“RCP” in French), a high number of444
consultations overall, a second surgical procedure (within one year of the first one), or abnormal values for445
the CA15-3 and the LYMP biological markers. Moreover, Tabular BEHRT uses well-documented factors446
in the literature to predict a positive DFS status such as age.447
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Figure 6. ROC curves comparing Tabular BEHRT and Text BEHRT against their combined model M-
BEHRT for the prediction of disease-free survival 3 years after surgery, on the test set.

The interpretation of Text BEHRT’s predictions shows that the model mostly relied on the entire448
sequence of the reports from the diagnosis to the index date to make its prediction, which is represented449
by the CLS token. We found this pattern in many true positive (correctly identifying death or relapse)450
samples. Moreover, Text BEHRT relies on reports that show information regarding the characterisation of451
a suspicious tumor, but this is not in and of itself indicative of a future relapse.452

Finally, in order to gain a more global understanding of the model, we investigated the most predictive453
reports for a positive DFS status and for a negative DFS status. We set a threshold regarding the given454
attribution for each medical report. We collect all the reports with an attribution above this threshold. This455
yielded 921 reports that are predictive for negative DFS status in the entire corpus, and 1 720 reports that456
are predictive for positive DFS status. For each reports collection, we determined the 30 most frequent457
sequences (of 3 to 9 words) for both groups. We then listed the most frequent sequences for the DFS458
negative group that are not found in the DFS positive group. The resulting sequences of words can be found459
in Table 2.460
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Figure 7. Ablation studies AUC-ROC on the test set for Tabular BEHRT. We present results for the full
model (Tabular BEHRT), then using only one of the 4 modalities (dNPI, clinical features, biological
features, medical visits), two modalities (dNPI+clinical or biological+visits), then removing one of the 4
modalities. Here “medical records” stands for features extracted extracted from the medical record headers,
that is to say, visit department and procedure. Performance scores are presented on the test set.

461

Some of these sequences were obtained by combining overlapping sequences. We then plotted survival462
curves to compare patients that have reports containing one of these sentences and patients that do not.463
DFS is the event and the log-rank test is used to compare the populations. We show here two such curves,464
corresponding to sentences showing the most significant sequences: Figure 9 is for a sequence that translates465
to “breast in partial involution with less than 50% glandular tissue and Figure 10 is for a sequence that466
translates to “axillary lymphadenectomy”.467

For the first example (Figure 9), the survival curves suggest that patients with this feature are most likely468
to relapse than others. This feature defines a specific state of breast tissue where the glandular tissue is469
replaced by adipose tissue. This process naturally occurs with aging and after menopause. Therefore, this470
feature could have an impact on DFS simply because it is related to the patient’s age, which is already471
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df_5y_2  = pd.read_csv('/Users/maguette/Downloads/df_test_5y_2.csv')
df_5y_2['n'] = df_5y_2['n'].apply(lambda x: str(x))

import matplotlib.pyplot as plt

fp.forestplot(df_5y_2,  # the dataframe with results data
              estimate="AUC",  # col containing estimated effect size 
              ll="ll", hl="hl",  # lower & higher limits of conf. int.
              varlabel="label",  # column containing the varlabels to be 
              capitalize="capitalize",  # Capitalize labels
     #       pval="p-val",  # column containing p-values to be formatted
              annote=["n", "est_ci"],  # columns to report on left of plo
              annoteheaders=["N", "AUC score (95% Conf. Int.)"],  # ^corr
          #    rightannote=["groups"],  # columns to report on right of p
          #    right_annoteheaders=["Variable group"],  # ^corresponding 
          groupvar="groups",  # column containing group labels           
              xlabel="AUC scores",  # x-label title
              xticks=[0.,0.25, 0.5, 0.75, 1.0],  # x-ticks to be printed
         #     sort=True,  # sort estimates in ascending order
              table=True,  # Format as a table
            #   color_alt_rows=True,  # Gray alternate rows
              # Additional kwargs for customizations
              **{"marker": "D",  # set maker symbol as diamond
                 "markersize": 35,  # adjust marker size
                 "xlinestyle": (0.5, (10, 5)),  # long dash for x-referen
                 "xlinecolor": "#808080",  # gray color for x-reference l
                 "xline":0.5,
                 "xtick_size": 12,  # adjust x-ticker fontsize
                }  
              )

<Axes: xlabel='AUC scores'>

Figure 8. AUC-ROC of M-BEHRT on the test set stratified by patient age, cancer grade, molecular subtype
and node status

a prognostic factor. However, when compared with 2 age groups (see Figure S11 in the Supplementary472
Materials), it added more information on the survival than just > 50 years old and < 50 years old. Young473
patients with this feature represent the worst prognostic groups.474

Although mammary involution is not a commonly used prognostic factor, several studies have showed a475
link between involution and breast cancer risk (34, 35); the underlying biological process could maybe also476
explain a hightened risk of relapse in young patients presenting abnormal mammary involution.477

The second plot (Figure 10) compared a population with the feature “axillary lymphadenectomy” and a478
population without. This feature is a mention of removing lymph nodes from the armpits. This information479
is associated with the potential affection of axillary nodes, which is found to be predictive for BC relapse.480

4 DISCUSSION

In this paper, we proposed several novel deep learning architectures inspired by BEHRT to model patient481
trajectories using multimodal data extracted from EHRs. As the original BEHRT model, Tabular BEHRT482
considers structured data to describe each medical event. In addition, it considers multiple modalities483
(biological lab results, clinical information, department and procedure names) simultaneously. By contrast,484
in Text BEHRT each visit is described via the content of free text medical reports. Finally, M-BEHRT485
combines both models through cross-attention. Our work is motivated by applications to oncology, and486
applied to the prediction of disease-free survival for breast cancer patients.487
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Sequence meaning in
English

Description

Breast in partial involution
with less than 50% glandular
tissue

Adipose involution is a natural process where glandular tissue is gradually
replaced by fat tissue, often as a result of aging or hormonal changes. Here,
the glandular tisuse makes up less than half of the total breast composition. While
age is a risk factor for breast cancer, lobular involution is associated with a reduced
risk of breast cancer (34, 35).

Previous treatment with
human growth hormone,
without risk factors for CJD
transmission

Treatment with human growth hormone can lead to the transmission of Creutzfeldt-
Jakob disease (CJD). This information is a medical administrative criterion
checked before surgery.

With axillary
lymphadenectomy

Until recently, axillary lymph node dissection was standard procedure in the case
of involvement of lymph node in breast cancer, one of the main known risk factors
for relapse or death (36).

Palpable mass Palpable breast lumps are the most common presentation of breast disease.
Solu-Medrol, 80mg Solu-Medrol is one brand name for methylprednisolone, a corticosteroid used in

BC to manage the side effects of taxane-based chemotherapy (37).
Lovenox 0.4 mL Lovenox is one brand name for enoxaparin sodium, a low molecular weight

heparin used as anticoagulant medication. It is used to prevent and treat venous
thromboembolisms, for which cancer patients are at higher risk (38).

Table 2. Most frequent sequences found in reports with high attribution for DFS- (relapse/death) instances
but not for DFS+ instances, in Tabular BEHRT.

4.1 M-BEHRT achieves state-of-the-art or better prediction of DFS488

Using very different information, Tabular BEHRT and Text BEHRT achieve AUCs on a held-out data489
set of 0.75 [0.66-0.83] and 0.75 [0.68-0.81], respectively, for the prediction of DFS 3 years after surgery.490
Combining them in M-BEHRT slightly increases predictive power, reaching an AUC of 0.77 [0.70-0.84].491
All three architectures outperform classical machine learning methods. M-BEHRT is therefore able to492
capture the sequential aspect of patient data throughout their medical journey, resulting in improved493
performance.494

To date, most of the multimodal prognosis models for breast cancer use various types of medical images,495
as well as sometimes genetics data, combined or not with tabular information (biological measurements,496
clinical features). Moreover, endpoints vary between studies: DFS, but also overall survival or recurrence497
(sometimes separated between local, regional and distant); which can be measured 3 years after surgery498
as in the present work, but also at different time points. Finally, different studies use different criteria499
inclusions. All in all, this makes comparing our performance to other studies challenging. However, we500
note that M-BEHRT achieves better performance for the prediction of DFS after three years than the501
recent work of Han et al. (6), which uses ultrasound and mammography images combined with clinical,502
pathological and radiographic characteristics and reports an AUC of 0.739 on a held-out test set. In addition,503
the performance of M-BEHRT is in the same ballpark as that of Rabinovici-Cohen et al. (5), which predict504
recurrence at five years in patients who receive neo-adjuvent chemotherapy (AUC of 0.75 on a held out505
data set) using clinical features, immunohistochemical markers, and multiparametric magnetic resonance506
imaging, or González-Castro et al. (9), which achieve an AUC of 0.81 also for predicting recurrence at five507
years, but considering all cancer patients and using clinical features, immunohistochemical markers, and508
descriptors of clinical history such as the number and type of therapies.509

In order to further evaluate the ability of M-BEHRT to predict DFS, we also performed the same study,510
but for the prediction of DFS 5 years after surgery rather than 3. This results in a smaller data set of 5 192511
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Figure 9. Survival plots for the sequence: “sein en involution adipeuse partielle avec contingent glandulaire
inferieur a 50”, (breast in partial involution with less than 50% glandular tissue), Present or Absent in
patients reports

patients. The test set is the same as for DFS 3 years after surgery, but now contains 17.1% of negative512
samples. All results are available in the Supplementary Materials (Table S4 and Figure S10 for a description513
of the data, and Figures S11-17 for the results). Our observations are similar to those made on the prediction514
of DFS 3 years after surgery, although predicting DFS 3 years after surgery seems much easier than 5 years515
after surgery (AUC of 0.77 vs 0.69). This is in line with previous observations that earlier events are easier516
to predict than long-term ones (39).517
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Figure 10. Survival plots for the sequence: “lymphadenectomie axillaire”, (axillary lymphadenectomy),
Present or Absent in patients reports.

We stratified the data based on features that are expected to define patients with similar prognoses (age,518
grade, number of lymph nodes involved, molecular subtype). We found that the prediction ability of519
M-BEHRT varies depending on subgroups and that the model works better on older patients with more520
aggressive disease (at least one lymph node involved). In addition, M-BEHRT is better at predicting relapse521
after 5 years than after 3 years for luminal tumors, suggesting that it correctly identifies predictive factors522
with long term influence for these tumors that tend to recur later than others (40).523

There are however some limitations to the scope of our study. In particular, our findings are restricted to a524
very specific cohort of patients who received adjuvant chemotherapy. We also have not been able to validate525
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our findings on an external validation group, due to privacy concerns limiting the access to EHR of other526
centers; it is possible that our models have captured idiosyncrasies of Institut Curie that do not apply to527
patients from other hospitals. However, our work shows that it is possible to learn from multimodal patient528
trajectories built from dynamic tabular data and the content of free-text reports written by practicioners at529
each medical visit, and paves the way for future research in understanding breast cancer prognostic factors.530

4.2 M-BEHRT learns on small data sets531

An important aspect of our study is that, unlike most work published to date using transformers for532
EHR data, which use millions of patients for pretraining and tens to hundreds of thousands of patients533
for fine-tuning (11, 13, 12), the datasets we use here are of much smaller sizes: about 15 000 patients534
for pretraining, and 5 000 to 8 000 patients for fine-tuning. That it is possible to apply such methods to535
much smaller data sets is very encouraging for future research, as many studies, especially on very specific536
diseases and endpoints, only have access to a limited number of patients.537

However, despite the small sample size, our study has an advantage over those with larger datasets’538
studies because our learning data includes only adjuvant-treated breast cancer patients. This specificity has539
enabled the model to learn more precise embeddings and improve the accuracy of relapse prediction.540

Keeping the same pretrained model, we experimented with further reducing the number of patients used541
for training the classifier. To this end, we created smaller training sets by randomly selecting subsets of the542
training data, starting from 10 samples, and compared on the test set the performance of Tabular BEHRT543
and classical machine learning algorithms trained on these small training sets. Our results, shown on544
Figure S20 in the Supplementary Material, show that Tabular BEHRT clearly outperforms the classical545
machine learning algorithms, especially random forests, in the few-shot learning setting (when training set546
sizes are very small), achieving better-than-random performance with as little as 10 training samples and547
outperforming NPI with a few hundred training samples. We attribute this performance to the ability of the548
pretraining phase to learn meaningful representations of patient trajectories.549

4.3 M-BEHRT leverages the complementary nature of different modalities550

In order to better understand the contribution of the different modalities to the performance of551
Tabular BEHRT, we conducted an ablation study. The results show that, with the exception of the biological552
features, excluding one modality or more substantially reduces model performance. This indicates that553
Tabular BEHRT has the ability to leverage the complementary nature of the different modalities. In addition,554
clinical features (dNPI, age, molecular subtype and therapy) contribute the most to performance. This555
observation is consistent with previous studies on breast cancer relapse prediction (41, 42).556

Although others have found the results of routine laboratory tests to be very informative for predicting557
breast cancer endpoints (4, 41), our study did not see strong added value of including biological markers558
on DFS prediction. This is particularly surprising regarding cancer antigen CA 15-3, which has been559
found in several stiduies to correlate to poor prognosis (43, 44) and recurrence (45, 41). In addition, Kim560
et al. (41) found that an increase in leukocyte count (LEUK) has a protective effect against breast cancer561
recurrence and that an elevated neutrophil count (PN) is associated with recurrence, although another562
study (4) did not find a significant association between DFS and variables describing leukocyte counts563
and counts or percentages of leukocyte subtypes. However, these features not entirely uninformative, as564
restricting Tabular BEHRT to the biological features modality still yields better-than-random performance565
(AUC of 0.56 for T1 and 0.61 for T2). One possible explanation is that the information contained in the566
biological features is also captured by the other modalities, as their evolution might be consistent with567
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cancer severity or subtype, or the choice of therapy. Our study is also limited in the number of available568
laboratory variables, as markers that were found informative in previous studies, such as hemoglobin, total569
protein, serum glucose, alkaline phosphatase, or international normalized ratio (41, 4) were not available570
(or not for enough patients) in our data.571

Perhaps surprisingly, we do not see the same drastic increase in performance between Tabular BEHRT and572
M-BEHRT as others have observed in multimodal prediction of breast cancer prognosis when augmenting573
clinical data with imaging data (5, 6), although Text BEHRT leverages medical reports from radiologists or574
cytopathologists, which are based on medical images. Although this could be due to the aforementioned575
limitations of Text BEHRT, this could also be because Tabular BEHRT already achieves much better576
performance than models based solely on static clinical data.577

4.4 M-BEHRT model interpretation points to possible prognostic factors578

The interpretation of M-BEHRT models through the integrated gradients method highlighted that579
Tabular BEHRT relies on well-documented prognostic features such as the age or the NPI (46, 2) to580
predict DFS status. Additionnally, the model uses features that indicate a more aggressive breast cancer581
(number of multidisciplinary meetings, number of consultations, or a second surgical procedure), which582
can not be necessarily be considered as causes of cancer relapse but suggest a more difficult-to-treat cancer.583

Regarding Text BEHRT, the model seems to rely mainly on reports that contain symptoms-related584
information or reports from imagery. When they occur before the first surgery, these information are to be585
expected, as we are studying a cohort of patients treated for breast cancer. However, if they occur after the586
first surgery, these features can indicate further investigations that are warranted by the difficulty to treat587
the primary tumor.588

Let us note however that while deep learning model interpretation is still somewhat limited, it has the589
potential to offer a much more comprehensive interpretation of the roles played by different elements in590
the data, given how rich the data is. Moreover, the features that are highlighted as strongly contributing591
towards one label or the other are only doing so in conjunction with other features, which might be different592
from patient to patient. Moreover, the embedding pooling method that we have used to derive reports593
embeddings from their contents does not help with interpretability, as it does not allow to pinpoint specific594
parts of a medical report. Nevertheless, several potentially interesting text features (such as high mammary595
involution or axillary dissection) have been highlighted for their contribution to M-BEHRT predictions.596
Even though it is not yet clear how these features can be used as prognostic factors and incorporated in a597
model usable in the clinic, survival curves show that they are indeed informative of DFS even taken on598
their own.599

4.5 Challenges of learning from long sequences of rich events600

In our approach, there is a tradeoff between the number of visits that can be considered and the amount of601
information that can be used to describe each visit, because the underlying BERT architecture is limited to602
processing 512 tokens. This number is arbitrary, but constrained by the memory usage of the self-attention603
mechanism. We have found this number to be sufficient for the DFS prediction tasks at hand and the604
available features and modalities. However, this might be too small for other applications, in which case605
one might want to use approaches that approximate the self-attention matrices so as to reduce their memory606
footprint, such as Big Bird (22) or Nyströmformer (23). In the present study, M-BEHRT outperforms both607
NPI and classical ML baselines, suggesting its ability to capture the structure of EHR data.608
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To the best of our knowledge, ours is the first study to use entire free text medical reports (in a language609
other than English) for breast cancer prognosis. There are several limitations to our approach. First, we610
used token embeddings learned on French clinical text that are not specific to breast cancer; it is possible611
that pretraining on breast cancer clinical text could improve the performance of our model. However,612
this requires considerable resources, both in terms of amount of clinical records available and computing613
power. Second, we build medical records embedding by simply pooling all token embeddings of a record,614
which is likely not be optimal for capturing the information contained in a report. Several authors have615
proposed using convolutional neural networks (CNN) or bidirectional long-short term memory architectures616
(Bi-LSTM) on top of token embeddings (20, 47, 48), which typically helps capturing the structure of617
text documents and could be an interesting future direction to explore for this research. Despite these618
shortcomings, our results demonstrate the ability of Text BEHRT to capture relevant information, as it619
performs on par with Tabular BEHRT.620

Finally, M-BEHRT uses a cross-attention module to perform the multimodal fusion between621
Tabular BEHRT and Text BEHRT. This approach allows the contextual integration of information from622
both transformers, i.e, that each model can attend information from the other model, and thus enable a623
better exploitation of the complementarity between inputs. However, this requires that both tabular data624
and text data embeddings have the same size, and forced us to reduce the dimensionality of the embedding625
of sequences of reportsfrom 768 (as provided by DrBERT) to 144 through a linear layer. This may result626
in an additional reduction of available information. However, this still results in a slight improvement of627
overall performance.628

4.6 Conclusion629

Overall, our study highlights the potential to predict DFS using solely longitudinal sequence of medical630
visits and evolution of clinical information and biological measurements. To the best of our knowledge,631
this is the first study predicting breast cancer endpoints from sequences of EHR data, whether considering632
solely multimodal dynamic tabular data, solely the contents of free-text reports, or combining both. Our633
results underscore the usefulness of such data for future research on prognosis modeling, and outline the634
importance of integrating medical information collected over time to gain previously unknown insights635
into the understanding of breast cancer evolution.636
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Supplementary Material to Multimodal BEHRT:
Transformers for Multimodal Electronical Health
Records

1 SUPPLEMENTARY TABLES AND FIGURES

Feature Normal range Mean value ± std missing
CA15-3 (U/ml) N < 30 63.39± 484.44 6 390
LEUK (g/l) 4 < N < 10 6.99± 6.82 2 525
PN (g/l) 1.7 < N < 7 718.85± 1 789.66 9 419
LYMP (g/l) 1.4 < N < 4 289.63± 714.26 9 448
MONO (g/l) 0.2 < N < 1 33.29± 123.59 3 675

Table S1. Normal ranges for the biological features

Features Entire dataset Dataset for DFS at 3 years
Mean ± std N Mean ± std N

Age < 50 58± 12 3 982 56± 12 2 493
≥ 50 11 168 5 596

BC subtype

Luminal 9 979 4 866
TNBC 1 041 642
HER2+/HR+ 681 587
HER2+/HR- 480 415

Grades
I 3 473 1 688
II 5 911 3 057
III 3 119 2 044

Nodes N0 0.93± 2.49 9 463 1.07± 2.74 4 899
N+ 4 045 2 405

Tumor
size
(mm)

Clinical 16.89± 12.70 17.36± 12.97
Pathological 15.04± 12.75 15.63± 12.90

Biological
values

CA 15-3 (U/ml) 63.39± 484.44 8 760 62.85± 535.76 3 826
LEUK (g/l) 6.99± 6.82 12 625 6.90± 7.49 6 419
PN (g/l) 718.85± 1789.66 5 731 976.17± 2007.52 2 385
LYMP (g/l) 289.63± 714.26 5 702 405.84± 820.08 2 373
MONO (g/l) 33.29± 123.59 11 475 37.54± 131.79 5 821

Medical
reports

visits 46± 33 25± 10
reports 62± 50 34± 15
words/report 172± 41 159± 37

Table S2. Descriptive statistics of the data used in this study, for the full cohort of 15 150 patients, as well as the data set of patients uncensored 3 years after
surgery.
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Figure S1. Binarization of biological features into two values, 1 and 2. For each of the 5 biological
features, the dashed red lines delineate the normal range, highlighted in red, and mapped to 2, from the
abnormal range, highlighted in green, and mapped to 1

Therapies Sub-therapies

Surgery

Lumpectomy
Mastectomy
Axillary node dissection
Sentinel node biopsy

Radiotherapy

Axillary irradiation
Internal mammary chain irradiation
Mammary gland/chest wall irradiation
Supra/sub-clavicular irradiation

Hormone therapy
Tamoxifen
Aromatase
LHRH agonist

Anti-HER2 therapy
Trastuzumab
Pertuzumab
Lapatinib

Table S3. List of possible therapies and sub-therapies in our data.
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Figure S2. Institut Curie Therapeutic Protocol

Figure S3. Text preprocessing pipeline.
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N = 859 Meannum_visits = 10 ± 8 N = 610 Meannum_visits = 10 ± 8 

Figure S4. Distribution of the number of tokens per patient trajectory, for the prediction of disease-free
survival 3 years after surgery. 859 samples exceed the maximum sequence length for Tabular BEHRT (512
tokens). This represents an average of 10 visits per patient that are not considered by Tabular BEHRT.
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Figure S5. Precision scores for the Masked Language Model (pre-training of Tabular BEHRT). The
baseline scores are obtained from the MLM ran on shuffled sequences.
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Tabular BEHRT : AUC = 0.75 (0.66 - 0.83)
Random Forests : AUC = 0.69 (0.61 - 0.79)
Logistic Regression : AUC = 0.70 (0.59 - 0.74)
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5 years after surgery classification

Tabular BEHRT : AUC = 0.68 (0.62 - 0.74)
Random Forests : AUC = 0.66 (0.58 - 0.72)
Logistic Regression : AUC = 0.65 (0.56 - 0.67)
SVM : AUC = 0.63 (0.52 - 0.66)
NPI : AUC 0.59 (0.52 - 0.66)

Figure S6. ROC curves for baselines and Tabular BEHRT, for predicting disease-free survival 3 years
after surgery.
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Figure S7. ROC curves for baselines and Text BEHRT, for predicting disease-free survival 3 years after
surgery.
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Figure S8. AUC-ROC of M-BEHRT stratified by NPI, for predicting disease-free survival 3 years after
surgery.

Features Entire dataset Dataset for DFS at 3 years Dataset for DFS at 5 years
Mean ± std N Mean ± std N Mean ± std N

Age < 50
58± 12

3 982
56± 12

2 493
55± 13

1 725
≥ 50 11 168 5 596 3 467

BC subtype

Luminal 9 979 4 866 2 930
TNBC 1 041 642 446
HER2+/HR+ 681 587 482
HER2+/HR- 480 415 330

Grades
I 3 473 1 688 1 016
II 5 911 3 057 1 941
III 3 119 2 044 1 462

Nodes N0
0.93± 2.49

9 463
1.07± 2.74

4 899
1.18± 3.01

3 132
N+ 4 045 2 405 1 597

Tumor
size (mm)

Clinical 16.89± 12.70 17.36± 12.97 17.78± 13.18
Pathological 15.04± 12.75 15.63± 12.90 16.17± 12.94

Biological
values

CA 15-3 (U/ml) 63.39± 484.44 8 760 62.85± 535.76 3 826 75.34± 617.09 2 256
LEUK (g/l) 6.99± 6.82 12 625 6.90± 7.49 6 419 6.75± 3.60 3 916
PN (g/l) 718.85± 1789.66 5 731 976.17± 2007.52 2 385 1105.76± 2093.81 1 365
LYMP (g/l) 289.63± 714.26 5 702 405.84± 820.08 2 373 463.92± 862.37 1 375
MONO (g/l) 33.29± 123.59 11 475 37.54± 131.79 5 821 33.29± 123.59 3 489

Medical
reports

visits 46± 33 25± 10 25± 10
reports 62± 50 34± 15 34± 15
words/report 172± 41 159± 37 159± 37

Table S4. Descriptive statistics of the data sets used in this study, for the full cohort of 15 150 patients, as well as the data set of patients uncensored 3 years and
5 years after surgery.
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Figure S9. Survival plots for the presence/absence of the sentence meaning “breast in partial involution
with less than 50% glandular tissue”, combined with the feature “age” (> 50 vs < 50).
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N = 859 Meannum_visits = 10 ± 8 N = 610 Meannum_visits = 10 ± 8 

Figure S10. Distribution of the number of tokens per patient trajectory, for the prediction of disease-free
survival 5 years after surgery. 610 samples exceed the maximum sequence length for Tabular BEHRT (512
tokens). This represents an average of 10 visits per patient that are not considered by Tabular BEHRT.
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3 years after surgery classification

Tabular BEHRT : AUC = 0.75 (0.66 - 0.83)
Random Forests : AUC = 0.69 (0.61 - 0.79)
Logistic Regression : AUC = 0.70 (0.59 - 0.74)
SVM : AUC = 0.69 (0.58 - 0.76)
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5 years after surgery classification

Tabular BEHRT : AUC = 0.68 (0.62 - 0.74)
Random Forests : AUC = 0.66 (0.58 - 0.72)
Logistic Regression : AUC = 0.65 (0.56 - 0.67)
SVM : AUC = 0.63 (0.52 - 0.66)
NPI : AUC 0.59 (0.52 - 0.66)

Figure S11. ROC curves for baselines and Tabular BEHRT, for predicting disease-free survival 5 years
after surgery.
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3 years after surgery classification

Text BEHRT : AUC = 0.75 (0.68 - 0.81)
Random Forests : AUC = 0.54 (0.45 - 0.62)
Logistic Regression : AUC = 0.60 (0.50 - 0.69)
SVM : AUC = 0.53 (0.43 - 0.59)
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Random Forests : AUC = 0.59 (0.52 - 0.66)
Logistic Regression : AUC = 0.57 (0.50 - 0.64)
SVM : AUC = 0.54 (0.45 - 0.57)

Figure S12. ROC curves for baselines and Text BEHRT, for predicting disease-free survival 5 years after
surgery.
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Random Forests : AUC = 0.67 (0.58 - 0.75)
Logistic Regression : AUC = 0.61 (0.52 - 0.71)
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M-BEHRT : AUC = 0.69 (0.63 - 0.75)
NPI : AUC = 0.59 (0.52 - 0.66)
Random Forests : AUC = 0.64 (0.57 - 0.70)
Logistic Regression : AUC = 0.58 (0.51 - 0.65)
SVM : AUC = 0.52 (0.48 - 0.52)

Figure S13. ROC curves M-BEHRT and baselines, for predicting disease-free survival 5 years after
surgery.
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Text BEHRT : AUC = 0.75 (0.68 - 0.81)
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Figure S14. ROC curves comparing Tabular BEHRT and Text BEHRT against their combined model
M-BEHRT, for the prediction of disease-free survival 5 years after surgery.
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Figure S15. Ablation studies AUC-ROC on the test set for Tabular BEHRT, for the prediction of disease-
free survival 5 years after surgery. We present results for the full model (Tabular BEHRT), then using
only one of the 4 modalities (dNPI, clinical features, biological features, medical visits), two modalities
(dNPI+clinical or biological+visits), then removing one of the 4 modalities. Here “medical records” stands
for features extracted extracted from the medical record headers, that is to say, visit department and
procedure. Performance scores are presented on the test set.
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 In [ ]:Figure S16. AUC-ROC of M-BEHRT stratified by patient age, cancer grade, molecular subtype and node
status, for the prediction of disease-free survival 5 years after surgery.
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Figure S17. AUC-ROC of M-BEHRT stratified by NPI, for predicting disease-free survival 5 years after
surgery.
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Figure S18. AUC-ROC on the test set of Tabular BEHRT, random forests, support vector classifier, and
logistic regression trained on subsets of the training set of increasing sizes (x-axis), for the prediction of
disease-free survival 3 (top) or 5 (bottom) years after surgery.
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Figure S19. AUC scores comparison between M-BEHRT and the baselines for the prediction of disease-
free survival 3 years after the surgery on the test set.
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Supplementary Text to Multimodal BEHRT:
Transformers for Multimodal Electronical Health
Records

1 PREPROCESSING OF FREE TEXT

Removing proper nouns is one of the key step of the preprocessing pipeline. This is important as specific
doctor names may serve as proxy for the DFS classification, for example, when a doctor mostly handles
severe cases. Patient names are already excluded from the reports, which had been anonymized before we
accessed them. The first stage of this process consists in using part-of-speech tagging to remove proper
nouns tags that follow titles such as Dr, M. (“Mr” in English), Mme (“Mrs” in English). However, proper
nouns may appear without a title. We thus further constructed a list of proper nouns to remove from the text.
We first built a list of names of Institut Curie’s health practicioners, obtained through the public directory
of practicioners Cur (Accessed: 2023-01-30) as retrieved in 2023, and therefore only partially matching
practicioners that were involved in the care of patients in the 2005–2012 period covered by our cohort). We
additionally considered surnames given at least 30 times in France from 1891 to 2000 (n=218 912) and first
names given at least 20 times from 1946 to 2022 in France (n=36 964), as provided by Institut National
de La Statistique et des Etudes Econonomiques (INSEE) ( Ins (Accessed: 2023-01-30), INS (Accessed:
2023-01-30)). We then removed from this list the proper names that correspond to disease names, such as
Paget.

One other main difficulty that occur with free-text reports is the high number of typos. To address this
issue, we used the pyspellchecker spell checking algorithm Barus (2023) which identifies, for each word of
the corpus that is not found in a given dictionary, the most likely correct replacement for this presumably
misspelled word. For effective spellchecking, it is crucial to have a rich dictionary that contains medical
jargon. Therefore, we augmented the French vocabulary from OpenSubtitles Lison and Tiedemann (2016)
(implemented by default in pyspellchecker) with the contents of the French open dictionary Usito ush
(Accessed: 2023-01-30), as well as the 3 184 words from a French online medical dictionary Thomsen
(Accessed: 2023-01-30), the CAS corpus of French clinical cases Grabar et al. (2018) which contains over
397 000 word occurences, a list of drug names in French vid (Accessed: 2023-01-30), and two lists of
French medical abbreviations specific to oncology moz (2020); Poletto (2023). If, following this step, any
words from the dictionary remain unidentified, we replaced them with the most likely correct spelling
suggestion from Wikipedia wik (Accessed: 2023-01-30).

2 TEXT BEHRT INTERPRETATION

We choose to analyze the most frequent sequences for the DFS negative cohort that are not found in the
DFS positive cohort. We ended up with the following sequences of words, some of which have been
obtained with the overlapping resulting sequences:

• “sein en involution adipeuse partielle avec contingent glandulaire inferieur a 50”, (breast in partial
adipose involution with less than 50% glandular contingent)

• “Traitement anterieur par hormone de croissance extractible non facteurs de risque de transmission de la
mcj”, (Previous treatment with extractable growth hormone without risk factors for mcj transmission)
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• “[avec] lymphadenectomie axillaire”, (with axillary lymphadenectomy)
• “syndrome de masse”, (mass syndrom)
• “[j1] solumedrol 80mg”, (solumedrol 80mg)
• “lovenox 0 4 ml”, (lovenox 0 4 ml)
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Oncopod – abréviations pour l’oncologie (2020). https://www.mozocare.com/fr/oncopod/
chemotherapy/abbreviations/ (Accessed: 2023-01-30), Mozocare.

Poletto B. Glossaire info cancer (2023). https://www.arcagy.org/infocancer/cms/
glossaire, (Accessed: 2023-01-30).

Wikipédia – l’encyclopédie libre (Accessed: 2023-01-30). https://fr.wikipedia.org.

2

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.18.24312984doi: medRxiv preprint 

https://curie.fr/annuaire-medecins
https://www.insee.fr/fr/statistiques/3536630
https://www.insee.fr/fr/statistiques/7633685?sommaire=7635552
https://www.insee.fr/fr/statistiques/7633685?sommaire=7635552
https://pypi.org/project/pyspellchecker
https://pypi.org/project/pyspellchecker
https://usito.usherbrooke.ca/
https://www.dictionnaire-medical.fr/
https://www.dictionnaire-medical.fr/
https://www.vidal.fr/medicaments.html
https://www.mozocare.com/fr/oncopod/chemotherapy/abbreviations/
https://www.mozocare.com/fr/oncopod/chemotherapy/abbreviations/
https://www.arcagy.org/infocancer/cms/glossaire
https://www.arcagy.org/infocancer/cms/glossaire
https://fr.wikipedia.org
https://doi.org/10.1101/2024.09.18.24312984

