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 Abstract 

The upper respiratory tract (URT) virome is crucial in respiratory health and response to 

pathogens. While common respiratory viruses are well-studied, the presence and 

potential impact of giant DNA viruses, such as Mimiviridae, in the human URT remain 

underexplored. This study employed a whole genome metagenomics approach to profile 

the URT virome of 48 SARS-CoV-2-positive patients from central India. Mimiviridae 

reads were detected in two elderly male patients with severe acute respiratory infection 

(SARI) or influenza-like illness (ILI), contributing to 24% and 44% of the total virome in 

their samples. The dominant species were Acanthamoeba polyphaga mimivirus and 

Moumouvirus. Although Mimiviridae are not traditionally associated with human 

respiratory infections, their presence in SARS-CoV-2 patients raises questions about 

their potential role in co-infections and disease severity, particularly in individuals with 

ongoing respiratory infections. These findings underscore the need to investigate further 

giant viruses' clinical significance, transmission, and pathogenicity in humans. Future 

research should focus on their epidemiology and the development of improved 

diagnostic tools to assess their contribution to human health. 
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1. Introduction 

The upper respiratory tract (URT) virome has an essential role in the respiratory health 

of humans. Depending on the context, the virome interacts with the host’s immune 

system and could either enhance or dampen the host’s immune responses to 

pathogenic viruses1. Certain viruses that are otherwise part of normal virome during a 

respiratory infection can exacerbate conditions like asthma and chronic obstructive 

pulmonary disease (COPD)2,3,4.  

 

Therefore, it is crucial to understand the dynamics of the URT virome and its interactions 

with the host immune system and other constituents of the URT microbiome, such as 

bacteria and fungi. Common respiratory viruses and their role in the URT microbiome 

are adequately explored through Metagenomics, qRTPCR and viral culture-based 

studies5,6,7,8. However, giant DNA viruses like Mimivirus have also been reported in 

human respiratory samples suspected of respiratory illness 9,10,11,12. Studies about giant 

viruses are generally limited due to the initial limitations of molecular detection and 

culturing13. 

 

Therefore, the potential role of these giant viruses in the URT microbiome has yet to be 

thoroughly investigated. Several researchers have used metagenomic approaches to 

overcome these limitations14,15,16, as the metagenomic approach provides a holistic 

insight into compositional and functional aspects of URT virome. Since its unexpected 

discovery in 1992 in Bradford, England, among the samples from a cooling tower during 

a pneumonia outbreak investigation17, Mimivirus has traditionally been associated with 

respiratory illness. However, the evidence for this association is relatively sparse and 

conflicting; there are in Vivo studies in mice models suggesting the role of Mimivirus in 

inducing pneumonia18 in addition to this, there are studies where seroconversion against 

Mimivirus is reported in humans 19,20, contrary to this there are studies ruling out the 

causative association of Mimivirus with pneumonia 21. 

 

Pneumonia is also a common manifestation of respiratory illness caused by SARS-CoV-

2 infection; therefore, it is imperative to investigate the presence of Mimivirus in COVID-

19 patients and their potential role in disease outcomes. Testing laboratories worldwide 

still have large repositories of URT swab samples that were collected for SARS-CoV-2 

molecular testing and genome surveillance during the COVID-19 pandemic. These 
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samples may serve as a starting point for large-scale studies investigating the 

composition of URT virome using a metagenomic approach.  

 

Therefore, we have decided to retrospectively investigate the URT samples using 

untargeted metagenomics. These samples were received initially at our lab for SARS-

CoV-2 genome surveillance from districts of the Vidarbha region of central India. In this 

study, we have used the untargeted metagenomics-based approach for profiling the 

URT virome of SARS-CoV-2 patients from central India. The metagenomic data 

revealed some interesting facets of the URT microbiome in SARS-CoV-2 patients, 

including detecting Mimivirus DNA reads from URT samples of SARS-CoV-2 patients.  

 

2. Materials and methods 

The materials and methods were as per Tomar and Khairnar 2024 22. Briefly, the 

modifications to the methodology used for this work are as follows: the threshold of 

nucleotide (NT) reads per million (rPM) ≥ 5, and alignment length ≥ 35 was used, Krona charts 

were generated from Centrifuge23 classification data using the Commander bioinformatics 

platform24, and CZid’s taxonomic tree view feature was used for taxonomic tree 

visualisation. 

 

The sequencing data were analysed using the Chan Zuckerberg ID (CZid) software. 

ERCC sequences were removed with Bowtie2, and further filtering was done with fastp 

to eliminate adapters, low-quality reads, short reads, low-complexity regions, and reads 

with undetermined bases. Human DNA reads were removed using Bowtie2 and HISAT2, 

and duplicate sequences were filtered out using CZid-dedup. Using GSNAP, 

RAPSearch, Minimap2, and the Diamond tool, non-human reads were aligned to the 

NCBI nucleotide (NT) and protein (NR) databases. Short reads were assembled into 

contigs using SPADES, and contig-read associations were restored with Bowtie2. 

BLAST analysis was performed on contigs against the NT and NR databases. 

The nasopharyngeal and oropharyngeal (NP-OP) swab samples were collected in Viral 

Transport Medium (VTM) by trained staff at healthcare centres and SARS-CoV-2 testing 

labs in the Vidarbha region of Maharashtra, India. Aliquots of samples were stored at -

80°C, and 48 samples were selected for whole-genome metagenomics (WGMG) 

sequencing. The participants had a median age of 36 years (IQR: 16-65), with half of the 

samples from females. 
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The DNA extraction was performed using the QIAamp DNA Microbiome Kit, and quality 

control was carried out with Qubit and Nanodrop. Libraries were prepared with the 

QIAseq FX DNA Library Kit, and sequencing was conducted on the NextSeq 550 

platform. 

 

3. Results 

Mimiviridae reads were detected in 2 (S3 & S21) out of 48 upper respiratory tract 

samples obtained from SARS-CoV-2-positive patients. These two samples were from 

male patients in their 70s, both residing in Nagpur. These patients approached the same 

state-run hospital with severe acute respiratory infection (SARI) and/or influenza-like 

illness (ILI) symptoms in April 2023. As per the state’s public health protocol, the hospital 

sent their samples to our lab for SARS-CoV-2 molecular testing, and after confirming 

SARS-CoV-2 with qRTPCR, these samples were used for SARS-CoV-2 genome 

surveillance through whole genome sequencing (WGS). Aliquots of these positive 

samples were subsequently used for whole genome metagenomics. However, further 

information about the hospitalisation, disease severity, and post-treatment progression 

of these patients was unavailable as they had not sought any in-patient care at that 

hospital. 

 

In the metagenome composition of sample S03, the Mimiviridae family contributed 24% 

and 0.01% of the total virome reads and overall microbiome reads, respectively. The 

most abundant species within this family was Acanthamoeba polyphaga mimivirus, 

comprising 53%, followed by Moumouvirus at 46% and Cafeteria roenbergensis virus at 

1% of the Mimiviridae. Other viral families were detected in minor proportions. In sample 

S21, the virome composition showed a similar dominance of Mimiviridae, representing 

44% of the total virome and 0.1% of overall microbiome reads, respectively, with 

Acanthamoeba polyphaga mimivirus accounting for 51% within the Mimiviridae reads, 

followed by Moumouvirus at 47% and Cafeteria roenbergensis virus at 1%. (Figure 1) 

 

For sample 3 (Figure 2), a total of 2,031,920 reads were analyzed for generating a 

taxon tree, of which 15 rows of the viral taxon table passed user-defined filters 

(Background: None, Categories: Viruses Non-Phage, Threshold filters: Nucleotide read 

per million (NT rpm) >= 5, Read Specificity: All, Tree Metric: Nucleotide read counts). 
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This sample shows significant members of the Mimiviridae family, including 

Acanthamoeba polyphaga mimivirus, Tupanvirus soda lake, and Megavirus chiliensis, 

along with non-genus-specific reads in the Siphoviridae family. For sample 21 (Figure 

3), 2,035,154 reads were processed, and 26 rows met the filtering criteria. This sample 

revealed additional viral taxa, including Mimivirus U306, Megavirus vitis, Lumpy skin 

disease virus, and Cafeteria roenbergensis virus, along with non-genus-specific reads 

from the Siphoviridae, Myoviridae, and Podoviridae families. The two samples 

collectively demonstrate the broad viral diversity captured, particularly within the 

Mimiviridae family and associated viral families 

 

Mimivirus and Tupanvirus are the two abundant taxa in samples S03 and S21. Figure 4 

(boxes a and b) shows the coverage metrics for Mimivirus in samples S03 and S21, 

respectively. In both samples, consistently low viral genome coverage was observed. 

Figure 4 (boxes c and d) shows the coverage metrics for Tupanvirus in the same 

samples. Like Mimivirus, Tupanvirus too exhibits lower genome coverage in S03 (box c) 

and S21 (box d). 
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4. Discussion 

The detection of Mimiviridae reads in two elderly SARS-CoV-2 patients with SARI/ILI 

highlights a significant but underexplored aspect of viral co-occurrence in human 

disease. While these giant DNA viruses are primarily known to infect amoebae, their 

presence in the upper respiratory tract of humans, particularly in the context of co-

infection with SARS-CoV-2, raises important questions about their potential role in 

human health and disease. 

 

Implications of Co-Occurrence of Giant Viruses in Respiratory Samples 

The presence of such giant DNA viruses may indicate that the human respiratory 

system, under certain conditions, can harbor a broader diversity of viruses than 

commonly assumed. Although these viruses are not classically associated with human 

diseases, their detection in respiratory samples warrants further investigation into 

whether they could play a role as opportunistic pathogens, particularly in immuno-

compromised individuals, such as in cases of primary infections like COVID-19. 

Given that both patients were elderly, a population typically more vulnerable to severe 

respiratory infections, several reports suggest that Mimiviridae could exacerbate or 

complicate respiratory illnesses18,19,20. However, the exact mechanisms through which 

giant viruses belonging to the Mimiviridae family could influence disease severity remain 

unknown 25. However, few studies have reported Mimiviridae influencing the host 

immune response 26 or their interaction with other viral or microbial pathogen27,28  

 

Future Research Directions 

The clinical relevance of Mimiviridae in respiratory infections needs to be clarified. More 

extensive studies will be required to assess the baseline prevalence of these viruses in 

different populations, particularly in patients with respiratory conditions such as ILI/SARI. 

Additionally, controlled studies should be conducted to determine whether these viruses 

are normal respiratory tract flora or contribute to disease severity through co-infections 

or secondary infections. Another critical area of research would be investigating the 

environmental reservoirs29,30 and transmission routes of Mimiviridae in humans. As these 

viruses are known to thrive in water and soil environments, understanding how they 

enter the human respiratory system could provide critical insights into the mechanism of 
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their interaction with humans. One of the possible routes of Mimiviridae in humans could 

be through Mimiviridae hosts, such as free-living amoeba from the environment. 

Given that viruses from the Mimiviridae family are commonly found in water and soil 

environments, their presence in the URT could be due to the patient's consumption of 

contaminated water or food. The development of advanced metagenomic techniques 

that can more accurately detect and quantify low-abundance viral taxa like Mimivirus and 

Tupanvirus would be beneficial 31,32. Improvements in bioinformatics tools and refinement 

of thresholds for viral read detection could help address the challenges of low genome 

coverage and enhance the reliability of viral identification in clinical and environmental 

samples 33,34. 

 

Limitations and Challenges 

Despite the intriguing nature of these findings, several limitations must be considered. 

The low genome coverage was observed for Mimiviridae reads in both samples. While 

their detection was confirmed using stringent filtering criteria, the low abundance of viral 

reads means we cannot definitively conclude that these viruses were actively replicating 

in the patients. The lack of detailed clinical follow-up data for these patients limits our 

ability to draw correlations between the presence of Mimiviridae and disease outcomes. 

Future studies should aim to integrate detailed clinical data with metagenomic findings to 

better understand the role of viral co-infections. 

 

Conclusion 

Detecting Mimivirus and Tupanvirus in SARS-CoV-2-positive patients opens up new 

questions about the potential interaction between large DNA viruses and human health, 

particularly regarding respiratory infections. While the clinical significance of these 

viruses remains unclear, their presence in the respiratory tract, especially in vulnerable 

populations, underscores the need for further investigation. Future research should 

focus on the epidemiology, pathogenicity, and transmission dynamics of Mimiviridae in 

humans, as well as the development of more robust diagnostic tools to better 

characterize their role in co-infections and disease outcomes. 
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 Figure Legends 

 

Figure 1: Krona Charts boxes a and c depicting the virome composition of S3 and S21, 

showing a predominant representation of Mimiviridae, with other notable viral families 

including Myoviridae, Podoviridae, and various phages. This highlights the presence of a 

diverse range of viral species within the sample. Boxes b and d depict the viral diversity 

within the Mimiviridae family. 

 

Figure 2: Taxonomic tree for sample S03, based on 2,031,920 reads. Mimiviridae, 

including Acanthamoeba polyphaga mimivirus, Tupanvirus, and Moumouvirus, along 

with non-genus-specific reads from Siphoviridae. 

 

Figure 3: Taxonomic tree for sample S21, based on 2,035,154 reads. Key viruses 

include Mimivirus U306, Megavirus vitis, and Lumpy skin disease virus, with additional 

non-genus-specific reads from Siphoviridae, Myoviridae, and Podoviridae. 

 

Figure 4: Coverage metrics for Mimivirus and Tupanvirus in samples S03 and S21. 
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Megavirus chiliensis

Bandra megavirus

Name Type: Scientific | Background: None | Categories: Viruses Non-Phage | Threshold filters: NT rPM >= 5 | Read Specificity: All | Tree Metric: NT r (total reads)

S03

The Tree values are derived from 2,031,920 reads (including 2,000,000 unique reads), randomly subsampled from reads that passed both host and quality filtering. Of the 7,948 total rows, 15 met the filtering criteria.
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