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Synthetic Population Generation with Public Health Characteristics for Spatial Agent-Based 28 

Models 29 

Abstract 30 

Agent-based models (ABMs) simulate the behaviors, interactions, and disease transmission 31 

between individual “agents” within their environment, enabling the investigation of the underlying 32 

processes driving disease dynamics and how these processes may be influenced by policy 33 

interventions. Despite the critical role that characteristics such as health attitudes and vaccination 34 

status play in disease outcomes, the initialization of agent populations with these variables is often 35 

oversimplified, overlooking statistical relationships between attitudes and other characteristics or 36 

lacking spatial heterogeneity. Leveraging population synthesis methods to create populations with 37 

realistic health attitudes and protective behaviors for spatial ABMs has yet to be fully explored. 38 

Therefore, this study introduces a novel application for generating synthetic populations with 39 

protective behaviors and associated attitudes using public health surveys instead of traditional 40 

individual-level survey datasets from the census. We test our approach using two different public 41 

health surveys (one national and the other representative of the study area, Virginia, U.S.) to create 42 

two synthetic populations representing individuals aged 18 and over in Virginia, U.S., and their 43 

COVID-19 vaccine attitudes and uptake as of December 2021. Results show that integrating public 44 

health surveys into synthetic population generation processes preserves the statistical relationships 45 

between vaccine uptake and attitudes in different demographic groups while capturing spatial 46 

heterogeneity at fine scales. This approach can support disease simulations that aim to explore how 47 

real populations might respond to interventions and how these responses may lead to demographic 48 

or geographic health disparities. Our study also demonstrates the potential for initializing agents with 49 

variables relevant to public health domains that extend beyond infectious diseases, ultimately 50 

advancing data-driven ABMs for geographically targeted decision-making. 51 
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Author Summary 52 

In this study, we introduce a new method for generating synthetic populations of individuals or 53 

“agents” with characteristics that include health protective behaviors and attitudes, which are 54 

crucial for modeling disease spread. Traditional methods for parameterizing agents often overlook 55 

the complex relationships between demographic factors and health behaviors like vaccination. 56 

Additionally, detailed spatial data capturing these behaviors are limited, meaning agent behaviors 57 

are more uniform across geographic space. By fitting public health surveys with spatially aggregated 58 

census data, we created more realistic agent populations for disease spread simulations. We 59 

focused on Virginia, U.S. and generated a population with COVID-19 vaccine uptake and attitudes as 60 

of December 2021. Our results show that this approach captures the statistical relationships 61 

between demographic variables and vaccine uptake, along with the spatial variation in these 62 

behaviors. We also show that using national survey data is comparable to using local survey data 63 

representative of Virginia collected in 2021. The approach is flexible so that it can be applied to 64 

various public health studies beyond just infectious diseases. Our work highlights the potential of 65 

public health surveys for enhancing synthetic population generation, offering a valuable approach 66 

for initializing models with more realistic populations to explore public health challenges. 67 

Keywords: synthetic population generation; agent-based models; public health applications; 68 

infectious disease simulations; vaccine uptake; vaccine attitude; COVID-19 69 

1. Introduction 70 

Agent-based models (ABMs) are commonly used to simulate the spread of infectious diseases 71 

caused by viruses, including COVID-19 virus (1–4), influenza (5,6), and the chickenpox virus (7,8). 72 

Unlike traditional epidemiological models, such as the Susceptible-Infectious-Recovered (SIR) 73 

model and its variants, ABMs use a bottom-up approach that simulates the behaviors, interactions, 74 
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and subsequent transmission of disease between individual “agents” within their environment 75 

(9,10). This approach allows for the investigation of the underlying processes driving disease 76 

dynamics and how these processes may be influenced by policy interventions (11).  77 

Given the important role of demographic characteristics such as age and income (12), household 78 

structures (13–15), activity patterns and co-location (16) in disease dynamics, most ABMs of disease 79 

spread attempt to incorporate these attributes when initializing agents. For example, children often 80 

participate in activities like attending school or recreational events, where they interact with many 81 

other individuals and are more likely to contract pathogens that can then be transmitted to parents 82 

or grandparents living in the same household (17). While some studies use random functions or fixed 83 

values to assign agent attributes, population synthesis approaches can utilize spatially aggregated 84 

census data and individual-level survey data (18) from sources like household travel surveys (19) or 85 

census microdata (20) to create a complete agent population with relevant attributes, including 86 

household structures, thus accurately capturing these transmission pathways within the model. 87 

Disease dynamics are also shaped by the uptake of protective behaviors by the population, such as 88 

wearing masks, getting vaccinated, and staying home when sick, which can reduce the likelihood of 89 

negative health outcomes (21). In addition to social norms and physical or financial barriers, an 90 

individual’s attitudes, beliefs, and perceptions significantly affect their decision to engage in 91 

protective behaviors. Although traditionally overlooked in ABMs of disease spread (22–24), the 92 

COVID-19 pandemic spurred on a widespread effort to better represent health behaviors and their 93 

dynamics into epidemiological models (25–28). This paper argues that a synthetic population 94 

generation approach capable of initializing agent populations with a realistic set of attitudes and 95 

protective behaviors can support such ABMs that aim to simulate behavior dynamics influenced by 96 

these attributes. 97 
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A typical approach in current ABMs is that protective behaviors or related attitudes are assigned to 98 

agents with some probability, either based on a hypothetical scenario or based on aggregate data 99 

measuring the real characteristics of the population. For example, Rafferty et al. (7) use an ABM to 100 

simulate the impact of dose timing, coverage, and waning of immunity on chickenpox disease 101 

outcomes in Alberta, Canada. They initialize the population with vaccination attitudes based on 102 

aggregate data (65% acceptance, 30% hesitant, 5% reject). However, this approach ignores the 103 

statistical relationships between vaccine attitudes and other individual demographic, cultural, or 104 

political characteristics, that synthetic population generation approaches aim to preserve.  105 

In another example, Pandey et al. (29) use an ABM to examine the effect of bivalent boosters on 106 

COVID-19 outcomes, assuming a coverage of 59%, 51%, 38%, 54%, and 75% for age groups 5-11, 12-107 

17, 18-49, 50-64 and 65+, respectively, informed by historical influenza data. While their model more 108 

accurately captures the relationship between booster coverage and age, whereby age 65+ are more 109 

likely to accept a booster, the study assumes spatially uniform uptake across New York City. This 110 

assumption of uniformity is common, especially since health data are often not available at 111 

granularities finer than county or state, meaning that spatial heterogeneities can only be captured at 112 

these levels.  While numerous ABMs have been developed to simulate the adoption of protective 113 

behaviors or the spread of beliefs, attitudes, perceptions towards vaccines over space and time, the 114 

use of synthetic population approaches to initialize an agent population with these characteristics 115 

has yet to be explored.  116 

Therefore, the purpose of this study is to investigate how synthetic population generation approaches 117 

can be expanded to create agent populations with attitudes and initial adoption of protective 118 

behaviors, along with their spatial distributions. Specifically, we aim to replace datasets commonly 119 

used in synthetic population generation that provide individual-level data from samples with coarser 120 

geographic resolution, such as the Census Bureau’s Public Use Microdata Sample (PUMS) (20), with 121 
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public health surveys. Using COVID-19 as a case study, we explore the potential for this approach by 122 

generating a synthetic population representing Virginia, U.S. and their vaccine attitudes and uptake 123 

as of December 2021. We obtain real vaccine uptake for Virginia at the CT level for the same point in 124 

time to validate our results, comparing the populations generated by two different public health 125 

surveys: one national, and the other representative of Virginia. 126 

2. Background 127 

With the growing use of ABMs across disciplines such as economics, geography and biology (30), a 128 

wealth of synthetic population generation methods have been developed to create agent 129 

populations. These populations serve as simplified microscopic representations of the targeted 130 

population, reflecting individuals and their socio-demographic characteristics relevant to the study 131 

(31). The emergence of synthetic population generation approaches is largely due to several factors, 132 

including privacy restrictions that prevent access to detailed individual-level data at fine spatial 133 

scales, the ability of ABMs to simulate social dynamics and behaviors which are connected with 134 

individual attributes, and advancements that have made ABMs more data-informed and effective as 135 

predictive tools for decision support (32,33).  136 

Synthetic population generation methods vary in complexity and are broadly categorized into two 137 

main approaches: Combinatorial Optimization (CO) and Synthetic Reconstruction (SR). CO focuses 138 

on replicating real entities by reweighting an existing dataset to match individual profiles. In contrast, 139 

SR, which is more commonly used and well-established, generates populations through random 140 

sampling from known distributions of demographic characteristics or estimated joint distributions 141 

using deterministic re-weighting algorithms like Iterative Proportional Fitting (IPF) (31,34). Given the 142 

extensive literature on population synthesis, we provide only a brief background to support 143 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.18.24312662doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.18.24312662
http://creativecommons.org/licenses/by/4.0/


7 

 

understanding of our proposed method. For a comprehensive review of population generation 144 

approaches for ABMs, see Chapuis et al. (31). 145 

IPF is the most widely used approach for generating synthetic populations due to its long-standing 146 

presence and reliability in literature, computational efficiency, and its methodological simplicity (35). 147 

The algorithm adjusts each cell in an n-dimensional matrix, which represents the distribution of 148 

attributes, based on known marginal controls. It starts with sample data to initialize the matrix and 149 

then iteratively updates the cells to match the specified contingency dimensions (36). Originally 150 

introduced by Deming and Stephan (37) to adjust contingency tables to fit with known marginal 151 

distributions, IPF has been extensively refined by researchers to improve its application for 152 

population synthesis. For instance,  Beckman et al. (38) first established the methods for using IPF 153 

with PUMS data, where joint distributions of household attributes were derived by integrating sample 154 

frequency tables from PUMS data with marginal distributions from Census Summary Files, and then 155 

randomly selecting households based on these estimates to create a synthetic population.  156 

Synthetic population generation approaches, such as those using IPF to initialize an agent population 157 

within a spatial ABM, typically combine spatially aggregate and disaggregated individual-level data 158 

to statistically match both the joint distributions found in the individual-level data with the marginal 159 

totals in the spatially aggregate data (18). Spatially aggregate data captures marginal totals of 160 

populations across a set of categories such as gender, age, and race within different geographic 161 

zones (e.g. census tracts, dissemination areas) in a study area. This data allows for analysis of 162 

populations and their spatial distributions with relatively fine granularity while preserving privacy by 163 

presenting only marginal totals (e.g., total population aged 65+, or total population that is white) 164 

rather than joint distributions across multiple attributes (e.g., total population aged 65+ and white). 165 

Disaggregated individual-level survey data contains samples of anonymized records of real 166 

individuals and their demographic characteristics. Although this data captures the joint distributions 167 
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among individual attributes, it represents only a small sample from a large geographic area (e.g., a 168 

state or the entire country), which protects individual identities and prevents inference of the spatial 169 

distribution of the sample population. Examples of such datasets include PUMS in the U.S., and 170 

similar datasets available in other countries, such as Public Use Microdata Files (PUMFs) in Canada.  171 

Synthetic population generation, particularly SR approaches, involves both fitting and allocation. 172 

During the fitting stage, IPF is used to align individual-level sociodemographic data with spatially 173 

aggregated constraints, generating fractional weights for entities such as households or individuals 174 

in each geographic zone. Because IPF outputs fractional weights, allocation is required to produce a 175 

discrete set of agent counts that replicates individuals (32). The fractional weights are converted into 176 

integer weights through a process known as ‘integerisation’, which can be performed using various 177 

approaches such as simple rounding, thresholding, proportional probabilities, or truncate, replicate, 178 

sample (TRS) (see Lovelace and Ballas (39) for a review on these methods). ‘Integerisation’ is 179 

followed by expansion, where each individual is represented as a record with a geographic zone, and 180 

the matching attributes for that individual from the original survey dataset is carried over (39).  181 

IPF has been used to create agent populations in various spatial ABMs, such as those for disaster 182 

management and recovery (40), though it is most commonly used in urban and transportation 183 

modeling. However, in the context of spatial ABMs for infectious disease spread, there are few 184 

dedicated population synthesis methods or studies utilizing well-established techniques such as IPF 185 

(41). This is likely because ABMs take significant time to develop and are often designed for specific 186 

objectives, such as understanding the impact of policy guidelines and health behaviors on infectious 187 

disease dynamics (42–44), proposing general or behavioral frameworks for epidemiological models 188 

(45,46), or forecasting disease transmission (48,49). This gap is particularly significant as these 189 

models are valuable for informing policy, yet generating populations with detailed individual 190 

characteristics and health behaviors often remains overlooked, despite their critical role in 191 
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influencing disease transmission. To our knowledge, no specific synthetic population generation 192 

method for spatial ABMs of disease spread has yet been developed to capture both individual 193 

attitudes and initial adoption of protective behaviors, along with the spatial heterogeneities in these 194 

characteristics. Therefore, there is a need for a flexible synthetic population generation approach 195 

that accurately initializes agent populations with attitudes, beliefs, perceptions and initial adoption 196 

of protective behaviors, as well their spatial distributions. By proposing a targeted population 197 

synthesis method that derives these individual attributes from public health surveys, this approach 198 

can be adapted for various public health applications, including infectious diseases, smoking, and 199 

other health challenges, across different scales and locations. 200 

3. Materials and Methods 201 

Our approach is presented in Figure 1. First, individual-level survey data and spatially aggregate data 202 

are used as input data for the population synthesis of agents with demographic characteristics. Our 203 

approach extends traditional synthetic population generation approaches by allowing for 204 

vaccination status and attitudes to be carried over at the replication stage. We compare our 205 

approach with a null model, which uniformly assigns vaccine uptake likelihood based on county level 206 

vaccine uptake data. Our validation involves comparing the vaccination rates in the synthetic 207 

population to those in the real population for each census tract. This comparison is conducted for 208 

populations generated using two different public health surveys (a local survey and a national survey) 209 

and their respective null models. The data and the methods are described in detail in the following 210 

sections. The code written in the R scripting language and the data for the synthetic population 211 

generation approach and the validation is available at the GitHub repository 212 

https://github.com/evonhoene/Population-Generation-for-Public-Health-ABMs. 213 
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 214 

Figure 1. Overview of the approach used in the study. 215 

3.1. Input Data 216 

Given that IPF is a well-established, efficient, and straightforward method for synthetic population 217 

generation, we use it to ensure the flexibility of our proposed approach for various study applications. 218 

This method requires both spatially aggregated demographic data and individual-level survey data. 219 

For the spatially aggregated data, we use census tract (CT) data from the Census Bureau’s American 220 

Community Survey (ACS) (50) that captures marginal totals for sociodemographic variables. We 221 

focus on gender, race, age, education, and income variables for individuals aged 18 and over, as 222 

these factors significantly influence COVID-19 vaccine uptake (51). While the ACS provides marginal 223 

totals for individuals across different categories of gender, race, age, and education, income data is 224 

reported as the percentage of households within each CT that fall into specific income brackets. To 225 
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estimate individual income levels, we calculate the proportion of the total population aged 18+ that 226 

would fall into each income bracket, assuming a household size of 1. We use 2021 data specifically 227 

for Virginia CTs and exclude records with missing or zero values for any variable, resulting in a final 228 

dataset of N = 2162. Descriptive statistics for the variables collected from the ACS dataset are 229 

presented in Table 1. 230 

Table 1. Descriptive statistics summarizing the demographic distribution within Virginia Census Tracts 231 

Variable: Descriptor Mean % Minimum % Median % Maximum % 

Gender: Male 48.70285 0 48.73321 100 
Gender: Female 51.29715 0 51.26679 100 
Race/Ethnicity: White 63.14219 0 66.38809 100 
Race/Ethnicity: Black 19.90094 0 12.77431 100 
Race/Ethnicity: Hispanic 7.914201 0 5.032508 80.2409 
Race/Ethnicity: Other 9.065319 0 5.853839 62.07447 
Age: 18-29   20.41858 0 17.94349 98.78631 
Age: 30-49 33.61571 0 33.13478 71.48159 
Age: 50-64   25.43375 0 25.9862 100 
Age: 65 and over   20.53196 0 19.91834 100 
Education: Bachelor’s degree or higher 17.29956 0 14.93085 53.30806 
Education: No Bachelor’s degree 82.70044 46.69194 85.06915 100 
Income: Less than $25,000  14.95912 0 11.69449 100 
Income: $25,000 - $49,999 17.3773 0 17.09721 63.68978 
Income: $50,000 - $99,999 28.74916 0 28.9908 100 
Income: Greater than $100,000 39.18442 0 35.24403 100 

 232 

Our approach replaces the traditional individual-level samples captured by censuses used in 233 

synthetic population generation (e.g. the PUMS in the US) with public health surveys. We compare 234 

the results of our approach using two surveys, one that is one that is representative of Virginia and 235 

one that is national and publicly available, as follows: 236 

1) Local Survey: This survey, collected by researchers is representative of the Commonwealth 237 

of Virginia and includes data on demographics as well as beliefs, attitudes, and perceptions 238 

related to COVID-19 and protective behaviors. The sample was recruited by Climate Nexus 239 

Polling (August 15-31, 2021), using several market research panels. Participants were 240 
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recruited using stratified sampling methods. Compensation for participants depended on 241 

the specific market research panel and respondents' preferences (e.g., cash, gift cards, 242 

reward points). Sampling weights accounted for small deviations from the pre-selected 243 

census parameters. The dataset includes N = 3,528 respondents. The descriptive statistics 244 

for the data are provided in Table 2.  De-identitied data are available upon request. This 245 

project to collect the local survey data was considered exempt by the George Mason 246 

University IRB (IRB 1684418-3). 247 

2) Household Pulse Survey (HPS): This publicly available national survey, obtained from the US 248 

Census Bureau (52), measures the impact of emergent social and economic issues on 249 

households across the country, including COVID-19 vaccinations. The HPS also collects data 250 

on core demographic characteristics from respondents aged 18 and older. We use data from 251 

HPS Week 41, covering December 29, 2021, to January 10, 2022. Records missing data for 252 

one or more variables were removed (e.g., vaccine decision, household income), resulting in 253 

a total of N = 63,180 respondents. Given the large size of the HPS dataset, we use stratified 254 

sampling to reduce the sample to 3,500 to match the size of the local survey. As described in 255 

Table 2, the HPS data shows a bias, with 91.19% of respondents reporting being vaccinated. 256 

At the same time, publicly available county-level vaccination data from the CDC (53) 257 

indicates that only 50.2% of Virginians were vaccinated by December 30, 2021. To correct 258 

this bias in our stratified sample of 3,500 records, we adjust so that 50% of the sample is 259 

vaccinated while preserving the representation of all other variables.  260 

 261 

 262 

 263 
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Table 2. Comparative distribution of respondent characteristics from the individual-level surveys 264 

Variable: Descriptor % Respondents from HPS % Respondents from Local Survey  

Gender: Male 41.28 44.76 
Gender: Female 58.72 55.24 
Race/Ethnicity: White 75.06 74.12 
Race/Ethnicity: Black 7.01 10.15 
Race/Ethnicity: Hispanic 9.16 10.86 
Race/Ethnicity: Other 8.78 4.88 
Age: 18-29   9.15 16.10 
Age: 30-49 36.93 39.12 
Age: 50-64   29.15 20.29 
Age: 65 and over   24.76 24.49 
Education: Bachelor’s degree or higher 41.86 36.96 
Education: No Bachelor’s degree 58.14 63.04 
Income: Less than $25,000  11.74 

52.15 
Income: $25,000 - $49,999 19.72 
Income: $50,000 - $99,999 31.03 28.66 
Income: Greater than $100,000 37.51 19.19 
Vaccination: Yes  91.19 65.33 
Vaccination: No 8.81 34.67 

 265 

Each survey is used to generate a separate set of synthetic population. In the surveys, while some of 266 

the individual-level data is measured on a continuous scale (e.g. age), other data are measured 267 

categorically, which results in varying levels of detail between the two synthetic populations, 268 

depending on the questions asked. For example, when asking about income, the local survey allows 269 

respondents to select <$50,000, $50,000-$99,999, and >$100,000. On the other hand, the HPS 270 

allows respondents to select <$25,000 and $25,000-$49,999, $50,000-$99,999, and >$100,000, 271 

allowing for slightly more detailed agent characteristics related to income. In any case, to be used in 272 

the IPF process, the data measured by the individual-level survey must be able to be fall under the 273 

categories in the spatially aggregated ACS data. This was possible for attributes including gender, 274 

race and ethnicity, age, education, and income. Descriptive statistics for the variables captured by 275 

the individual-level surveys and their categories from the two survey datasets are outlined in Table 2. 276 
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Our validation approach uses CT data capturing marginal totals for real vaccine uptake aged 12+ in 277 

Virginia as of December 30, 2021. This data is not publicly available and was acquired by request 278 

from the Virginia Department of Public Health. The department has since scaled down its operations, 279 

and this data is no longer accessible, even upon request. The vaccine uptake data is available for 280 

1,601 CTs for which we generate a population. Furthermore, 9 records indicated that vaccine uptake 281 

was greater than 100% and were removed. As such our validation only focuses on CTs where data is 282 

available, and vaccine uptake is less than or equal to 100% (N=1592). 283 

3.2. Population Synthesis 284 

Synthetic population generation approach for public health. We use IPF to generate 285 

approximately 6 million agents representing the population of Virginia aged 18 and over. This includes 286 

generating one population based on the HPS and another using the local survey. Our approach is 287 

detailed in Figure 2. IPF computes a weight for every individual in the survey based on how well their 288 

characteristics represents the age, gender, race, income, and education distributions found in the CT 289 

population. These weights are then processed using the TRS ‘integerisation’ method (39), which 290 

involves truncating all weights to integers and using these as the counts of each individual type in the 291 

zone, followed by sampling to achieve the correct population size based on the probabilities 292 

corresponding to the decimal weights. Simply, this approach converts the weights to integers that 293 

describe how many times that individual respondent in the survey should be replicated as an agent 294 

in the CT. This process is repeated for each CT in the study area. Following this, expansion is 295 

conducted to create the final dataset, where each record corresponds to an individual and their CT. 296 

By replacing the PUMS with the public health surveys, the demographic variables and every other 297 

variable captured by the surveys including a COVID-19 vaccination status as well as attitudes, 298 

perceptions, and beliefs related to vaccine are carried over in the sampling and replication stage. 299 
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 300 

 301 

Figure 2. Overview of the synthetic population generation approach for public health. 302 

 303 

 304 

Null model. We compare the results of our public health synthetic population generation approach 305 

with a null model that serves as a baseline. Two distinct populations were generated using the null 306 

model, corresponding to the HPS and local survey datasets. With the null model, the IPF method fits 307 

the individual level demographic data from the surveys with the CT data, creating a population of 308 

agents with age, gender, race, income, and education characteristics for each CT in Virginia. 309 

However, since vaccine uptake information is only publicly available at county-level, the null model 310 

uses this data to impose vaccination uniformly on agents in the same county. For example, as of 311 

December 30, 2021, 84.5% of individuals aged 18+ living in Fairfax County were vaccinated (53). 312 

Therefore, all agents generated for Fairfax County in the null model are assigned a vaccination 313 
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likelihood of 84.5%. This is a common approach in ABM to initialize agents with health variables such 314 

as vaccine uptake.  315 

Validation. We compare the spatial and statistical patterns of the simulated vaccine uptake with the 316 

observed vaccine uptake percentage at the CT level and with the individual level survey data for the 317 

same time period. Although the population is generated for all CTs in the study area, validation is only 318 

possible for CTs where real vaccine uptake data is available and where vaccine uptake is less than or 319 

equal to 100%. 320 

4. Results 321 

We evaluate the observed and simulated percentages of gender, race, age, education, income, and 322 

vaccine status variables for Virginia CTs (N = 1,592) in the populations generated using the HPS and 323 

the local survey, using the following quantitative measures: Pearson’s correlation coefficient (r), 324 

coefficient of determination (r²), root mean squared error (RMSE), and mean absolute error (MAE).  325 

Pearson’s correlation coefficient measures the strength and direction of the linear relationship 326 

between two variables. The coefficient of determination is the square of this coefficient, providing a 327 

quantitative measure of how well one variable explains another. This metric ranges from 0 to 1, where 328 

1 represents a perfect fit and values near 0 indicate little to no association. In this context, r² assesses 329 

how closely the simulated individual characteristics, aggregated by census tract, align with the 330 

actual census tract demographic data. Since the IPF approach is designed to fit individual-level data 331 

to the marginal totals in census tract data, it is unsurprising that the values of r and r² for gender, race, 332 

age, education, and income are very high for both surveys. Because vaccine uptake is typically 333 

unavailable at the census tract level and cannot be directly incorporated into the IPF, our approach 334 

"carries over" individual vaccine status along with their attitudes, beliefs, and perceptions during the 335 

sampling and replication stage (see Figure 2).  336 
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We find that combining IPF with either of the public health surveys allows us to initialize agents with 337 

COVID-19 vaccination status in a way that reasonably reflects the real population. The Pearson 338 

correlation coefficient and the coefficient of determination for vaccine uptake evaluating the 339 

populations generated from both surveys are moderately high (see Table 3). This is visually depicted 340 

in Figure 3, where each scatterplot point represents one of the 1,592 Virginia census tracts, with the 341 

x-axis showing the observed percentage of vaccine uptake and the y-axis showing the percentage 342 

within the synthesized population. In general, within the simulated population using the HPS with 343 

IPF, census tracts with higher real vaccination rates also show higher proportions of vaccinated 344 

synthetic individuals, with a moderate positive correlation (r = 0.75, r2 = 0.56, Figure 3A). A similar 345 

pattern emerges in the simulated population from the local survey (r = 0.72, r2 = 0.51, Figure 3B). 346 

Additionally, when comparing the count of simulated vaccinated individuals in each census tract to 347 

the actual count, we find a stronger positive correlation for the HPS dataset (r = 0.91, r2 = 0.83, Figure 348 

3C)  and the local survey dataset (r = 0.88, r2 = 0.77, Figure 3D). However, this is largely a reflection of 349 

how well the IPF simulates the total population in each census tract, as larger populations naturally 350 

lead to more vaccinated individuals. 351 

RMSE, measured in the same units as the original data, indicates how closely a simulated population 352 

matches the actual census tract (CT) data, with lower values reflecting a better fit and higher values 353 

signaling greater discrepancies. As expected, the RMSE values are low for gender, race, age, 354 

education, and income. However, the RMSE for the observed and simulated percentage vaccination 355 

rates across CTs is 18.28 for the HPS dataset and 13.28 for the local survey dataset. These values 356 

suggest that, on average, the simulated percentage of vaccinated individuals differs from the actual 357 

percentage by 18.28% and 13.28%, indicating a moderate level of inaccuracy.  358 

Similarly, MAE measures the average magnitude of errors between predicted and observed values by 359 

averaging the absolute differences, without considering their direction. Unlike RMSE, MAE does not 360 
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square the errors, making it less sensitive to large deviations and more robust to outliers. MAE values 361 

are consistently low for gender, race, age, education, and income variables in both synthetic 362 

populations, as IPF effectively fitted these variables to the CT data. For vaccine uptake percentages, 363 

MAE values for the synthesized populations are 15.70 for the HPS dataset and 10.65 for the local 364 

dataset, which are comparable to the RMSE values. This indicates that the simulated vaccine uptake 365 

percentages differ from actual values by 15.70% and 10.65%, respectively, and the similarity 366 

between MAE and RMSE values suggests that large deviations do not disproportionately impact the 367 

average error. Overall, both RMSE and MAE suggest that the simulated vaccine uptake percentages 368 

from our synthetic population generation approach are reasonably close to the observed values 369 

across Virginia census tracts. Furthermore, the RMSE and the MAE are smaller for the local survey 370 

dataset, possibly since the dataset is representative of Virginia rather than a national dataset. In 371 

general, the synthetic census tracts tend to have a smaller proportion of vaccinated individuals than 372 

compared to the real population. This may be attributed to the fact that the validation dataset 373 

captures vaccination age 12+ and we simulate agents age 18+. 374 

In contrast, the null model shows significantly poorer performance in initializing agents realistically 375 

with vaccine decisions, as evidenced by a Pearson correlation coefficient of 0.298 and a coefficient 376 

of determination of 0.089. These low values indicate a weak relationship between the simulated and 377 

observed vaccine uptake percentages. Additionally, the null model's RMSE of 30.357 and MAE of 378 

24.008 are considerably higher compared to our proposed approach. These error metrics suggest 379 

greater deviations between the simulated and actual vaccine uptake data in CTs, demonstrating that 380 

the null model fails to accurately reflect the real distribution of vaccine uptake.  This comparison 381 

highlights the limitations of the null model in capturing vaccination behaviors when initializing an 382 

agent population and emphasizes the improved performance of our synthetic population generation 383 

approach using public health surveys. 384 
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 385 

Table 3. Evaluation metrics comparing observed and simulated percentages of demographic and vaccine status 386 
variables across Virginia Census Tracts 387 

Variable: Descriptor 

HPS Dataset Local Survey Dataset 

Pearson’s r r2 RMSE MAE 

Pearson’s 
r r2 RMSE MAE 

Gender: Male 0.9899 0.9799 0.7784 0.5867 0.9855 0.9712 0.9450 0.7307 
Gender: Female 0.9899 0.9799 0.7784 0.5867 0.9855 0.9712 0.9450 0.7307 

Race/Ethnicity: White 0.9991 0.9981 1.3229 1.0064 0.9985 0.9969 1.5779 1.2491 
Race/Ethnicity: Black 0.9993 0.9987 1.0111 0.6690 0.9990 0.9980 1.1379 0.8145 

Race/Ethnicity: Hispanic 0.999 0.9980 0.4696 0.3461 0.9989 0.9978 0.4965 0.3769 
Race/Ethnicity: Other 0.9982 0.9965 0.9257 0.5872 0.9985 0.9969 0.5381 0.3612 

Age: 18-29 0.9982 0.9963 0.758 0.5076 0.9830 0.9663 2.9901 2.3066 
Age: 30-49 0.9948 0.9896 0.9428 0.7392 0.9625 0.9264 3.4143 2.5824 
Age: 50-64 0.9945 0.9891 0.7982 0.6127 0.9927 0.9854 0.8424 0.6546 

Age: 65 and over 0.9928 0.9857 1.2256 0.9309 0.9963 0.9926 0.7648 0.5728 
Education: Bachelor’s degree or 

higher 
0.9969 0.9938 1.7922 1.5619 0.9971 0.9941 2.1185 1.8389 

Education: No Bachelor’s 
degree 

0.9969 0.9938 1.7922 1.5619 0.9971 0.9941 2.1185 1.8389 

Income: Less than $25,000 0.9992 0.9983 0.5555 0.4177 
0.9984 0.9967 1.3171 1.0332 

Income: $25,000 - $49,999 0.9984 0.9967 0.6097 0.4674 
Income: $50,000 - $99,999 0.9974 0.9948 0.7428 0.5484 0.9966 0.9933 0.8222 0.6086 

Income: Greater than $100,000 0.9994 0.9988 1.0354 0.7246 0.9993 0.9985 1.1931 0.8400 
Vaccine Uptake: Received  

 
0.7489 0.5608 18.2780 

15.697
0 

0.7151 0.5113 13.2810 10.6457 

 388 

 389 

 390 
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 391 

Figure 3. Scatterplots comparing observed and simulated vaccine uptake within Virginia Census Tracts: A) 392 
percentage from the HPS, B) count from the HPS, C) percentage from the local survey, D) count from the local 393 
survey.  394 

Our approach effectively preserves the real-world statistical relationship between 395 

sociodemographic variables and vaccine uptake. This is demonstrated by comparing logistic 396 

regression coefficients that explain the relationship between these variables and vaccine uptake 397 

across the original survey populations, the synthetic population generated with our approach, and 398 

the null model. As shown in Table 4, in the HPS dataset, real individuals who are white, male, or low-399 

income (less than $25,000) have lower vaccination rates (β = -0.2277, -0.0595, -0.5776, respectively), 400 

while those who are 65 or older and hold a bachelor’s degree or higher (β = 1.1670, 1.2429, 401 
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respectively) are more likely to be vaccinated. The direction and the relative strength of these 402 

associations are also reflected in the synthetic population generated using the HPS dataset.  In 403 

contrast, the null model fails to capture these underlying statistical relationships. For example, in the 404 

synthetic population created by the null model, agents aged 65+ are less likely to be vaccinated (β = 405 

-0.11). Similarly, while a bachelor’s degree or higher is strongly associated with increased vaccine 406 

uptake (β = 1.24) in the HPS data, the null model results in a weaker association between education 407 

attainment and vaccine uptake (β = 0.24). 408 

Similar results are presented with the synthetic population generated from the local survey dataset 409 

and the corresponding population from the null model (Table 5). In the local survey, individuals who 410 

are either aged 65 and older, have a bachelor's degree or higher, or with high income (greater than 411 

$100,000) are more likely to be vaccinated (β = 1.0524, 0.6248, 0.4058, respectively), while 412 

individuals who are white are less likely to be vaccinated (β = -0.1511). These associations are 413 

reflected in the synthetic population generated using our approach. However, the null model does 414 

not capture the strong positive relationship between age 65+ and vaccine uptake observed in the 415 

local survey dataset (β = 1.0524), with the coefficient becoming negative and close to zero (β = -416 

0.0841).   417 

It is important to note that the logistic regression examples illustrate how the synthetic populations 418 

generated with our public health approach are compared to the real populations from the surveys. 419 

Variables for comparison were selected based on their significance in the original surveys, while 420 

gender was excluded from the local survey dataset comparison due to its lack of significance at a 421 

90% confidence level. While the strength and direction of the association between 422 

sociodemographic variables and vaccine uptake were preserved in the synthetic populations from 423 

both the HPS and local survey datasets, the coefficient of determination (R2) for the logistic 424 

regression also remained relatively consistent, indicating a similar fit between sociodemographic 425 
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variables and vaccine uptake. Specifically, the R2 was 0.08 for the HPS dataset and 0.11 for the 426 

corresponding synthetic population, while it was 0.05 for the local survey dataset and the 427 

corresponding synthetic population. In contrast, the null models produced a much lower R2 of 0.01.  428 

Table 4. Coefficients from logistic regression models describing the relationship between demographic variables 429 
and vaccine uptake from the HPS, along with the synthetic population and null model generated from the HPS. 430 
Significant coefficients are indicated with an asterisk (*) at the 90% confidence level (p-value < 0.10).  431 

Variable: Descriptor 
HPS Data: R2 = 0.08 

Coefficient β 
Synthetic Population: R2 = 0.11 

Coefficient β 
 Null Model: R2 = 0.01 

Coefficient β 
Intercept   1.8615* - 0.3245* - 0.2365* 
Gender: Male - 0.0595* - 0.1872*   0.0025 
Race/Ethnicity: White - 0.2277* - 0.2758* - 0.2761* 
Age: 65 and over   1.1670*   1.4072* - 0.1128* 
Education: Bachelors or Higher   1.2429*   1.3435*   0.2357* 
Income: $25,000 or less - 0.5776* - 0.8446* - 0.3071* 

 432 

Table 5. Coefficients from logistic regression models describing the relationship between demographic variables 433 
and vaccine uptake from the local survey, the synthetic population generated from the local survey, and the null 434 
model generated from the HPS. Significant coefficients are indicated with an asterisk (*) at the 90% confidence level 435 
(p-value < 0.10); Gender was not included due to its insignificance (p-value greater than 0.10) in the local survey 436 
dataset. 437 

Variable: Descriptor 
Local Data: R2 = 0.05 

Coefficient β 
Synthetic Population: R2 = 0.05 

Coefficient β 
 Null Model: R2 = 0.01 

Coefficient β 
Intercept   0.2341*   0.4020* - 0.4055* 
Race/Ethnicity: White - 0.1511* - 0.3036* - 0.2964* 
Age: 65 and over   1.0524*   1.1722* - 0.0841* 
Education: Bachelors or Higher   0.6248*   0.3839*   0.1410* 
Income: Greater than 
$100,000 

  0.4058*   0.6669*   0.3703* 

 438 

 439 
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 440 

 441 

Figure 4. Clusters and outliers of vaccination uptake in Virginia Census Tracts: A) observed, B) null model, and C) 442 
synthesized population with HPS data, and D) synthesized population with local survey data. 443 
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Figure 4 illustrates the spatial heterogeneity of vaccination uptake across the 1,592 census tracts for 444 

which data was available for both real and synthetic populations. In these maps, a “High-High 445 

Cluster” (light pink) indicates that census tracts have high vaccine uptake and are surround by 446 

counties with similarly high vaccine uptake. In contrast, a “Low-Low Cluster” (light blue) represents 447 

census tracts with low vaccine uptake and are surrounded by counties also with low vaccine uptake. 448 

Outlier census tracts are identified as “High-Low Outliers” (bright red), where census tracts with high 449 

uptake are surrounded by those with low uptake, or “Low-High Outliers” (bright blue), where census 450 

tracts with low uptake are surrounded by those with high uptake. Census tracts without a significant 451 

relationship to their neighbors are shown in light yellow, while those with no population or vaccine 452 

data are in grey. 453 

The observed vaccine uptake by December 2021 is mapped in Figure 4A. Generally, census tracts in 454 

the western part of Virginia show relatively low vaccine uptake. Clusters of tracts with high vaccine 455 

uptake are found in Northern Virginia, including Fairfax, Prince William, Loudoun, and Arlington 456 

Counties. Other high uptake clusters appear in the central part of the state, such as Albemarle 457 

County, which surrounds Charlottesville, and Hanover County, particularly in census tracts west of 458 

Richmond. The rest of Virginia exhibits mixed uptake rates, leading to the formation of outliers. These 459 

outliers are scattered throughout the state, with many High-Low outliers concentrated in larger 460 

areas, such as southeast of the Richmond metropolitan area, around Hampton Roads, and in 461 

smaller regions near major cities like Harrisonburg and Forest. 462 

Generally, the population generated using the null model approach captures the spatial 463 

heterogeneity of COVID-19 vaccine uptake since the marginal totals of the synthetic population 464 

vaccination are imposed to match the real county-level data (Figure 4B). However, given that only 465 

county-level data is publicly available, there is less within-county variation. For instance, the null 466 

model accurately detects the high vaccine uptake cluster in Northern Virginia but inaccurately 467 
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suggests similar clusters in the southeastern region and census tracts along the Chesapeake Bay. 468 

Additionally, the null model overlooks the low vaccine uptake clusters in southwestern Virginia. It 469 

also fails to replicate the general outlier patterns observed in real vaccine uptake (Figure 4A), and 470 

specifically misclassifies High-Low outliers in southeastern Virginia as Low-High outliers. This 471 

indicates that imposing vaccine decisions during the initialization of agent populations does not 472 

adequately preserve the spatial distribution of protective behaviors. 473 

The synthetic populations generated using the HPS survey (Figure 4C) and the local survey (Figure 474 

4D) generally align better with observed vaccine rates compared to the null model. They effectively 475 

capture the high vaccination cluster in Northern Virginia and the low vaccine cluster in the 476 

southwest. However, they fall short in replicating the larger high vaccination clusters in central 477 

Virginia near Charlottesville and Richmond. Despite this, our approach excels in preserving both 478 

broad regional patterns and location-specific outliers. For example, the High-Low outliers in the 479 

Hampton Roads and Richmond metropolitan areas, as well as certain census tracts near 480 

Harrisonburg and Forest, are accurately reflected in the synthetic populations. Notably, our method 481 

also identifies the sole Low-High outlier census tract west of Richmond, an area primarily 482 

characterized by High-Low outliers. These findings highlight the effectiveness of our approach in 483 

capturing the spatial heterogeneity of protective behaviors. 484 
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 485 

Figure 5. Cluster and outliers of vaccination attitudes, beliefs, and perceptions within Virginia Census Tracts for the 486 
synthetic population generated from the HPS.  487 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.18.24312662doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.18.24312662
http://creativecommons.org/licenses/by/4.0/


27 

 

With our approach, all variables from the public health survey are incorporated into the agent 488 

population, enabling us to generate synthetic populations with not only initial uptake of protective 489 

behaviors like vaccination but also realistic attitudes, beliefs, and perceptions. This allows for a 490 

better understanding of the spatial patterns of these characteristics within a population. Figure 5 491 

illustrates the vaccination attitudes, beliefs, and perceptions of the synthetic population generated 492 

from the HPS survey. For example, in western Virginia, clusters of individuals exhibit vaccine 493 

hesitancy due to reasons such as lack of doctor recommendation (Figure 5B), distrust in the vaccine 494 

(Figure 5D), or concerns about side effects (Figure 5F). In contrast, Northern Virginia shows a low 495 

clustering of individuals planning to wait to see if the vaccine is safe (Figure 5A) or doubting its 496 

efficacy (Figure 5H). However, there is a high concentration of individuals who do not perceive 497 

COVID-19 as a significant threat (Figure 5C) or do not feel the need for the vaccine (Figure 5G). 498 

Concerns about vaccine cost are prevalent in eastern Northern Virginia and extend slightly south, as 499 

well as in the southeast around the Hampton Roads region (Figure 5E). Specific census tracts with 500 

individuals that believe it is hard for them to get a vaccine are shown in Figure 5I. This approach 501 

facilitates the integration of behavioral theories, such as the Health Belief Model (HBM), into ABMs 502 

by illustrating how individual attitudes, beliefs, and perceptions affect vaccine uptake and spatial 503 

distribution. This capability ultimately supports the development of ABMs of infectious disease 504 

spread that aim to simulate the underlying processes driving the adoption of protective behaviors 505 

over time, providing a realistic initialization of populations with these characteristics. 506 

5. Discussion and Conclusion 507 

In this study, we investigate the potential to expand synthetic population generation approaches to 508 

initialize an agent population with variables relevant for public health, using COVID-19 vaccine 509 

uptake as an example. Our results show that such an approach has potential to support disease 510 

simulations requiring realistic parameterization of agents with these variables. This method enables 511 
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researchers to quickly initialize a synthetic population where the true statistical relationships 512 

between demographic characteristics and public health variables are preserved. Furthermore, the 513 

approach captures the spatial heterogeneity of such protective behaviors at finer scales than 514 

typically available in spatial data. While protective behaviors such as vaccination, masking, and 515 

social distancing can sometimes be found at county or state level, similar data capturing attitudes, 516 

beliefs and perceptions that can be simulated using this approach are often not available in spatial 517 

data format at all. The synthetic population that was generated using the national HPS that is publicly 518 

available was comparable to the synthetic population generated using the local survey data, 519 

demonstrating the flexibility of the approach to be implemented using a variety of public health 520 

surveys. 521 

It is important to note that researchers who have access to fine-grained spatial data capturing health 522 

behavior variables (e.g. vaccine uptake at the CT level) could incorporate that data directly into the 523 

IPF approach to more accurately capture the statistical and spatial patterns health behaviors. 524 

However, this would be limited to the study area and time for which the data is available. For example, 525 

our validation dataset captures vaccine uptake at the CT level for Virginia by December 2021, 526 

meaning it could be used in the IPF as another category for which the marginal totals are known. 527 

However, this would limit the transferability of the approach to other study areas and points in time. 528 

Therefore, we demonstrate how the approach could be implemented using only publicly available 529 

longitudinal data such as the HPS, making it straightforward for researchers to generate a synthetic 530 

population with these variables anywhere in the country and for multiple points in time. 531 

The quality of the synthetic population is limited by the quality of the census tract and individual level 532 

survey data. For example, it does not appear that the HPS data is nationally representative and was 533 

largely biased towards vaccinated individuals. Therefore, we were able to improve our results slightly 534 

using this dataset by adjusting the representation of vaccinated individuals in the sample from 91% 535 
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(r2 = 0.499) to 50% (r2 = 0.56), but more research is needed to investigate effects of bias on this 536 

approach. Furthermore, there are other factors that are likely affecting the individual’s decision to 537 

get vaccinated (e.g. policy interventions, social norms) that can’t be directly incorporated into the 538 

synthetic population generation approach. Thus, it may be more effective to synthesize a population 539 

with vaccine intention, rather than vaccine uptake itself, where such data is available (e.g. using the 540 

Understanding Coronavirus in America longitudinal survey). 541 

In conclusion, this study demonstrates the potential of using public health surveys to enhance the 542 

generation of synthetic populations for spatial agent-based models (ABMs) by incorporating 543 

protective behaviors and attitudes. Such an approach strengthens the potential for ABM in public 544 

health research and policy planning. We show that the synthetic populations generated using this 545 

approach reflect the real-world statistical relationships between demographic groups and vaccine 546 

uptake and attitudes. This level of detail is essential for simulating potential health disparities across 547 

different demographic groups, enabling the exploration of more targeted and effective public health 548 

strategies. Initializing an ABM with realistic vaccine uptake and attitudes is crucial for those that aim 549 

to forecast outbreaks in study areas where uptake and attitudes vary regionally or that aim to 550 

simulate realistic social processes driving vaccine uptake decisions. By capturing the spatial 551 

heterogeneity of these behaviors and attitudes at finer scales than spatial data typically allows, our 552 

approach supports models that aim to simulate how local responses to interventions might unfold 553 

with greater accuracy and how these responses lead to spatially heterogeneous health outcomes. 554 

Ultimately, this approach enhances the predictive power and realism of disease simulations, 555 

providing critical insights into how interventions might play out in real-world settings. 556 

To our knowledge, this study marks one of the first attempts to extend synthetic population 557 

generation approaches to initialize agents with variables relevant to ABMs of infectious disease 558 

spread. Future research is needed to see if this approach can be used to initialize other health 559 
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behaviors and associated perceptions and attitudes (e.g., tobacco use in populations using the 560 

CDC’s National Tobacco Survey). We encourage other researchers with access to more fine-grained 561 

spatially aggregated data to validate this approach across various public health domains, to improve 562 

the parameterization of more realistic agent populations in data-driven ABMs for public health. 563 
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