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Abstract 
Some toddlers with autism spectrum disorder (ASD) have mild social symptoms and developmental 
improvement in skills, but for others, symptoms and abilities are moderately or even severely affected. 
Those with profound autism have the most severe social, language, and cognitive symptoms and are at the 
greatest risk of having a poor developmental outcome. The little that is known about the underlying 
biology of this important profound autism subtype, points clearly to embryonic dysregulation of 
proliferation, differentiation and neurogenesis. Because it is essential to gain foundational knowledge of 
the molecular biology associated with profound, moderate, and mild autism clinical subtypes, we used 
well-validated, data-driven patient subtyping methods to integrate clinical and molecular data at 1 to 3 
years of age in a cohort of 363 ASD and controls representative of the general pediatric population in San 
Diego County. Clinical data were diagnostic, language, cognitive and adaptive ability scores. Molecular 
measures were 50 MSigDB Hallmark gene pathway activity scores derived from RNAseq gene 
expression. Subtyping identified four ASD, typical and mixed diagnostic clusters. 93% of subjects in one 
cluster were profound autism and 93% in a different cluster were control toddlers; a third cluster was 76% 
moderate ability ASD; and the last cluster was a mix of mild ASD and control toddlers. Among the four 
clusters, the profound autism subtype had the most severe social symptoms, language, cognitive, 
adaptive, social attention eye tracking, social fMRI activation, and age-related decline in abilities, while 
mild autism toddlers mixed within typical and delayed clusters had mild social symptoms, and 
neurotypical language, cognitive and adaptive scores that improved with age compared with profound and 
moderate autism toddlers in other clusters. In profound autism, 7 subtype-specific dysregulated gene 
pathways were found; they control embryonic proliferation, differentiation, neurogenesis, and DNA 
repair. To find subtype-common dysregulated pathways, we compared all ASD vs TD and found 17 ASD 
subtype-common dysregulated pathways. These common pathways showed a severity gradient with the 
greatest dysregulation in profound and least in mild. Collectively, results raise the new hypothesis that the 
continuum of ASD heterogeneity is moderated by subtype-common pathways and the distinctive nature of 
profound autism is driven by the differentially added profound subtype-specific embryonic pathways. 
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1. Introduction   
ASD is 80% to 90% heritable, and yet the molecular pathobiology underlying its social symptoms 

at the individual patient level at early ages remains speculative and largely a mystery. Despite the high 
heritability (Bai et al., 2019), the genetic basis is unknown for an estimated 90% of ASD patients 
(Feliciano et al., 2019). Gene diagnostic panels have poor clinical utility giving diagnostic yields ranging 
from a low of 0.22% to a high of only 10% (Ní Ghrálaigh et al., 2023a).  De novo variants (DNV) explain 
only ~2% of variance in ASD (Gaugler et al., 2014; Satterstrom et al., 2020), and a recent study 
concluded “a continued focus on DNVs for ASD gene discovery may yield diminishing returns” (Zhou et 
al., 2022). Even for the small 10-13% subset of ASD patients who have a mutation in a risk gene, how or 
even whether a mutation causes the social symptoms is unknown for hundreds of hypothesized “risk” 
mutations, and no single ASD child with one of those mutations represents even a tiny fraction of all the 
candidate risk mutations reported. Thus, since such DNA mutations are so rare, none are representative of 
the ASD population, and the ASD molecular landscape computationally built from rare single cases does 
not represent the ASD population. Therefore, despite hundreds of millions of research dollars and 
hundreds of papers, still missing is not only knowledge of the molecular pathobiology of ASD social 
symptoms, but also of the molecular pathobiology underlying the known diversity in ASD symptom 
presentation, progression and outcome at early ages. It is at early ages when such knowledge could have 
the greatest benefit for affected toddlers. As such, the ASD DNA mutation field is largely empty of 
critical information about ASD clinical-molecular subtypes and is at a standstill. 

A new in vivo (blood) gene expression study identified a pathobiological signature that accurately 
diagnoses ASD individuals from among typical toddlers by combining large numbers of dysregulated 
gene expression patterns; AUC-ROC and AUC-PR range from 84% to 92% (Bao et al., 2023), which is 
vastly superior to gene mutation panels (Ní Ghrálaigh et al., 2023a). The transcriptomic diagnostic 
signature included gene expression dysregulations that enriched cell cycle mechanisms and gene signaling 
pathways (PI3K-AKT, RAS-ERK and Wnt) that regulate multiple prenatal neurodevelopmental processes 
(Courchesne et al., 2019; Gazestani et al., 2019). Importantly, the study also examined whether the 
presence of ASD “risk” gene mutations could improve diagnostic accuracy. Contrary to expectations, 
DNA mutations in SFARI Level 1 and 2 ASD risk genes were as common in typical (11%) as in ASD 
toddlers (11%), suggesting those genes may not be risk-relevant and can lead to chance diagnostic 
classifications, as predicted from the Ni Ghralaigh et al. study (Ní Ghrálaigh et al., 2023b). A different 
study found that a dysregulated gene network composed of those three signaling pathways was 
significantly overactive in vivo in ASD individuals relative to typicals (Gazestani et al., 2019). The 
degree of overactive expression of this network was related to social symptoms severity in ASD. To our 
knowledge, no risk gene mutation finding has shown such relationships to core ASD social symptoms in 
large ASD samples at early ages. That same study showed this social symptom-relevant network was also 
significantly overactive in ASD prenatal neurons and neural progenitor cells derived from ASD toddlers 
with early brain overgrowth that is correlated with excess cell proliferation; this multi-pathway network is 
upregulated in the first and second trimesters during proliferation and neurogenesis (Gazestani et al., 
2019; Courchesne, Gazestani and Lewis, 2020). 

A large literature on computational systems biology, cell and animal model, postmortem and 
GWAS research also implicates prenatal dysregulation of cell proliferation, neurogenesis, and 
corticogenesis as well as dysregulation in these three signaling pathways (Courchesne et al., 2019; 
Courchesne, Gazestani and Lewis, 2020). However, this larger literature has not linked such multi-
pathway, multi-process biological evidence with clinical symptoms in living ASD patients. Studies and 
reviews of the ASD blood gene expression literature also found dysregulated gene expression in a several 
pathways and processes, including PI3K-AKT-mTOR, RAS signaling pathways, ribosomal translation 
signal, cell cycle, neurogenesis, gastrointestinal disease, immune/inflammation, interferon signaling, and 
the natural killer cytotoxicity pathway (Gregg et al., 2008; Enstrom et al., 2009; Kong et al., 2012; Ch’ng 
et al., 2015; Pramparo, Lombardo, et al., 2015; Pramparo, Pierce, et al., 2015; Diaz-Beltran, Esteban and 
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Wall, 2016; Ansel et al., 2017; Tylee et al., 2017; He et al., 2019; Lee et al., 2019), but again such 
molecular evidence has seldom been linked with ASD clinical characteristics, developmental change, and 
subtypes. 

Lastly, ASD children with the most severe social and language symptoms –profound autism5,6– are 
at the greatest risk for a poor lifelong outcome. Due to low levels of participation in research studies and 
challenges in early-age identification, little is known about the underlying molecular biology in this 
important group of autistic toddlers. Because severe impairments in social perception and reactivity and 
language are early and specific signs of profound autism, there is a particular necessity for non-invasive 
approaches to uncover the molecular biology associated with profound autism and how it may differ from 
moderate and milder autism. Insight into embryogenic dysregulation of brain growth that distinguishes 
profound ASD from mild ASD clinical phenotypes, comes from a new brain cortical organoid (BCO) 
study4. That study shows that as early as embryogenesis, the biological bases of two subtypes of ASD 
social and brain development –profound autism and mild autism– are already present and measurable and 
involve dysregulated cell proliferation and accelerated neurogenesis and growth. The larger the 
embryonic BCO size in ASD, the more severe the toddler’s social symptoms and the more reduced the 
social attention, language ability, and IQ, and the more atypical the growth of social and language brain 
regions. This suggests the molecular dysregulations underlying profound autism differ in type or degree 
and might be detectable at very early postnatal ages when we find profound autism social brain activity 
and clinical features are robustly identified as a distinct subtype from other ASD toddlers (Xiao et al., 
2022; Taluja et al., 2024). 

Here we identify molecular pathobiology subtypes underlying ASD patient subtypes of early age 
clinical presentation, progression and clinical outcome. To do so, we use an established precision 
medicine method, Similarity Network Fusion (SNF), that integrates different modalities as single Patient 
Similarity Network (PSN). Using this PSN, we can identify clusters of patients and controls whose social 
and language clinical and molecular features are maximally similar to each other and maximally different 
from those in other clusters. This increases power to detect subtype-relevant molecular pathobiology 
associated with profound autism and milder clinical phenotypes. To objectively pinpoint and quantify 
dysregulated molecular pathways in each identified ASD patient subtype, we use the Hallmark pathways 
from MSigDB5. Gene sets in Hallmark pathways utilize a resource of tens of thousands of gene sets and 
are linked with gene expression data refining and validating Hallmark pathway signatures. Additionally, 
we evaluate differential expression of both small and long non-coding RNAs within each subtype. 

  
 

2. Method  
 
2.1 Participant recruitment 
 
We performed ASD subtyping using similarity network fusion based on 12 different clinical and 
transcriptomic features of 363 male toddlers aged 1–4 years. The Institutional Review Board approved 
this study at the University of California, San Diego. According to the Declaration of Helsinki, parents 
provided written informed consent and were paid for their participation. Identically to the approach used 
in our other recent studies(Gazestani et al., 2019; Xiao et al., 2022; Bao et al., 2023), toddlers were 
recruited through two mechanisms: community referrals (website, social media, etc.) or a general 
population-based screening method called the 1-Year Well-Baby Check-Up Approach (now called the 
Get S.E.T. Early model)7 that allowed the prospective study of ASD beginning as young as ages 12 to 24 
months, on the basis of a toddler’s failure of the Communication and Symbolic Behavior Scales 
Developmental Profile (CSBS-DP) Infant-Toddler Checklist. All toddlers, including control subjects, 
received a battery of standardized psychometric tests by highly experienced Ph.D. level psychologists 
including the Autism Diagnostic Observation Schedule score (ADOS) (Module T, 1 or 2), the Mullen 
Scales of Early Learning, and the Vineland Adaptive Behavior Scales. Testing sessions routinely lasted 4 
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hours and occurred across 2 separate days. Toddlers younger than 36 months at the time of initial clinical 
evaluation were followed longitudinally approximately every 9 months until a final diagnosis was 
determined at age 2–4 years. Toddlers were categorized into two groups based on their final diagnosis 
assessment: ASD (N=152), children with the diagnosis of ASD, and nonASD toddlers (N=211). The 
nonASD group includes typically developing (TD) (N=137), delayed toddlers (DL) including language 
delay, global developmental delay, motor delay and non-autistic ASD-feature toddlers (N=74). Table 1 
shows the detailed clinical characteristics of these toddlers.  
 
2.2 Blood sample collection and RNA extraction 
Four to six milliliters of blood were collected into EDTA-coated tubes from toddlers on visits. The blood 
draw was done only if toddlers had no fever, cold, flu, infections, or other illnesses, or use of medications 
for illnesses 72 h before the blood draw. Blood samples were passed over a LeukoLOCK filter (Ambion) 
to capture and stabilize leukocytes and immediately placed in a –20 °C freezer. Total RNA was extracted 
according to standard procedures and manufacturer’s instructions (Ambion). LeukoLOCK disks (Ambion 
cat no. 1933) were freed from RNAlater, and Tri-reagent (Ambion cat no. 9738) was used to flush out the 
captured lymphocytes and lyse the cells. RNA was subsequently precipitated with ethanol and purified 
through washing and cartridge-based steps. The quality of the mRNA samples was quantified according 
to the RNA Integrity Number (RIN): values of 7.0 or greater were considered acceptable, and all 
processed RNA samples passed RIN quality control. Quantification of RNA was performed with a 
NanoDrop spectrophotometer (Thermo Scientific). Samples were prepared in 96-well plates at a 
concentration of 25 ng/μl. 
 
2.3 RNA Sequencing 
 
Plate design  
Large RNA sample studies are vulnerable to batch effects across plates that can eliminate biological 
expression effects. To minimize batch effects, we used our BalanceIT tool (Chiang et al., 2021) in the 
plate design procedure. BalanceIT uses a genetic algorithm to organize samples into batches of plates 
before sequencing so that all are optimally balanced for 20 potentially confounding factors (e.g., age, 
gender, race, ethnicity, diagnosis, IQ, etc.) within and across plates.  
 
Sequencing 
The extracted bulk RNA has been sequenced using a NovaSeq 6000 platform in the Institute for Genomic 
Medicine (IGM) Center at the University of California, San Diego. The final RNA-seq reads were paired-
end 151-base-pair length.  
 
2.4 RNA-Seq preprocessing, mapping, and expression quantification 
The read quality was checked with FastQC and low-quality bases and adapters were removed using 
trimmomatic8. Then, reads were aligned to the grch38 human reference genome using HISAT29. HISAT2 
mapping results were sorted according to genomic locations using samtools10, and genetic feature 
abundance was quantified using StringTie (Pertea et al., 2015). Transcriptome assembly was done using 
the merge function from StringTie tool. Then prepDE function was used to extract read counts directly 
from the genetic feature format (gtf) files generated by StringTie. Subsequently, ComBat-seq (Zhang, 
Parmigiani and Johnson, 2020) was used for batch effect adjustment. Batch corrected counts were 
normalized according to the library size using edgeR. Prior to doing differential expression analysis, low 
expressed genetic features were removed. Finally, we used the generalized linear model implemented in 
edgeR to find differentially expressed (DE) genes. We applied this pipeline for quantifying the expression 
values of three groups of genes: protein-coding, long non-coding RNA (lncRNA), and small non-coding 
RNA (sncRNA) including micro-RNA, scaRNA, snoRNA, and snRNA.  
 
2.5 Pathway activity scores 
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We employed gene set variation analysis (GSVA) (Hänzelmann, Castelo and Guinney, 2013) to assess the 
activity of the 50 hallmark pathways defined by Broad institute and UCSD in the Molecular Signatures 
Database (MSigDB) (Liberzon et al., 2015). To calculate gene set activity scores for each pathway in 
each subject based on the normalized gene expression values, we utilized the 'gsva' R package. We used 
this package under the default settings except for the kcdf parameter. This parameter was set to “Poisson” 
as it is better suited for handling RNA-seq read counts.  
 
2.6 Similarity network fusion and subtyping 
 
2.6.1 Patient Similarity Networks  
Twelve different patient similarity networks (PSNs) have been constructed using eight different clinical 
measures, which we have denoted as “iSNF” clinical measures, and four transcriptomic PSNs (Figure 1).  
 
Clinical PSNs 
Each PSN was generated by assessing the similarity between subjects based on a single clinical measure. 
Specifically, we utilized three measures extracted from the Mullen Scales of Early Learning: expressive 
language (EL), receptive language (RL), and the standardized early learning composite (ELC) score. 
Additionally, we incorporated five standardized measures from the Vineland Adaptive Behavior Scales, 
encompassing daily living score, social score, adaptive behavior composite score (ABC), and total motor 
score. Consequently, we created a total of eight clinical PSNs, each corresponding to one of these clinical 
measures. 
 
Transcriptomic PSNs 
The first transcriptomic PSN was constructed based on the similarity of the whole transcriptome. Pearson 
correlation coefficients (PCC) of the corresponding expression vectors were used to compute the 
similarity for each pair of subjects. The second transcriptomic PSN was constructed based on the 
expression of those lncRNAs that were differentially expressed comparing ASD (N= 152) to nonASD 
(N=211) at p-value<0.05. The third transcriptomic PSN was constructed in a similar way based on 
sncRNAs. Finally, the last transcriptomic PSN was formed based on the GSVA activity scores associated 
with the 50 hallmark pathways.  
 
2.6.2 Subtyping 
The 12 PSNs were fused using the similarity network fusion method implemented in SNFtool R package 
(Wang et al., 2014). We applied spectral clustering on the fused network to find the subtypes. For 
obtaining the optimal clustering we tried different clustering with 3-10 clusters. To score each clustering, 
first, we took all pairs of candidate clusters and used 16 different clinical indices (including language 
development, social indices, brain activation, and eye tracking measures) to quantify between-group 
separation. We used an appropriate statistical test (see the Statistical Analysis and Fig. S1) to assess the 
difference between each pair of cluster (separation) based on the clinical indices. Then, the proportion of 
the pairwise cluster differences with a p-value <0.05 was considered as the clustering score. Finally, the 
clustering with the highest score was selected for defining the subtypes. 
 
2.7 Subtyping significance and robustness  
Statistical significance of the resulting subtypes was done using ‘sigclust’ R package (Huang et al., 2015). 
To assess the clustering robustness, we used repeated under-sampling on the original data, and the SNF 
clustering was done on the undersampled dataset using the same parameters. We iteratively and randomly 
selected subsets of the original data with sizes of 95%, 90%, 80%, 70%, 60%, and 50%. Then using the 
same procedure, the clustering was done in each iteration. The number of clusters in each clustering was 
set the same as the optimal number of clusters determined using the original data. The similarity of the 
obtained clustering in each iteration with the original clustering was assessed using the Jaccard index. The 
average Jaccard score for all clusters in each iteration was computed as the similarity score between the 
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original clustering and the clustering of the subsampled dataset. This process was iterated 1000 times for 
each subset size. We used the same data set sizes and did the repeated random partitioning to calculate the 
background distribution of the Jaccard index in this clustering scenario.   
 
2.8 External validation and clinical enrichment of the clusters 
We used seven different clinical and eye tracking measures (xSNF) which were not used as input for 
clustering to validate the obtained clusters. Including three measures showing the ASD symptom severity 
(see below for more details).  
 
Clinical metrics  
The total ADOS RRB, and ADOS SA/COSO were used as the two main metrics that measure the ASD 
symptom severity. These two metrics measures restricted and repetitive behavior, and communication and 
social of toddlers, respectively. Also, we used the ADOS total which is the sum of the two previous 
metrics. In addition, we used fine motor (FM) and visual reception (VR) from Mullen Scales of Early 
Learning.  
 
Eye tracking metrics 
We used ‘The GeoPref’ eye tracking test which basically assesses the social vs. non-social preference in 
toddlers (Wen et al., 2022). This test consists of two rectangular areas of interest (AOIs) each containing 
social or non-social (dynamic geometric) video. The total fixation duration within the social AOI was 
divided by the total fixation duration across the entire video to compute geometric percent fixation 
(FixationGeo). Also, ((total number of fixations in social AOI) -1) / (total social fixation duration) was 
used to calculate saccades/sec in the social AOI. Eye tracking data was collected using the Tobii T120 
(Tobii, Stockholm, Sweden; www.tobii.com; 60 Hz sampling rate; 1280 × 1024). We filtered out eye 
tracking data with poor calibration quality.  
 
2.9 Statistical Analysis  
 
Basically, we used ANOVA and ANCOVA for assessing the cluster differences considering each clinical 
measure (Figure S1). However, according to the different violations from the basic assumptions we used 
other statistical tests. Shapiro-Wilk and Levene’s test was used for checking the normality and 
homoscedasticity, respectively. When these tests showed a significant (p<0.05) violation, we used 
Kruskal-Wallis and Welch tests for assessing the cluster differences, respectively. The R package rstatix 
was used for applying these tests. In cases where both tests showed significant violations, we used 
quantile-based ANOVA (QANOVA) implemented in the GFD package. We also tested the age effect and 
age-cluster interaction. For those situations with an age effect but not age-cluster interaction we used 
ANCOVA and age was used as the covariate. Finally, if there were a significant age-cluster interaction 
(p<0.05) then the final model was selected from the simpler model and the more complex model 
(including the age-cluster interaction) according to the Bayesian information criteria (BIC). Therefore, if 
the simpler model had the lower BIC, we didn’t include the interaction term otherwise we included it. In 
the latter case, we used moderated regression for the cluster comparison in three age bins (mean and mean 
± sd). In the former case, we used ANCOVA but we also did moderated regression to check the 
consistency of the overall interpretation and conclusion. BIC was calculated using the stats R package. 
For the posthoc tests, we used different statistical tests based on the assumption violations. Totally, we 
used five different posthoc tests for the pairwise cluster comparisons: t-test, t-test with no assumption of 
equal variance (both implemented in the R package rstatix), Wilcoxon-Mann Whitney, robust two-group 
ANCOVA (implemented in the R package WRS2), and estimated marginal means considering age as the 
covariate (implemented in the R package emmeans).  
 
2.10 Differentially expressed genes and pathways  
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For finding the DE genes within different subtypes compared to each other, we applied edgeR on the 
corresponding normalized and batch effect adjusted read counts. Moreover, to find dysregulated Hallmark 
pathways, we applied limma to the GSVA activity scores. In both cases, p-values were corrected using 
the Benjamini-Hochberg method.  
 
2.11 Mutations in ASD risk genes 
From prior studies, aimed at detecting rare severe mutations in autism and other neurodevelopmental 
disorder risk genes, we also had single-molecule molecular inversion probes (smMIPs). In those 
experiments, we did a targeted sequencing on the coding regions for two sets of risk genes.  
 
2.12 Brain activation 
Functional magnetic resonance imaging (fMRI) data were obtained from 69 subjects. The fMRI task was 
consistent with protocols used in our prior publications (Redcay and Courchesne, 2008; Eyler, Pierce and 
Courchesne, 2012; Lombardo et al., 2018). Imaging was conducted using a 1.5 Tesla GE MRI scanner 
(GE High-Definition 1.5 T twin-speed EXCITE scanner) while toddlers were naturally asleep at the 
University of California, San Diego. Echoplanar imaging was used to acquire functional images (TE = 
35ms; TR = 2500ms; flip angle = 90°; matrix size = 64 × 64; resolution = 4 × 4 mm; slice thickness = 4 
mm; FOV = 256 mm; 31 slices; 154 volumes). 
Preprocessing of functional imaging data, including motion correction, normalization to Talairach space, 
and smoothing with an 8 mm FWHM Gaussian kernel, was performed using AFNI (Cox, 1996). Brain 
activation analyses were conducted using the general linear model implemented in SPM8 
(http://www.fil.ion.ucl.ac.uk/spm8/). 
 
2.13 Outcome patterns and diagnosis stability 
Toddlers in this cohort had up to five follow-up visits. In each follow-up visit, all evaluations including 
ADOS, Mullen Scales of Early Learning, and Vineland Adaptive Behavior Scales were done 
independently, and finally, a diagnosis was assigned to the subject. We used the sequence of the 
diagnoses to assess the diagnosis stability within each cluster. In addition, to examine if subjects in 
different clusters progress differently in terms of symptoms severity, cognitive, language, and social 
abilities we used a linear mixed model (Bates et al., 2015) for each clinical measure of interest. The 
model has the following form: 

��� � � � ���
� � � �� � 	��     
 � 1,2. . ,363; � � 1,2 … ,5 

where yij is a clinical measure of the ith subject (i=1,2,3,...,363) at the jth time point, � is a shared intercept 
term, xij is the covariate vector for the fixed effect, β is the coefficient of the fixed effects, ui is the random 
effect, and eij is an error term (ui ~ N(0, σ2) and eij~ N(0, σe

2)). 
 

3. Results 
3.1 SNF reliably identified 4 clinical-gene expression clusters 
We identified 4 clinical-gene expression clusters that vary in clinical scores from high to severely low and 
gene expression activity from neurotypical to significantly higher than neurotypical, shown schematically 
in Figure 1. Notice the near complete absence of similarity connectivity between Cluster 4 and Cluster 1 
and weak connectivity between Cluster 3 and Cluster 1. 
 
3.2 Clustering validation 
For iSNF clinical variables and the xSNF variables (external validators) including ADOS, visual 
reception and eye tracking measures, statistical tests (ANOVA, ANCOVA, and QANOVA) showed 
highly significant differences between clusters (Figure S2 and S3). Also, figure 2A shows the distribution 
of all iSNF and xSNF clinical measures. Additionally, we assessed clustering robustness by repeatedly 
under-sampling the original data and applying SNF clustering with the same parameters (Figure 2B). 
Subsets of 95%, 90%, 80%, 70%, 60%, and 50% of the original data were randomly selected (see the 
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Methods for more details). This shows highly significant robustness of the difference between the Jaccard 
index values in random clustering and optimal clustering (p<0.001). Sigclust also showed that the 
clustering is highly significant (p-value < 0.001).  
 
3.3 Four main clinical-gene expression clusters 
Using SNF to integrate the clinical and molecular data from n = 363 ASD, TD and DL toddlers, four 
clusters were found (Figure 1): 93% of Cluster 4 were ASD (n=53) and 79% of Cluster 1 were TD. Also, 
Cluster 3 was 72% moderately affected ASD and Cluster 2 was a “mixed” Cluster of better able ASD 
(n=28), lower ability TD (n=67) and Delayed (n=43) toddlers (Table 2). 
 
High diagnostic stability of profound autism  
There were 486 diagnostic and psychometric longitudinal follow-up visits for subjects in the four clusters 
(Figure 2C), with 125 resulting in a change in diagnostic classification at the most recent diagnostic 
testing compared to the first testing. This relatively small change is consistent with the recent Pierce et al 
report on diagnostic stability in N=1,269 ASD, typical and non-ASD delayed toddlers (Pierce et al., 
2019). Figure 2D is a Sankey diagram of these longitudinal changes for ASD, TD, delayed and ASD 
features separately from delayed and ASD. 
 Toddlers in the profound autism Cluster 4 had 100% diagnostic stability: that is, no profound 
autism Cluster 4 toddler changed to a different diagnosis at the most recent diagnostic testing (later-age) 
compared to the first visit. Cluster 3 was also stable (81%) with only three ASD toddlers re-diagnosed as 
ASD features (Figure 2C and 2D) and one ASD toddler re-diagnosed as TD. TD Cluster 1 was also 
relatively stable, but as previously reported by Pierce et al. (Pierce et al., 2019), a small percentage of TD 
change to a high or mild ability ASD diagnosis at follow-up. 
 
3.4 Diagnostic and subtype differences in clinical scores.  
Table 2 shows clinical scores for each of the four clusters at their follow-up visit as well as for the ASD, 
TD and Delayed subjects separately within each cluster. ASD toddlers in Cluster 4 (93% ASD) have 
clinical scores consistent with profound autism (Table 2, Figure 2A and Figure S2). They have high social 
symptom severity and low receptive and expressive language and low overall cognitive IQ, with mean 
scores below -3 standard deviations (SDs) (Table 2; Figure 2A and Figure S2). In sharp contrast are ASD 
toddlers with mild clinical features who are in TD Cluster 1 (79% TD) and Cluster 2, which is a mix of 
mild ASD, low TD and delayed toddlers. ASD patients in Cluster 2 have psychometric scores generally 
within the neurotypical range, and the very small subset in Cluster 1 are the highest ability ASD toddlers 
among the mild autism range; potentially among these few are individuals who may eventually have an 
“optimal” outcome. Nearly exactly in between are ASD toddlers with moderate social, language and 
cognitive difficulties, not nearly as severe as the profound or as neurotypical as the mild toddlers. 
 
3.5 ASD subtype separation validation and comparisons with TD and Delayed.  
Statistically significant differences were found between ASD patients in Clusters 4 vs 3 vs 2+1. 
Comparisons between ASD patients in Cluster 4 and Cluster 3 vs all TD subjects were also highly 
significant. Comparisons between ASD patients in Clusters 1+2 vs all TD subjects showed significant 
differences in all clinical measurements.  

Interestingly, despite clustering together, ASD and Delayed toddlers within Clusters 4 and 3 were 
also quantitatively and statistically distinguishable. It is important however to emphasize the Delayed 
toddlers are a mix of different types of delay such as late talkers who improved or declined in expressive 
language with age, motor delay, some features of ASD and other developmental differences (eg, ADHD). 
         In sum, SNF differentially identified a highly stable and distinct profound autism subtype that is 
about 30% of the ASD sample as well as better ability subtypes of ASD based on clinical and in vivo 
gene expression data. 
 
3.6. Profound autism subtype-specific and ASD group-nonspecific pathway dysregulations  
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Comparison of Hallmark pathway activity scores of all ASD toddlers versus all TD toddlers found 17 
significantly upregulated Hallmark pathways (Figure 3). Four of these 17 were significantly dysregulated 
in the profound autism subtype: estrogen response early and late, bile acid metabolism and heme 
metabolism.  

Next, we tested for subtype-specific dysregulations and found 6 pathways differentially 
overactive and 1 underactive in profound autism as compared to other ASD subtypes. Overactive 
pathways were Myc targets (v1 and v2), oxidative phosphorylation, glycolysis, DNA damage repair, and 
fatty acid metabolism, and underactive was apical surface (Figure 3).  

As shown in Figure 4A, these eleven pathways play key roles during embryogenesis including 
cell cycle progression, proliferation, asymmetrical division, apical polarization, differentiation, 
neurogenesis, hedgehog signaling, and Wnt signaling and neural growth during embryogenesis. Thus, 
toddlers with profound autism have dysregulations in multiple embryonic gene pathways, including 
processes involved in brain cortical organoid (BCO) enlargement and accelerated growth and 
neurogenesis in profound autism toddlers (Courchesne et al., 2024).  

MIR3648-1, a human-specific miRNA, was the only dysregulated sncRNA. It was upregulated in 
the profound autism subtype vs moderate ASD Cluster 3 (log fold change: 2.3; FDR q-value 0.002). It is 
broadly expressed in cortex, cerebellum, and blood (Supplementary Figure S4 A); promotes cell 
proliferation (Rashid et al., 2017; Xing, 2019), and plays a role in the differentiation of mesenchymal 
stem cells (Min et al., 2019). Three lncRNAs were upregulated in profound autism vs moderate ASD 
Cluster 3: FP236383.4, FP236383.5, and FP671120.7, while only one was significantly downregulated, 
AC130304.1. All of these three LNCs are broadly expressed (Supplementary Figure S4 B-C) 

 
3.7 Rates of SFARI Level 1 and 2 gene mutations are similar in ASD and TD 

The only biological metric we did not find related to ASD social clinical-gene expression 
subtypes was DNA risk gene mutations. The ASD group was not enriched in SFARI Level 1 and 2 risk 
gene mutations compared to nonASD toddlers. Interestingly, the ASD group was slightly under-enriched 
(hypergeometric P-value>0.25, under-enriched 1.26 fold) and nonASD group was slightly over-enriched 
(hypergeometric P-value>0.25, over-enriched 1.12 fold). Also, none of the ASD subtypes nor clusters 
were significantly under- or over-enriched in SFARI Level 1 and 2 risk gene mutations. The most 
frequent mutation was missense mutation in nonASD subjects in cluster2.   

 
3.8 Reduced Temporal Lobe Activation in Clusters 3 and 4 Compared  

fMRI data from 69 toddlers were analyzed to examine brain activation during natural sleep 
(Figure 4.B). Significant differences in brain activation were observed between clusters in both the left 
and right temporal lobes. Pairwise comparisons revealed a significant reduction in temporal lobe 
activation in clusters 3 and 4 compared to cluster 1 (all p-values < 0.05). This suggests that brain 
activation patterns in the temporal regions vary significantly across these clusters, with clusters 3 and 4 
showing notably less activation than cluster 1. No significant differences were observed between the 
profound and mild ASD subtypes, likely due to the small sample size. 
  
3.9 ASD Subtype Clinical Outcome Trajectories  
 Taking advantage of the clinical longitudinal subject data (Figure 2C), we assessed outcome 
differences between profound and moderate ASD subtypes using a mixed effect model in four main 
clinical measures (see Figure 4C). Three clinical measures showed differences between the two ASD 
subtypes (at p-value<0.05). Figure 4C shows the trajectory for all four main clinical metrics for the 
profound and moderate autism subtypes. Toddlers in the profound autism subtype (in red) remained high 
in social symptom severity across age, but toddlers in the moderate ASD subtype (in orange) showed 
improvement in ADOS social symptoms (p-value = 0.1).  On the Vineland Socialization and overall 
Adaptive Behavior Composite, profound autism declined significantly, but the moderate ASD did not 
decline (p-value< 0.04). Toddlers with moderate ASD displayed substantial improvement in expressive 
language with age, toddlers with profound autism declined substantially 
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4. Discussion  
To objectively identify toddlers with profound autism and those with milder ASD phenotypes, we 
deployed SNF subtyping, but excluded ADOS scores so that this diagnostic tool cannot drive subtyping 
(Figure 1). With SNF, we integrated molecular and clinical (Mullen, Vineland) data in a large ASD 
sample representative of the general population in San Diego County and identified three main ASD 
molecular-clinical subtypes, as well as a tiny subset among the mild ASD subtype who may be 
provisionally described as “optimal” autism. One subtype is profound autism that was categorically 
different from moderate and mild ASD and control subtypes. This profound autism subtype is in a cluster 
composed of 93% ASD toddlers with low social, language, cognitive scores and severe social symptoms; 
this clinical profile is consistent with profound ASD (Lord et al., 2022).  
 Using analyses of MSigDB Hallmark pathways, we discovered molecular differences specific to 
profound autism. These differences occurred in 7 Hallmark gene pathways known to govern progression 
of multiple stages in embryonic brain development from cell proliferation to differentiation of cortical 
cells to neurons (Figure 4A). This result is consistent with our theory of ASD (Courchesne et al., 2019; 
Courchesne, Gazestani and Lewis, 2020) and, importantly, our new evidence from brain cortical 
organoids (BCO) that profound autism begins embryonically with extreme embryonic BCO enlargement, 
growth rate and accelerated neurogenesis. In that study as in the present one, those profound autism 
toddlers had severe social symptoms, reduced social attention, severely reduced language abilities, and 
atypical growth of social, language and sensory cortices (Courchesne et al., 2024).   
 Five of these 7 Hallmark pathways are directly or interactively involved in cell cycle, 
proliferation, differentiation, neurogenesis, DNA replication during cell division, and growth and energy 
metabolic processes and the progression of one stage to the next (Figure 4A). For example, Myc 
pathways, glycolysis, and oxidative phosphorylation are “master regulators” of cell cycle, proliferation 
metabolism and differentiation as well as DNA replication and damage repair (Kuwahara et al., 2010a; 
Mainwaring, Bhatia and Kenney, 2010; Zheng et al., 2016a). In ASD, overly rapid and disorganized cell 
cycle, excess proliferation, overabundance of cortical neurons and early brain overgrowth have been 
reported, notably in ASD toddlers and cell models derived from them (Courchesne et al., 2011; Pramparo, 
Lombardo, et al., 2015; Pramparo, Pierce, et al., 2015; Marchetto et al., 2017; Lombardo et al., 2021; 
Bao et al., 2023). We hypothesize excess Myc upregulation in ASD toddlers may be related to embryonic 
BCO accelerated growth, accelerated cell cycle progression, excess proliferation, accelerated 
neurogenesis, and prenatal BCO overgrowth that is correlated with social symptom severity (Courchesne 
et al., 2024), and with early postnatal brain overgrowth, atypical growth of social and language cortex 
and, ultimately, reduced social neural activity in temporal cortex (Figure 4B).  
 These subtype-specific overactive Hallmark gene pathways in profound autism are regulated by 
upstream signaling of RAS-ERK, PI3K/AKT/GSK-3 and Wnt/β-catenin signaling which are also 
overactive in ASD toddlers (Gazestani et al., 2019); overactive in ASD embryonic neural progenitor cells 
and neurons derived from ASD toddler; and overactive in ASD toddlers with the most severe ASD social 
symptoms (Gazestani et al., 2019).  Neuronal development is highly energy-demanding, and the transition 
from aerobic glycolysis in proliferating cells to oxidative phosphorylation in differentiated neurons, is 
another example of the interplay among these Hallmark pathways during which Myc normally 
downregulates (Zheng et al., 2016b; Rumpf, Sanal and Marzano, 2023). Thus, this set of dysregulated 
Hallmark pathways are tightly interrelated in crucial neurobiological programs in embryogenesis. 
 Myc is directly regulated by the autism-relevant β-catenin/Tcf transcription complex and 
mediates functions of the Wnt signaling pathway, stimulating neocortical neural progenitor cell (NPC) 
proliferation and differentiation (Kuwahara et al., 2010b). Estrogen response pathways also enhance the 
expression of Wnt3 the Wnt/β-catenin signaling pathway, leading to its activation (Zhang et al., 2008). 
Consistent with this, we found the upregulation of Wnt/β-catenin using microarray data in another ASD 
toddler cohort (Gazestani et al., 2019). The degree of dysregulation in these pathways in that study were 
linked to ASD social symptoms severity, with more pronounced dysregulation corresponding to more 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 20, 2024. ; https://doi.org/10.1101/2024.09.17.24313857doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.17.24313857
http://creativecommons.org/licenses/by-nc-nd/4.0/


severe manifestations of ASD.  More broadly, estrogen response pathways play a significant role in the 
development and function of the nervous system, particularly in shaping the structure and plasticity of the 
brain (McCarthy, 2008).  
 Another profound autism subtype-specific Hallmark pathway is the DNA repair pathway. This 
pathway is critical for ensuring genomic integrity during embryonic development, as it is believed that 
major DNA repair pathways are functional in embryos (Khokhlova et al., 2020). Previously, 
dysregulation of DNA damage repair functions has been reported postmortem in ASD at older ages 
(Chow et al., 2012) and suggested to underlie somatic mosaicism and focal cortical dysplasia (Stoner et 
al., 2014). Moreover, the DNA repair process is intimately connected with cellular metabolism. Metabolic 
processes affect DNA repair, and conversely, DNA damage can induce metabolic functional activity 
(Turgeon, Perry and Poulogiannis, 2018). DNA damage response activation can prompt an upsurge in 
nucleotide synthesis and the metabolic processing of glucose. Its varied activity across the ASD subtypes 
suggests a role in responding to developmental stress and neuronal damage. The degree of dysregulation 
in this pathway could reflect the resilience of neuronal populations in different ASD subtypes. The above-
mentioned pathways could be linked to on-average larger brain size in severe ASD subjects and to lower 
brain activity and function. 
 Lastly, this tight constellation of dysregulated embryogenesis-important pathways in profound 
ASD may also explain why they were the only ASD patient subtype to not have age-related clinical 
improvement (Figure 4C).  
 In addition to these embryonic-important pathways in the profound ASD subtype, 17 other 
Hallmark pathways were significantly upregulated across ASD subtypes as compared with nonASD 
toddlers; no pathway was significantly downregulated in ASD as compared to TD toddlers (Figure 3). 
Among these were metabolic pathways crucial for brain function that show varying degrees of activity 
across the ASD subtypes. These include heme metabolism and bile acid metabolism pathways. Fatty acid 
metabolism is crucial for the biosynthesis of cell constituents, such as lipids, that are fundamental for 
developmental processes like synapse formation and elimination, as well as myelination (Nutr and 
Steiner, 2019). Additionally, the role of docosahexaenoic acid (DHA), a major product of fatty acid 
metabolism, is significant in neurogenesis. The expression of fatty acid-binding proteins (B-FABP) 
during development parallels early neuronal differentiation and is thought to play a crucial role in early 
neurogenesis or neuronal migration (Innis, 2007). This pathway's influence on synapse formation, 
neurogenesis, and cognitive functions suggests that its altered activity in different ASD subtypes might 
contribute to the observed variability in symptom severity, cognitive abilities, and sensory processing. 
Understanding the modulation of this pathway in ASD could provide critical insights for developing 
targeted interventions aimed at improving neurodevelopmental outcomes in individuals with ASD. The 
heme metabolism pathway is critical for various aspects of brain development and function. During early 
postnatal development, iron, a crucial component of the heme group, is employed extensively for 
mitochondriogenesis, neuronal maturation, synthesis of neurotransmitters, and myelination (Chang et al., 
2005; Ozsoy, 2020). The bile acid metabolism pathway holds a significant position in neural development 
due to its role in the management of cholesterol, an essential component for the development of neurons 
and neuroglia. Notably, a substantial portion of the body's cholesterol, nearly 25%, is located within the 
brain, underscoring its critical function in neural structure and function (Grant and Demorrow, 2020). 
This pathway's role extends to the synthesis of bile acids, which differ in Alzheimer's Disease (AD) 
compared to cognitively normal individuals, as revealed by metabolic network analyses of post-mortem 
brain samples (Baloni et al., 2020). Furthermore, the metabolism of bile acids is intricately linked with 
cognitive functions. Elevated levels of primary and secondary bile acids have been observed in AD 
samples relative to controls, along with higher serum levels of taurine in AD patients 
(MahmoudianDehkordi et al., 2019). Some recent studies have postulated that alterations in the gut 
microbiota, with consequent changes in serum and brain bile acid profiles, may be mechanistically 
involved in the development of diseases related to cognitive dysfunction, such as mild cognitive 
impairment (MCI), AD, developmental coordination disorder (DCD), and vascular dementia (VD)(Weng 
et al., 2022). The transformation of bile acids by the gut microbiota is also implicated as a contributing 
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factor in the development and progression of AD and Huntington's disease (HD)(Jia et al., 2020). 
Collectively, these pathways are essential for synaptic development, neurogenesis, energy production, and 
neurotransmitter synthesis. Their dysregulation, particularly the higher activity in both ASD subtypes 
compared to TDs and lower activity in less severe ASD subtype (cluster 3) than severe ASD subtype 
(cluster 4), may correlate with specific ASD phenotypes, such as cognitive and developmental delays. 
 Unexpected was that SFARI level 1 and 2 ASD gene mutations were similarly common in 
typical, delayed and ASD toddlers (Supplementary Figure S6). Moreover, the profound ASD subtype did 
not have the highest rate of SFARI level 1 and 2 ASD mutations among patients (Supplementary Figure 
S7). Further, ASD gene mutations were not more common in subtypes with the most Hallmark pathway 
dysregulations. Instead, they were as common in subtypes with more as well as subtypes with few 
dysregulated Hallmark pathways. These results are generally consistent with our recent work showing 
SFARI Level 1 and 2 ASD gene mutations are equally common in typical and ASD toddlers (Bao et al., 
2023). In that study, SFARI Level 1 and 2 ASD risk genes were not related to diagnostic or psychometric 
symptom severity in either ASD or typical toddlers and had no detectable impact on expression in genes 
that are accurate ASD diagnostic markers. In these studies, then, there is no evidence that the SFARI 
Level 1 and 2 ASD gene mutations detected in our ASD, TD and delayed toddlers have clinical, 
diagnostic, or functional genomic significance specific to ASD. This raises the question of which SFARI 
Level 1 and 2 genes do and which not have functional significance for the development of ASD. 
 This work makes a major advance in fundamental knowledge of ASD molecular subtypes from 
toddler blood and their close relationship to ASD variation in social symptoms, developmental 
trajectories, social attention, and social neural function, and is built on a foundation of previous work 
showing dysregulated developmental gene pathways and modules identified in ASD blood gene 
expression are correlated with social symptoms, language ability, social neural functioning, and cortical 
patterning and provide accurate early-age diagnostic signatures. While the present work is remarkable in 
advancing fundamental knowledge about subtypes of the molecular beginnings of ASD, perhaps even 
more remarkable is that the field has largely ignored transcriptomics-based approach in favor of studies of 
risk gene mutations that, in this and other studies, provide no useful information on subtype-specificity or 
on symptom, brain and behavior heterogeneity in idiopathic ASD at early ages. To date, risk gene 
mutations provide little insight into the profound autism subtype. This work, therefore, highlights that to 
gain much deeper foundational knowledge of profound, moderate and mild ASD at the beginning, a wide 
array of social-relevant modalities must be collected and integrated within-toddler including embryonic 
model, in vivo gene expression, social fMRI, social neuroanatomy, social attention, social and language 
ability, and social symptoms. Lastly, so long as ASD treatment studies fail to be aware of multi-modality 
social subtypes at baseline, designs at the overall group level with no knowledge of the admixtures of 
subtypes being treated, will not find reproducible treatment effects, nor maximize treatment-specific 
needs of toddlers in each subtype. 
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Table 1: Clinical Characteristics of Toddlers Used in This Study. 

  Diagnosis Group (N = 363) 

Characteristic  ASD (N = 152) Delayed (N = 74) TD (N = 137) 

Age  37.19±7.19 31.97±8.16 33.59±9.58 

ADOS 

SA/CoSo 13.33±3.88 3.29±2.18 2.28±1.99 

RRB 4.58±1.79 1.09±1.42 0.4±0.73 

Total 17.91±4.52 4.37±2.83 2.68±2.2 

Vineland 

Communication 77.04±15.6 94.98±14.04 104.74±10.91 

Daily living 80.3±13.26 97.16±11.73 101.18±10.92 

Motor skills 84.5±10.89 96.08±10 100.29±10 

Socialization 77.64±10.95 97.18±10.36 104.89±11.46 

Adaptive 

behavior 

composite 

76.96±11.4 95.3±10.91 103.1±10.35 

Mullen 

Fine Motor
*

 77±15.76 96.27±13.81 103.58±12.72 

Visual 

Reception
*

 
79.74±22.62 105.23±20.63 116.08±16.8 

Receptive 

Language
*

 
63.42±24.4 94.86±17.33 106.23±13.55 

Expressive 

Language
*

 
61.55±25.51 89±23.12 105.36±14.2 

Early Learning 

Composite 
67.64±19.04 96.38±16.78 110.29±11.21 

Abbreviations: ADOS, Autism Diagnostic Observation Schedule; ASD, autism spectrum 

disorder; RRB, restricted and repetitive behavior; SA/CoSo, social affect and communication 

total score; TD, typical development; TypSibASD, typical sibling of an ASD proband. 
*

Age equivalent scores divided by age  
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Table 2: Clinical Characteristics of Toddlers Used in This Study Stratified by Cluster and Diagnosis Group at the follow-up visit. 

  CLUSTER 

  Cluster1 (N=76) Cluster2 (N=138) 
 

Cluster3 (N=92) 
 

Cluster4 (N=57) 

  Diagnosis Group Diagnosis Group Diagnosis Group Diagnosis Group 

  ASD 
(N=5) 

Delayed 
(N=11) 

TD 
(N=60) 

ASD 
(N=28) 

Delayed 
(N=43) 

TD 
(N=67) 

ASD 
(N=66) 

Delayed 
(N=16) 

TD 
(N=10) 

ASD 
(N=53) 

Delayed 
(N=4) 

AGE 39.16±4.2
1 

30.73±8.7
1 

33.18±10.
43 

36.66±6.
81 

31.41±7.9 34.14±8.7
1 

36.94±6.
72 

35.58±7.7
4 

33.81±3.3
1 

37.6±8.2 26.22±6.
96 

ADOS 
 

SA/CoSo 10.4±3.91 3.69±2.52 2.13±1.85 13.11±3.
93 

3.31±2.19 2.33±2.12 13.05±3.
69 

2.87±2.07 4.33±2.52 14.08±4.
01 

3.75±1.2
6 

RRB 3.4±1.14 1.19±1.38 0.29±0.6 4.37±1.6
9 

1.07±1.46 0.56±0.88 4.33±1.8
8 

1.22±1.44 0.33±0.58 5.09±1.6
8 

0.25±0.5 

Total 13.8±4.76 4.88±2.58 2.42±2.02 17.48±4.
51 

4.38±2.95 2.9±2.35 17.38±4.
25 

4.09±2.87 4.67±3.06 19.17±4.
56 

4±1.41 

VINELAND 

Communic

ation 

95.6±15.1
4 

94.12±17.
62 

106.84±9.
42 

87.93±1
3.11 

97.35±12.
53 

100.82±1
1.34 

80.05±1
2.94 

91.52±12.
37 

117.33±1
4.57 

66±12.6 75.75±1
9.4 

Daily living 97.2±7.69 101.94±1
1.76 

103.49±9.
02 

88.15±1
3.98 

97.74±10.
87 

97.79±12.
86 

82.91±1
0.75 

94.57±12.
39 

102.67±4.
04 

71.47±1
0.61 

82.5±12.
15 

Motor skills 93±10.42 100.38±1
4.96 

102.4±10.
49 

87.11±1
2.24 

96.32±8.9
7 

96.95±8.6
6 

87.8±7.2
7 

94.39±7.3
3 

105±5.57 78.26±1
1.36 

84.25±8.
5 

Socializatio

n 

90.2±8.5 98.94±11.
78 

106.45±1
0.18 

83.07±1
1.81 

97.86±9.3
5 

101.82±1
1.74 

79.94±1
0.21 

95.91±11.
22 

116±21.1
7 

70.81±7.
46 

85.25±1
2.84 

Adaptive 

behavior 

composite 

92.6±9.15 98.56±13.
3 

105.56±8.
63 

84.11±1
2.51 

96.31±9.6
3 

98.95±11.
25 

79.79±9.
05 

92.7±10.5
5 

112±10.1
5 

68.32±7.
19 

79±11.7
5 

MULLEN 
 

Fine 

Motor
*

 

89.22±20.
15 

99.92±19.
08 

106.54±1
3.64 

84.71±1
2.29 

96.7±13.1
2 

100.73±1
0.47 

79.98±1
4.09 

93.67±11.
76 

89.52±1.2
6 

68.27±1
5.05 

86.46±9.
05 

Visual 

Reception
*

 

104.93±3
8.98 

108.23±2
2.38 

119.68±1
7.71 

94.01±2
3.51 

106.73±2
0.94 

111.83±1
4.72 

83.11±1
7.93 

100.02±1
8.04 

108.8±15.
65 

65.95±1
7.39 

93.12±2
1.47 

Receptive 

Language
*

 

86.2±28.8
9 

101.34±1
7.75 

109.64±1
3.44 

83.62±1
9.7 

97.21±14.
58 

102.08±1
2.41 

66.71±1
7.87 

83.86±19.
45 

100.71±1
7.79 

46.93±2
2.42 

88.11±2
9.95 

Expressive 

Language
*

 

88.9±15.1 98.82±21.
9 

109.26±1
4.95 

79.51±2
1.84 

91.68±20.
62 

100.27±1
1.56 

64.88±2
2.37 

76.7±21.8 103.66±1
5.38 

45.42±2
1.82 

66.54±5
2.43 

Early 

Learning 

Composite 

91.4±27.3
6 

101.44±2
0.25 

113.96±1
1.13 

82.85±1
8.98 

98.89±14.
89 

105.82±9.
6 

69.98±1
4.49 

86.3±14.3
2 

104.67±1
2.01 

54.77±1
3.86 

86.33±3
1.09 

ABBREVIATIONS: ADOS, AUTISM DIAGNOSTIC OBSERVATION SCHEDULE; ASD, AUTISM SPECTRUM DISORDER; RRB, RESTRICTED AND REPETITIVE BEHAVIOR; SA/COSO, SOCIAL AFFECT AND COMMUNICATION TOTAL SCORE; 

TD, TYPICAL DEVELOPMENT; TYPSIBASD, TYPICAL SIBLING OF AN ASD PROBAND. 
*

AGE EQUIVALENT SCORES DIVIDED BY AGE  
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Figure legends  
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Figure 1: A. Schematic view of the workflow used for clustering. First, the 12 patient similarity networks (PSNs) (including eight 
clinical and four transcriptomics PSNs) were fused using SNF. Then by applying spectral clustering we found the optimal 
clustering based on the similarity scores in according to 17 different clinical and eye tracking indices that had four different 
clusters. Among the entire cohort, 42% of toddlers were diagnosed with ASD, 38% with TD, and the remaining with Delay. 
Cluster 1 primarily consists of toddlers with TD, with a small proportion exhibiting high functioning delayed ASD (14% and 7% 
respectively). Cluster 2 represents a mixed cluster, with 49% TD, 29% ASD, and 31% Delay diagnoses. Cluster 3 is 
predominantly comprised of toddlers with ASD, with subtype 1 exhibiting higher ASD symptom severity compared to clusters 1 
and 2, but lower severity compared to cluster 4. Cluster 4, identified as ASD subtype 2, comprises 93% ASD diagnoses with no 
TD toddlers. This cluster exhibits the highest ASD symptom severity and demonstrates a unique eye-tracking pattern.  
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Figure 2: A. The distribution of 13 clinical measures, comprising 8 iSNF measures used to construct the clinical patient 
similarity networks (PSNs), which were used as SNF input, and 5 xSNF measures, which were not used for clustering but for 
validating the obtained clusters. The iSNF clinical measures include expressive language (EL), receptive language (RL), early 
learning composite (ELC), daily living, social score, adaptive behavior composite (ABC), total motor score, and 5 xSNF 
measures: ADOS RRB, ADOS SA/COSO, ADOS total (ASD symptom severity), fine motor (FM), and visual reception (VR). All 
clinical measures, both internal (iSNF) and external (xSNF), exhibit distinct distribution patterns across clusters (see also Figure 
S2 and S3). B. Clustering robustness. We assessed clustering robustness by repeatedly undersampling the original data and 
applying SNF clustering with the same parameters. Subsets of 95%, 90%, 80%, 70%, 60%, and 50% of the original data were 
randomly selected. Clustering was performed with the optimal number of clusters determined from the original data, and the 
Jaccard index measured the similarity. This process was repeated 1000 times for each subset size, and the resulting distribution 
of Jaccard indices was plotted. The y-axis represents different percentages of the original data randomly selected, while the x-
axis shows the averaged Jaccard index distribution. C. Diagnosis stability in each cluster. The left column displays the total 
number of follow-up visits within each cluster. The right column illustrates the percentage of diagnosis changes observed 
between two consecutive visits. For instance, within cluster 2, there were a total of 230 follow-up visits, with diagnosis changes 
occurring in 35% (81 out of 230) of these visits. D: Diagnosis changes categorized by diagnosis group per cluster. The first 
column shows the diagnosis at the first visit and the second column shows the diagnosis at the last visit. This panel shows the 
diagnosis change trends within each cluster. For example, in cluster4: all ASD subjects stayed in the same diagnosis group, also 
four delayed and one ASD feature toddlers changed to ASD, and finally the diagnosis for one toddler changed from delayed to 
ASD features. On the other hand, in cluster1, 88% of the TDs stayed in the same diagnosis group while 7 toddlers transitioned 
from other diagnosis to TD (6 from LD to TD and 1 from ASD to TD).  
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Figure 3: Pathway dysregulation in ASD and ASD subtypes. We used gene set variation analysis (GSVA) to assess the activity of 
50 hallmark pathways from the Molecular Signatures Database (MSigDB). Results revealed increased activity of most hallmark 
pathways in ASD compared to TD (45/50 pathways). Notably (left path), 17 pathways were significantly upregulated in ASD 
(FDR q-value <= 0.1). To explore cluster-specific differences, we focused on these 17 pathways. Excluding cluster2 with mixed 
diagnoses, we found four pathways (HEME METABOLISM, BILE ACID METABOLISM, ESTROGEN RESPONSE LATE, 
ESTROGEN RESPONSE EARLY) dysregulated between TD and the profound ASD subtype (Clusters1 vs Clusters1). Heme 
metabolism was the only significantly dysregulated pathway between two ASD subtypes (Clusters 3 & 4) and TD. Considering 
the heterogeneity in ASD, it is likely to miss some transcriptomics dysregulation when ASD is compared to TD as a whole group. 
To find potential hidden pathway dysregulations that are hidden in diagnosis-level comparisons, we further analyzed the 33 non-
dysregulated pathways and identified seven pathways with differential activity between TD and profound ASD subtype (right 
path). Six pathways showed higher activity in the profound ASD subtype (Cluster 4), while one (APICAL SURFACE) displayed 
the opposite pattern. Overall, 11 hallmark pathways exhibited a continuum of dysregulation, aligning with the phenotypic 
severity of ASD subtypes. 
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Figure 4: A. Network visualization depicting the interplay among the 11 dysregulated pathways. Left Network: edge thickness 
represents the number of shared genes between pathway pairs, while node size corresponds to the -log(adjusted p-value) when 
comparing the ASD profound subtype to the TD group within cluster1. Colored nodes highlight significant dysregulation 
(adjusted p-value <= 0.1) between ASD subtypes (cluster 3 and cluster 4), with color intensity reflecting the -log(adjusted p-
value) when comparing the ASD profound subtype to the mild ASD subtype in cluster3. Additionally, node shape indicates the 
direction of dysregulation, with upright triangles representing upregulation in the ASD compared to TD and upregulation in ASD 
profound subtype to the mild ASD subtype and inverted triangles representing downregulation. B. Brain activation based on 
fMRI data from 69 toddlers during natural sleep. Clusters 3 and 4 exhibited reduced temporal lobe activation compared to 
cluster 1. No significant differences were found between profound and mild ASD subtypes, likely due to the small sample size. 
Note: Regions are visualized for simplicity and are not exactly the same as those used as ROIs. C. Longitudinal assessment of 
outcome disparities between two ASD clusters, conducted through a mixed effect model analysis across four primary clinical 
measures. Notably, three clinical metrics exhibited significant differences between the two clusters (p-value<5E-2). Of particular 
interest is the trajectory observed in the ELC measure: individuals in cluster 3 exhibit improvement with age, whereas those in 
cluster 4 display a contrasting trend (p-value = 2E-03). A similar pattern is evident in the ABC metric (p-value = 1.6E-02). In 
terms of socialization, both clusters show a decline, yet cluster 3 exhibits a shallower slope (p-value = 3.7E-02). Furthermore, 
distinct changes in symptom severity are discernible between the clusters: while cluster 4 demonstrates relative stability, cluster 
3 experiences a worsening trend (although the difference is less pronounced; p-value = 1.1E-01). Right network: the same 
dysregulated pathways which are linked to the ASD-related biological processes. Also, three pathways (MYC TARGETS V1 and 
V2, and OXIDATIVE PHOSPHORYLATION) are significantly over active prenatally according to gene expression data from 
developing brain (Brainpan database).  
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