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Pediatric Long COVID has been associated with a wide variety of symptoms, conditions, and organ 

systems, but distinct clinical presentations, or subphenotypes, are still being elucidated.  In this 

exploratory analysis, we identified a cohort of pediatric (age <21) patients with evidence of Long COVID 

and no pre-existing complex chronic conditions using electronic health record data from 38 institutions 

and used an unsupervised machine learning-based approach to identify subphenotypes. Our method, an 

extension of the Phe2Vec algorithm, uses tens of thousands of clinical concepts from multiple domains 

to represent patients’ clinical histories to then identify groups of patients with similar presentations. The 

results indicate that cardiorespiratory presentations are most common (present in 54% of patients) 

followed by subphenotypes marked (in decreasing order of frequency) by musculoskeletal pain, 

neuropsychiatric conditions, gastrointestinal symptoms, headache, and fatigue.  
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INTRODUCTION 

Long COVID [or the closely related post-acute sequelae of COVID-19 (PASC)] is a condition characterized 

by persistence or development of symptoms or health conditions after SARS-CoV-2 infection; the initial 

CDC definition set a threshold of 4 or more weeks from acute infection[1]. Incidence estimates among 

pediatric patients who have had COVID vary substantially, depending on factors such as breadth of 

symptoms considered and how long they persist[2,3]. Studies of the clinical manifestations and 

underlying mechanisms of Long COVID point to a wide variety of symptoms, conditions, and body 

systems affected [2–10], and understanding of the specific subtypes is still developing.   

Presentations of Long COVID may differ by both disease-specific and patient-specific factors, and 

accounting for these differences may be important for both Long COVID research and patient care. Long 

COVID studies in adult populations may not apply to children due to several factors, including symptom 

expression and attribution, marked age-related differences in the biology of the immune system, 

patterns of healthcare use, burden of comorbidities, and altered impact of social determinants of 

health.  At the variable level, symptoms and conditions affecting the respiratory, circulatory, nervous, 

musculoskeletal, and digestive symptoms have been shown to occur significantly more frequently in the 

post-acute period following SARS-CoV-2 infection as compared with SARS-CoV-2 negative control 

cohorts. While this heterogeneity has been well-documented, less is known about patient-level co-

occurrences of these symptoms and conditions in pediatric populations. Such an analysis would point to 

clinical subphenotypes of Long COVID, help clarify a more specific definition of Long COVID, and could 

provide insight into pathophysiological mechanisms and possible treatment responses that may be 

specific to certain clinical presentations of Long COVID.  

Electronic Health Records (EHRs) provide a useful source of data for identifying Long COVID 

subphenotypes as they capture clinically relevant information for a large and longitudinal cohort of 

patients. Furthermore, the heterogeneity of Long COVID signs, symptoms, and health-related conditions 

suggests that subphenotypes may need to be identified by incorporating many potentially relevant 

variables, including diagnoses, procedures, and medications. EHR-based studies have identified Long 

COVID subphenotypes in adult populations[11,12]. Subphenotypes have also been characterized in 

children with Multisystem Inflammatory Syndrome in Children (MIS-C), a form of Long COVID by 

definition that is considered a distinct entity [13][14]. 

 

The goal of this study is to identify subphenotypes in a large cohort of pediatric patients with evidence 

of non-MIS-C Long COVID [15]. Prompted by the need to analyze a wide range of clinical variables to 

detect the many potential manifestations of Long COVID as well as their co-occurrences, we employ an 

unsupervised machine-learning method based on clinical concept embeddings, an extension of the 

Phe2Vec automated disease phenotyping algorithm, which is an adaptation of a natural language 

processing method to clinical data[16]. The foundation of our method is a concept embedding model 

trained from the clinical facts of 9.8 million patients to produce high-dimensional numeric 

representations of over 70 thousand unique diagnosis, procedure, and medication concepts. We then 

apply this model to represent and cluster the clinical trajectories of a cohort of pediatric patients with 

evidence of Long COVID. 

 

RESULTS 

Concept embedding model 
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For the first stage of our unsupervised machine learning-based pipeline for identifying Long COVID 

subphenotypes, we trained a concept embedding model from the clinical histories of 9,168,152 patients 

in the pediatric RECOVER EHR data source (Figure 1). This resulted in 200-dimensional vector 

representations of 77,337 concepts across the combined vocabularies of diagnosis, procedure, and 

medication codes.  

Long COVID cohort 

There were 17,525 children and adolescents at 38 medical institutions identified as having evidence of 

Long COVID by a rules-based algorithm on the basis of a Long COVID diagnosis or post-acute evidence of 

Long COVID-associated diagnoses following evidence of SARS-CoV-2 infection [15]; patients with 

evidence of complex chronic disease prior to infection were excluded from the cohort. We refer to the 

cohort of patients with evidence of Long COVID as identified by this algorithm as the ‘Long COVID 

cohort.’ We randomly split this group into two cohorts (stratifying by site to ensure similar proportions 

of patients in each group), resulting in 8,757 in cohort A (training cohort) and 8,768 in cohort B 

(validation cohort), with similar distributions of all descriptive variables (Table 1). A plurality of patients 

in the ong COVID cohort were in the age 16-20 group (30.4% overall) and a majority were female 

(54.5%). Patients in this cohort were more likely to have been infected with SARS-CoV-2 during the 

November 2021-February 2022 period, coinciding with the Omicron wave, than in other time periods. 

Moderate and severe acute COVID-19 presentations were uncommon (4.9% and 3.2%, respectively). 

Thirty-seven percent of the cohort had evidence of at least one chronic disease that did not meet the 

definition of a complex chronic condition. 

 

Subphenotype Identification Pipeline 

The subphenotype identification pipeline (consisting of applying the concept embedding model to the 

post-acute clinical histories of the Long COVID cohort) was first applied to cohort A to tune model 

hyperparameters; this is described in more detail in the supplement. The final model was then run once 

more on cohort A and on cohort B (the validation cohort). This resulted in 11 clusters identified in cohort 

A and 12 clusters in cohort B. Descriptive analyses, further described below, were performed on these 

clusters and are reported in the supplement (Figures 2S A-B and Tables 1S A-B). From these analyses, 

clusters were assigned clinically meaningful names and further grouped into subphenotypes. Cluster 

groupings which constitute the subphenotypes are shown in Tables 1S A-B and Figures 2S A-B. Finally, 

we performed descriptive analyses on the subphenotypes—for cohort B, these are shown in Table 2 and 

Figures 2 and 3.  

 

Cluster and subphenotype characterization 

For each identified cluster (and subsequent subphenotype), we calculated the proportions of patients 

with diagnoses in 25 groups of Long COVID-associated condition groups (Figure 3, Figures 2S A-B). To 

differentiate presentations, we used Bonferroni-adjusted pairwise chi
2  

testing for each combination of 

condition group and patient group (cluster, subphenotype), presented in a compact letter display (CLD) 

format superimposed over the heatmaps. Additionally, we summarized patient characteristics and the 

most common diagnoses in each cluster and subphenotype (Table 2, Tables 1S A-B). Results for cohort B 

are described below—corresponding results for cohort A are shown in the supplement. We additionally 

summarized utilization patterns (Figure 6S) and presence of pre-existing (non-complex) chronic 

conditions (Figure 7S). 
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Cardiorespiratory presentations were most common, representing 53.8% of patients. This subphenotype 

(“Respiratory/cardiac symptoms”) was characterized by a statistically significantly greater proportion 

(56.7%) of respiratory diagnoses than in any other subphenotype (Figure 3). The respiratory/cardiac 

subphenotype is further stratified into six cluster-specific presentations differing by severity, age, post-

acute utilization trajectories, and predominance of upper versus lower respiratory diagnoses (Table 1S-B 

and Figure 2S-B, Figure 6S). 

Pain-related diagnoses distinguished a subphenotype (“Musculoskeletal pain”) representing 13.9% of 

patients, with "other chronic pain” as the most common diagnosis code. A third subphenotype 

(“Neuropsychiatric conditions”, representing 10.9% of patients) was characterized by a statistically 

significantly greater proportion of neuropsychiatric condition diagnoses than other subphenotypes, with 

anxiety disorder as the most common specific diagnosis.  A fourth subphenotype (“Gastrointestinal 

symptoms”, representing 9.3% of patients) was characterized by a statistically significantly greater 

proportion of gastrointestinal diagnoses than other subphenotypes. A fifth subphenotype, “Headache” 

(representing 7.1% of patients), was characterized by a statistically significantly greater proportion of 

headache diagnoses than other subphenotypes—neuropsychiatric diagnoses were relatively more 

common in this subphenotype as well, and patients with this subphenotype had the highest volume of 

post-acute utilization with the exception of a more severe lower respiratory cluster (Figure 6S). Finally, a 

subphenotype (“Fatigue”, representing 5.0% of patients) was characterized by statistically significantly 

greater proportions of both fatigue and malaise diagnoses (41.7%) as well as Long COVID diagnoses 

(63.5%); diagnoses of chest pain, arrythmias, and respiratory signs and symptoms were common in this 

subphenotype as well. 

Comparison to cohort A and to a matched control cohort 

Subphenotypes identified in cohort B resembled those in Cohort A (Figures 1S, 4S). Cohort A had five 

cardiorespiratory clusters constituting a respiratory/cardiac subphenotype representing 50.8% of 

patients. At the more granular level, the clusters in cohort A had similar characterizations (by severity, 

age, upper vs lower respiratory) as those in cohort B. Subphenotypes representing musculoskeletal pain, 

neuropsychiatric conditions, gastrointestinal symptoms, headache, and fatigue were identified in similar 

proportions in cohort A. The fatigue cluster in cohort A had a relatively smaller proportion of fatigue and 

malaise diagnoses than the corresponding cluster in cohort B and a great proportion of non-specific 

Long COVID diagnoses; cardiac diagnoses were also relatively less common in this cluster than in the 

corresponding fatigue cluster in cohort B. 

A cohort of patients with no evidence of COVID-19 (with index date defined by a random visit during the 

study period) was matched to cohort B using nearest neighbor propensity score matching on sex, racial 

and ethnic group, time period of index date, institution, and presence of chronic condition across each 

of the PMCA body systems. Patients with a history of complex chronic conditions were similarly 

excluded from this control cohort. These covariates were well-balanced after matching (absolute SMDs 

all less than 0.1). There were 16 clusters identified in this control cohort; Figure 3S shows proportions of 

diagnoses in each of the 25 Long COVID-associated diagnosis groups. A visualization of cluster centroids 

as identified in cohorts A, B, as well as the matched control cohort is shown in Figure 4S and enables 

comparison of subphenotypes/clusters identified in the three cohorts. 

Demographic characteristics of clusters 
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There were substantial demographic differences in our reported subphenotypes (Table 2), most stark at 

the more granular cluster level (Table 1S-B). Patients younger than 4 years were primarily represented in 

the respiratory/cardiac subphenotype, particularly in the lower respiratory, more severe and upper 

respiratory clusters. Conversely, older children were primarily represented in the lower respiratory (0B, 

6B), upper respiratory-inflammatory (7B), and non-respiratory clusters. Female patients were relatively 

underrepresented in the respiratory/cardiac and musculoskeletal pain subphenotypes and 

overrepresented in the fatigue, headache, gastrointestinal, and neuropsychiatric subphenotypes. 

Relative to the full cohort, Hispanic patients were overrepresented in the respiratory/cardiac 

subphenotype (particularly upper respiratory, inflammatory-younger and lower respiratory, more 

severe clusters) and the neuropsychiatric conditions subphenotype. Non-Hispanic Black/African-

American patients were overrepresented in the neuropsychiatric conditions, musculoskeletal pain, and 

respiratory/cardiac subphenotypes (particularly the lower respiratory--more severe, upper respiratory--

obstructive, and upper respiratory—inflammatory, younger clusters). Non-Hispanic Asian/Pacific-

Islander patients were relatively overrepresented in the respiratory/cardiac subphenotype. Non-

Hispanic White patients were overrepresented in the fatigue, headache, and musculoskeletal pain 

subphenotypes.  

Sensitivity analyses 

The results of a sensitivity analysis in which patients who were not assigned a cluster were left 

unclustered (rather than assigned the cluster of the nearest centroid) are shown in Figure 5S. 

DISCUSSION 

The heterogeneity of specific Long COVID features in pediatric populations has been catalogued in a 

number of prior studies [5–7,9,17,18]. In this study, we extended this work by characterizing patterns of 

symptoms, signs, medications, and procedures that suggest specific subphenotypes of Long COVID in 

children and adolescents who do not have evidence of existing complex chronic conditions. We applied 

and extended the Phe2Vec algorithm [16] to the problem of subphenotyping, leveraging the high-

dimensional nature of EHR data.  

Our model identified six subphenotypes, with cardiorespiratory presentations identified in about half of 

patients. Other common subphenotypes in order of frequency included musculoskeletal pain, 

neuropsychiatric conditions, gastrointestinal symptoms, headaches, and fatigue. Each subphenotype 

was well-differentiated by a specific group of diagnoses, suggesting that distinct populations may 

manifest these specific Long COVID presentations. Within the respiratory/cardiac subphenotype, we 

identified five more specific clusters, with presentations differentiated by both clinical (upper versus 

lower respiratory, severe and less severe, obstructive and inflammatory) as well as demographic 

characteristics (Table 1S-B). Interestingly, patients with more severe acute infection were classified 

almost entirely in the respiratory/cardiac subphenotype (specifically, within the lower respiratory, 

severe cluster).  

The fatigue subphenotype was somewhat more heterogeneous; in addition to fatigue, cardiac diagnoses 

(chest pain and arrythmias), headaches, musculoskeletal pain, neuropsychiatric symptoms, and POTS-

like symptoms such as dizziness and giddiness were relatively more common, as well as non-specific 

Long COVID diagnoses. Although these more common groups of diagnoses did not always occur in the 

same sets of patients, this constellation of diagnoses is suggestive of myalgic encephalomyelitis/chronic 
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fatigue syndrome (ME/CFS)[19]. Although specific diagnostic codes for ME/CFS exist, and a new ICD-10-

CM code was introduced on 1 October 2023, the disease remains very likely to be under-diagnosed, 

particularly in children [20–22]. In addition, because clinical criteria for ME/CFS require symptoms to 

persist for a minimum of 6 months from onset before assigning the diagnosis, the use of a 28-to-179-day 

observational window following the index infection in this study made it impossible to strictly meet the 

6-month criterion for establishing an ME/CFS diagnosis[23]. It is possible that our fatigue subphenotype 

identifies patients with ME/CFS from the above non-specific diagnoses often associated with it. The 

heterogeneity of this subphenotype may also be responsible for the proximity of this subphenotype to 

cardiorespiratory presentations (Figure 4S) and the somewhat different characterization of this 

subphenotype in Cohort A (Figure 1S). Further work is necessary to analyze the clinical characterization 

of this subphenotype and its reproducibility. 

While fatigue was the most commonly reported Long COVID feature in some studies[6,7], we found 

cardiorespiratory presentations to be the most common subphenotype, with the fatigue subphenotype 

above representing only about 5% of patients. However, diagnoses of fatigue were present across 

multiple subphenotypes (particularly the headache and musculoskeletal pain subphenotypes, in addition 

to the fatigue subphenotype). This suggests that fatigue often presents not in isolation but in 

combination with other aspects of Long COVID and may be present across multiple Long COVID 

manifestations. Other prospective studies may be able to capture fatigue more reliably than EHR data 

sources. 

Commonly reported Long COVID manifestations not clearly identified in this study included a distinctly 

cardiac subphenotype and neurocognitive difficulties (commonly referred to as brain fog). In the case of 

a cardiac subphenotype, as patients with Multisystem Inflammatory Syndrome in Children (MIS-C) were 

excluded from analysis, this suggests that uniquely cardiac presentations may have substantial overlap 

with the MIS-C-affected population. Reported Long COVID manifestations such as neurocognitive 

difficulties/so-called ”brain fog” lack a clear diagnosis and thus may be under-ascertained in EHR data, 

particularly among children. Finally, as our analysis only identified clusters present in at least 2% of the 

population, less common subphenotypes may have instead been grouped with others. 

Compared to Long COVID subtypes identified in EHR-based studies in adult populations [11,12], we 

found both overlap and differences in Long COVID presentations. As in both studies, we found a more 

severe cardiorespiratory cluster within our respiratory/cardiac subphenotype with patterns of 

symptoms overlapping with the multisystem+lab cluster in reference [11] as well as the cardiac/renal 

subtype in reference [12]. Manifestations observed in specific subphenotypes in our study, particularly 

musculoskeletal, gastrointestinal, and neuropsychiatric symptoms, were more likely to be part of 

composite subphenotypes in studies in adult populations; for instance, the musculoskeletal pain 

subphenotype we observed is part of composite subphenotypes, grouped with fatigue in reference [11] 

and with headaches and sleep-wake disorders in reference [12]. This may be a result of different 

methods and particularly different levels of granularity in grouping similar presentations in the two 

studies but may also point to more specific Long COVID manifestations in pediatric populations. 

Similarly, the presence of multiple cardiorespiratory subtypes in this study may point to greater 

heterogeneity in respiratory manifestations of Long COVID in pediatrics.  
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Clustering methods have also been applied to PASC-probable patients in school-age (6-11 years) and 

adolescent (12-17 years) prospective cohorts [24]. Compared to these results, we also identified a 

cluster with high symptom burden (our lower respiratory-more severe cluster within the 

respiratory/cardiac subphenotype) and a predominantly gastrointestinal subphenotype. A headache and 

fatigue cluster in reference [24] resembles both our headache and fatigue subphenotypes. Differences 

include the predominance of a respiratory/cardiac subphenotype in our work which was not identified 

in reference [24]. We note that our respiratory/cardiac subphenotype was effectively the only one 

identified in age 0-4 patients, a population not included in [24]. Additionally, a subphenotype 

characterized by neuropsychiatric conditions was identified in our work but not in reference [24]. 

Conversely, a cluster characterized by loss of taste and smell was identified in the adolescent cohort and 

a cluster characterized by sleep impacts was identified in the school-age cohort in reference [24]. 

Differences between our findings may be due to several factors: difference in age groups select (age 0-

20 in our study versus 6-17 years in [24]) and other cohort inclusion and enrollment criteria, granularity 

and definitions of variables used in clustering (individual diagnosis, medication, and procedure codes 

from EHR data versus presence of 89 symptoms collected by survey).  

Our subphenotype classifications varied by age, sex, race, and ethnicity. Children younger than 4 were 

almost exclusively assigned to the respiratory/cardiac subphenotype (Table 3), mainly divided between 

a more severe lower respiratory cluster (characterized by greater frequency of arrythmias, fluid and 

electrolyte disturbances, hospitalizations, and ICU admissions) and a less severe upper respiratory 

cluster (characterized by cough, fever, and nasal congestion). This may indicate that primarily 

respiratory manifestation of Long COVID affect younger children, may reflect subsequent respiratory 

infections, or reflect general patterns of utilization in younger children, or may be a consequence of 

limitations in parental or child self-reporting of other kinds of symptoms (e.g., headaches or symptoms 

of anxiety disorders). Further, Hispanic and non-Hispanic non-White patients were overrepresented in 

the respiratory/cardiac subphenotype, a finding that has been corroborated in other studies [25]. 

Further exploration of these differences in presentation by sociodemographic characteristics is needed 

to determine whether patterns reflect differences in pathophysiology, symptom reporting, healthcare 

access, or utilization. 

Although patients with complex chronic conditions (e.g., patients with actively treated cancer, muscular 

dystrophy, etc.) were excluded from this study due to the difficulties in attributing post-acute symptoms 

to COVID-19 versus existing conditions, patients with an existing non-complex chronic condition were 

overrepresented in the gastrointestinal and the neuropsychiatric conditions subphenotypes (Table 2); 

this may be suggestive of specific, as yet undetermined risk factors for these subphenotypes, or that 

these presentations manifest as exacerbations of existing chronic conditions evidenced by incident post-

acute diagnoses.    

Results from Cohort A (development cohort) were largely similar to those in Cohort B (validation 

cohort), with all six subphenotypes present in similar proportions in both cohorts (Figures 3, 1S), adding 

validity to our approach. At a more granular level, Cohort A exhibited a similar stratification into 

cardiorespiratory clusters, though one additional cluster characterized by a high proportion of non-

specific Long COVID diagnoses (96.1%) was also identified. Other differences observed between the two 

cohorts were in the characterization of the fatigue subphenotype noted above, as well as the presence 

of two distinct neuropsychiatric conditions clusters in Cohort A versus one in cohort B, and the presence 

of two distinct musculoskeletal pain clusters in Cohort B versus one in cohort A. The heterogeneity of 
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diagnosis, procedure, and medication codes associated with Long COVID together with relative overlap 

between different subphenotypes (e.g., presence of fatigue diagnoses across multiple subphenotypes) 

as well as potential difficulty in assigning subphenotypes to patients with less specific presentations may 

be responsible for these differences between the two cohorts.  

The analysis of a matched control cohort with no evidence of SARS-CoV-2 infection produced 16 clusters 

representing a variety of clinical presentations. Distances between centroids of clusters in the control 

cohort compared to centroids of subphenotypes from the two Long COVID cohorts in Figure 4S show 

that our neuropsychiatric and gastrointestinal subphenotypes appear relatively near to clusters 

identified in the matched control cohort; conversely, the headache, fatigue, and respiratory/cardiac 

subphenotypes are relatively further from any clusters in the matched control cohort. This may indicate 

that headache, fatigue, and respiratory/cardiac subphenotypes of Long COVID are characterized by 

presentations that may be easier to differentiate from other clinical entities, whereas neuropsychiatric 

and gastrointestinal symptoms in patients with Long COVID may present more similarly to those 

exhibited in a more general care-seeking population, and therefore be more difficult to detect. This 

finding may also be a result of the limited ability of the diagnostic codes, prescriptions, and procedure 

codes that were used as input features to the Phe2vec model to describe any differences between 

COVID-associated and non-COVID associated neuropsychiatric or gastrointestinal disease. 

Strengths of this study include use of large multi-site longitudinal EHR data; this enabled us to train a 

concept embedding model from a sufficiently large cohort so as to represent the semantic content of 

tens of thousands of concepts based on the clinical data of 9.1 million patients with greater 

generalizability than models trained on data from a single institution. Further, the novel concept-

embedding-based methods for subphenotyping developed in our study allow us to effectively leverage 

the great variety of data available in EHRs by bringing it to bear on the study of pediatric Long COVID, a 

particularly heterogeneous condition. In place of alternative approaches in which variable definitions 

and groupings in the study of co-occurrence involve extensive curation of study variables which may be 

the source of study bias, concept similarity is learned from context in tens of millions of clinical 

encounters.  

Our study has multiple limitations worth noting. First, the lack of a clinical case definition of Long COVID 

and corresponding ‘gold standard’  cohort meant we were reliant on the clinical rules-based phenotype 

developed in [15]. The Long COVID phenotype algorithm may under-identify patients because of low 

rates of use (i.e., mild cases) or physician underdiagnosis of symptoms, or it may produce false positives. 

The pattern of subphenotypes we identified, however, is consistent with the most commonly reported 

Long COVID symptoms in children [17,18], which lends plausibility to our findings. A second limitation, 

related to the first, is our use of the 28-179 day period following infection for identifying post-acute 

symptoms; symptoms of Long COVID can chance or first appear past the 6 month mark and may take 

longer to be captured in EHRs due to long waits to see a specialist. Our choice of a 6 month cutoff was 

motivated by the increased risk of misattributing symptoms that occur more than six months after the 

index infection as evidence of Long COVID; however, further research is necessary to understand how 

Long COVID presentations vary over time and how these are captured in EHRs. Second, EHR data reflects 

symptoms and conditions managed by clinicians, and if patients do not seek or have access to quality 

care, those data will be missing. A third limitation is the absence of patient laboratory testing results as 

an input to our pipeline; while results of laboratory testing may provide valuable information about 

patients’ Long COVID trajectories, early attempts to use these data mainly clustered patients by volume 
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of utilization (grouping patients into those with high and low frequency of labs) and further investigation 

is necessary to make effective use of laboratory testing in concept embedding models. Fourth, as 

discussed above, subphenotypes which are less common (present in less than 2% of our cohort) or 

poorly captured in EHRs (e.g., “brain fog” or attentional problems, difficulties in school) are less likely to 

be detected. Augmenting structured data with physician notes (i.e., text) is a promising direction for 

capturing these symptoms and subtypes in the future. Fourth, the exclusion of patients with complex 

chronic disease from this study due to difficulties in attribution of symptoms means that subtypes of 

Long COVID defined by worsening of trajectories related to specific chronic conditions are less likely to 

be detected.  

Methodologically, our concept embedding pipeline is an unsupervised algorithm; the lack of a gold 

standard dataset labeling patients with subtypes is a challenge for identifying the accuracy of our 

approach. While tuning pipeline hyperparameters on cohort A and reproducing clinically similar clusters 

in cohort B adds plausibility to our results, data from ongoing observation cohort studies has the 

potential to provide more accurate classification of Long COVID into subtypes and is a promising area for 

future work.  

ONLINE METHODS 

Data source 

This retrospective cohort study is part of the NIH Researching COVID to Enhance Recovery (RECOVER) 

Initiative, which seeks to understand, treat, and prevent the post-acute sequelae of SARS-CoV-2 

infection (22). The RECOVER EHR population includes clinical data for patients at 38 hospital systems 

across the United States. Data were extracted from version 11 of the pediatric RECOVER database, 

comprising 9,835,122 patients with evidence of testing or immunization for SARS-CoV-2 or diagnoses of 

COVID-19 or other respiratory illnesses between January 2019 and December 2022. Institutional Review 

Board (IRB) approval was obtained under Biomedical Research Alliance of New York (BRANY) protocol 

#21-08-508. As part of the BRANY IRB process, the protocol has been reviewed in accordance with 

institutional guidelines. BRANY waived the need for consent and HIPAA authorization. 

 

Study sample 

Although there is a single ICD-10-CM code (U09.9) for post COVID-19 condition, unspecified (introduced 

1 October 2021), it is not consistently applied in pediatrics.  Consequently, use of the diagnosis code 

alone may not produce a representative cohort of patients with Long COVID. To define a larger and 

more representative cohort of patients with evidence of Long COVID, we used the PEDSnet rules-based 

computable phenotype for Long COVID[15]. The algorithm selects SARS-CoV-2 positive patients who had 

diagnoses during the 28-to-179-day post-acute period following infection of either direct clinician-

diagnosed Long COVID (ICD-10-CM U09.9), or incident diagnoses associated with Long COVID in prior 

studies[5,17]. SARS-CoV-2 positive patients are identified by PCR, antigen and serology testing as well as 

the presence of COVID diagnosis codes and prescriptions of the COVID-specific medications 

nirmatrelvir/ritonavir and remdesivir. The index date of SARS-CoV-2 positivity is defined as the date of 

first positive test or COVID diagnosis. For patients who only had a diagnosis of Long COVID (U09.9) or 

Sequelae of other specified infectious and parasitic diseases (B94.8) with no prior SARS-CoV-2 test or 

COVID-19 diagnosis, the index date is imputed as a random date between 28 and 90 days prior to U09.9 

or B94.8 diagnosis. Finally, due to the difficulties in attributing symptoms to Long COVID among patients 

with complex chronic conditions (as computed by Version 2.0 of the Pediatric Medical Complexity 
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Algorithm (PMCA) [26] ), patients with evidence of a complex chronic condition in the three years prior 

to cohort entry were excluded from the cohort. A flowchart describing the cohort definition is shown in 

Figure 2 of reference [15] and the full set of  Long COVID-associated features used in the phenotype is 

listed in the supplementary appendix. Clinical histories of patients in this cohort were studied during the 

28-to-179-day period following the SARS-CoV-2 positivity index date; we use ‘post-acute period’ to refer 

to this time period relative to infection throughout the manuscript. 

 

A matched control cohort of patients with no evidence of COVID was identified and is further described 

in the supplement. 

 

Long COVID subphenotype pipeline 

The unsupervised machine learning-based pipeline used to identify Long COVID subphenotypes in our 

cohort is outlined in Figure 1. Below, we give brief descriptions of the main steps; a more technical 

description, including hyperparameters and methods for validation, is included in the supplement. The 

first two steps follow the approach of the Phe2Vec algorithm for EHR-based automated phenotyping. 

Concept embedding model 

Due to the large number of potentially relevant variables across the condition, drug, and procedure 

domains, we began by constructing numerical (vector) representations of the relevant clinical concepts. 

In the field of natural language processing, word embedding models are often used to produce such 

representations of words in such a way that the sematic relationships between words are encoded in 

their vector representations (e.g., words with similar meanings are represented by vectors that are close 

together). The Phe2Vec algorithm adapts these models, particularly the Word2Vec algorithm [27] to 

structured clinical data. In this analogy, words correspond to clinical concepts (represented by domain-

specific structured codes, e.g., ICD10CM codes for diagnoses) and sentences correspond to 

concatenations of clinical concepts that are recorded in patients’ clinical histories over a given time 

period. 

We trained the concept embedding model from the clinical histories of 9,168,152 patients in the 

pediatric RECOVER EHR data source. Our model uses codes from the following domains and 

vocabularies: conditions (ICD10CM), drugs (RxNorm Clinical Drug Forms), and procedures (ICD10PCS, 

HCPCS, CPT4). We constructed for each patient and each month-long period of their clinical history, a 

sentence consisting of the codes which occurred for that patient during that time period arranged in 

randomly permuted order. This resulted in a corpus of 99,413,139 sentences and yielded vector 

representations for a combined vocabulary of 77,337 concepts. 

Patient clinical history embeddings 

Equipped with the vectors representing structured clinical concepts, the next step in our approach was 

to extend this model to produce similar representations for the post-acute clinical histories of our Long 

COVID cohort. To construct these, we first identified the codes in our vocabularies that occurred in this 

cohort during the 28 to 179 day period following the index date. We restricted attention to only those 

codes that did not occur previously in the 7 day to 6 month washout period prior to the index date. We 

then assembled these codes for each patient in random order into sentences of codes. To construct 

vector representations of these sentences from the already-learned vector representations of codes 

(corresponding to words) we used the Simple but Tough-to-Beat Baseline for Sentence Embeddings [28]. 

The resulting 200-dimensional vectors represent the post-acute clinical histories of our cohort. 
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At this point, our approach deviated from that of Phe2Vec; while the goal of Phe2Vec is to phenotype 

patients by computing similarity between patient clinical trajectories and a given set of seed codes, our 

next step consisted of clustering the Long COVID cohort. 

 

Dimensional reduction and clustering 

While 200-dimensional space is more appropriate for embedding the full set of codes in our vocabulary, 

we found that the sparsity of representations of the post-acute histories of our smaller cohort of Long 

COVID patients impeded effective clustering (‘the curse of dimensionality’). As a result, prior to 

clustering we applied the UMAP algorithm[29] to embed the 200-dimensional vector representations of 

our cohort into 2-dimensional space; we additionally chose 2-dimensional space to facilitate 

visualization of the embedded representations. The irregular shapes and varying densities of clusters 

produced by the UMAP algorithm were not well-suited for k-means or hierarchical clustering algorithms; 

as such, we elected to use the density-based clustering algorithm HDBSCAN[30] to identify clusters in 

the embedded vector representations of the post-acute clinical histories of our cohort after their index 

infection.  Because HDBSCAN does not always assign a cluster and allows some data to remain 

unclustered, we assigned unclustered patients to the cluster whose centroid was nearest to them. Thus, 

in our main analysis, each patient was assigned to (exactly) one cluster. We also conducted a sensitivity 

analysis in which we allowed patients to remain unclustered. 

 

Hyperparameters, model selection, and validation 

For model validation, a 50/50 random split into cohorts A and B was used; to better control for site-

heterogeneity in code usage, we used a site-stratified split (i.e., resulting in equal distributions of 

patients across sites in the two groups). Pipeline hyperparameters were selected by running the pipeline 

and by comparing output on Cohort A (described further in the supplementary appendix). The final 

pipeline was then run on both cohorts. 

Descriptive and statistical analyses 

To summarize the resulting clusters of patients in our cohort, we calculated, for each of 25 groups of  

Long COVID-associated conditions (each defined by a collection of diagnosis codes chosen by 

investigators based on prior work [5,15,17]), the proportions of patients in each patient cluster with an 

incident (using the same washout period above) diagnosis of that feature during the post-acute period. 

We represented these proportions using heatmaps, limiting them to groups of conditions which were 

represented in at least 20% of patients from at least one cluster. To differentiate presentations 

represented by patient clusters, we used Bonferroni-adjusted pairwise � 

2  
testing for each combination 

of condition group and patient clusters, presented in a compact letter display (CLD) format 

superimposed over the heatmap. In this presentation, for each Long COVID-associated feature 

(corresponding to a row in the heatmap), two patient clusters (corresponding to columns) share a letter 

in common exactly when proportions of patients with that feature did not significantly differ between 

the two patient clusters. 

 

We further summarized the patient clusters by patient characteristics including age, sex, and 

race/ethnicity. Additionally, we used the Pediatric Medical Complexity Algorithm to compute presence 

of chronic conditions in the 3 years prior to index date; as complex chronic patients were excluded, only 

non-complex chronic patients (e.g., those with non-progressive and non-malignant conditions affecting 

only one body system, e.g., asthma) were summarized.  We computed the proportion of patients with 

presence of chronic condition across 17 body systems. We also employed the acute pediatric COVID-19 

severity typology developed in reference [31] to categorize patients’ acute infections as asymptomatic, 
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mild (presence of symptoms), moderate (moderately severe COVID-19-related conditions such as 

gastroenteritis and pneumonia), and severe (unstable COVID-19-related conditions, ICU admissions, or 

mechanical ventilation); we then summarized proportions of patients by severity of infection in each 

cluster. We also summarized clinical trajectories by subphenotype over time by three utilization-based 

metrics: number of distinct visits per month, number of distinct providers seen per month, and number 

of body systems affected by month. Finally, we used the descriptive analyses above—particularly the 

distinguishing groups of symptoms and conditions and most common individual diagnoses in each 

cluster—to assign clinically descriptive names to each of the cluster; additionally, we grouped clinically 

similar presentations represented by the patient clusters into Long COVID subphenotypes. 

 

Sensitivity analyses 

To assess the effect of allowing some patients to remain unclustered, we conducted an additional 

sensitivity analysis in which patients not assigned a cluster by HDBSCAN were left unclustered; we 

reproduced the descriptive and statistical analyses above for this assignment of clusters. 

 

Code and availability 

Analyses were conducted using R version 4.0 and Python version 3.8.16. We used the following Python 

libraries: Gensim [32] for training the concept embedding model using the Word2Vec algorithm, UMAP 

[29] for dimensional reduction, and HDBSCAN[30] for clustering. Sentence embeddings were computed 

using Python code accompanying A Simple but Tough-to-Beat Baseline for Sentence Embeddings [28], 

and propensity score matching was conducted using the R MatchIt package [33]. Code used to 

implement the subphenotype pipeline and produce the results of this manuscript is available at 

https://github.com/PEDSnet/recover_pasc_subphenotype_manuscript.   
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Tables and Figures 

Table 1: Characteristics of Study Sample 

  Overall 

N=17,525 

Cohort A 

N=8,757 

Cohort B 

N=8,768 

SMD 

Age group (n/%) <1 1716 (9.8) 873 (10.0) 843 (9.6) 0.028 

 1-4 2655 (15.1) 1346 (15.4) 1309 (14.9)  

 5-11 3823 (21.8) 1900 (21.7) 1923 (22.0)  

 12-15 4010 (22.9) 1963 (22.4) 2047 (23.4)  

 16-20 5321 (30.4) 2686 (30.6) 2635 (30.1)  

Sex (n/%) Female 9555 (54.5) 4777 (54.5) 4778 (54.6) 0.002 

 Male/Other/Unknown 7970 (45.5) 3991 (45.5) 3979 (45.4)  

Race/ethnicity (n/%) Hispanic 3956 (22.6) 2005 (22.9) 1951 (22.3)  

 Asian/PI 570 (3.3) 314 (3.6) 256 (2.9) 0.048 

 Black/AA 2394 (13.7) 1164 (13.3) 1230 (14.0)  

 Multiple 388 (2.2) 183 (2.1) 205 (2.3)  

 Other/Unknown 1481 (8.5) 730 (8.3) 751 (8.6)  

 White 8736 (49.8) 4372 (49.9) 4364 (49.8)  

Cohort entry period (n/%) March-June 2020 356 (2.0) 167 (1.9) 189 (2.2) 0.056 

 July-October 2020 928 (5.3) 492 (5.6) 436 (5.0)  

 November-February 

2021 

2289 (13.1) 1092 (12.5) 1197 (13.7)  

 March-June 2021 1261 (7.2) 622 (7.1) 639 (7.3)  

 July-October 2021 2851 (16.3) 1477 (16.8) 1374 (15.7)  

 November-February 

2022 

6195 (35.3) 3111 (35.5) 3084 (35.2)  

 March-June 2022 2165 (12.4) 1076 (12.3) 1089 (12.4)  

 July-August 2022 1480 (8.4) 731 (8.3) 749 (8.6)  

ICU (acute) (n/%) 0 17220 (98.3) 8621 (98.3) 8599 (98.2) 0.010 

 1 305 (1.7) 147 (1.7) 158 (1.8)  

Hospitalized (acute) (n/%) 0 16346 (93.3) 8169 (93.2) 8177 (93.4) 0.008 
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 1 1179 (6.7) 599 (6.8) 580 (6.6)  

COVID-19 acute phase severity of illness (n/%) Asymptomatic 11093 (63.3) 5524 (63.0) 5569 (63.6) 0.035 

 Mild 5004 (28.6) 2540 (29.0) 2464 (28.1)  

 Moderate 865 (4.9) 444 (5.1) 421 (4.8)  

 Severe 563 (3.2) 260 (3.0) 303 (3.5)  

Presence of existing chronic condition (n/%) 0 11034 (63.0) 5542 (63.2) 5492 (62.7) 0.010 

 1 6491 (37.0) 3226 (36.8) 3265 (37.3)  
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Figure 1: Subphenotype model flowchart 
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Figure 2: Subphenotype embeddings of PASC cohort B clinical histories 
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Figure 3: Heatmap of incident post-acute diagnoses, cohort B 

Legend: Summary of clusters by presence of incident PASC-associated diagnoses. To be counted, diagnoses in the respective clusters had to 

occur in the 28-179 post-acute period following infection and not have been present in the 18 months prior. Cells display proportions of patients 

in the cluster with the corresponding PASC-associated diagnosis group, and the results of Compact Letter Display (CLD) analysis are represented 

in superscripts. For a given incident PASC-associated diagnosis group (row), two clusters share the same letter when proportions did not differ 

significantly (via multiple-testing adjusted chi squared testing) between the two clusters. 
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Table 2: Demographic and Clinical Characteristics of Subphenotype Groups in Cohort B 

Note: cells marked with an asterisk have been modified by a random count between 0 and 4 to prevent reidentification of that cell or a cell in 

the same group. s 

 Subphenotype 

Fatigue  

(441, 5.0%) 

Gastrointestinal 

symptoms 

 (810, 9.2%) 

Headache  

(620, 7.1%) 

Musculoskeletal 

pain  

(1218, 13.9%) 

Neuropsychiatric 

conditions (952, 

10.9%) 

Respiratory/cardiac 

symptoms 

(4716, 53.85%) 

Age group 

(n/%) 

<1 0 (0%) 6 (0.7%) 0 (0%) 17 (1.4%) 2 (0.2%)* 816 (17.3%) 

 1-4 2 (0.4%)* 49 (6%) 16 (2.6%) 60 (4.9%) 23 (2.4%)* 1162 (24.6%) 

 5-11 90 (20.4%)* 233 (28.8%) 116 (18.7%) 315 (25.9%) 190 (20%) 978 (20.7%) 

 12-15 145 (32.9%) 206 (25.4%) 233 (37.6%) 419 (34.4%) 298 (31.3%) 746 (15.8%) 

 16-20 204 (46.3%) 316 (39%) 255 (41.1%) 407 (33.4%) 439 (46.1%) 1014 (21.5%) 

Sex (n/%) Female 285 (64.6%) 536 (66.2%) 421 (67.9%) 610 (50.1%) 643 (67.5%) 2283 (48.4%) 

 Male/Other

/Unknown 

156 (35.4%) 274 (33.8%) 199 (32.1%) 608 (49.9%) 309 (32.5%) 2433 (51.6%) 

Race/ethnici

ty (n/%) 

Black/AA 43 (9.8%) 105 (13%) 73 (11.8%) 177 (14.5%) 139 (14.6%) 693 (14.7%) 

 Asian/PI 11 (2.5%) 19 (2.3%) 6 (1%) 22 (1.8%) 29 (3%) 169 (3.6%) 

 Hispanic 69 (15.6%) 183 (22.6%) 100 (16.1%) 193 (15.8%) 251 (26.4%) 1155 (24.5%) 

 White 264 (59.9%) 426 (52.6%) 368 (59.4%) 710 (58.3%) 457 (48%) 2139 (45.4%) 

 Multiple 9 (2%) 18 (2.2%) 16 (2.6%) 34 (2.8%) 15 (1.6%) 113 (2.4%) 

 Other/Unkn

own 

45 (10.2%) 59 (7.3%) 57 (9.2%) 82 (6.7%) 61 (6.4%) 447 (9.5%) 

Cohort entry 

period (n/%) 

Mar-Jun 

2020 

4 (0.9%)* 21 (2.6%) 10 (1.6%) 44 (3.6%) 19 (2%) 92 (2%) 

 Jul-Oct 2020 17 (3.9%)* 50 (6.2%) 38 (6.1%) 108 (8.9%) 52 (5.5%) 170 (3.6%) 

 Nov-Feb 

2021 

47 (10.7%) 148 (18.3%) 102 (16.5%) 239 (19.6%) 153 (16.1%) 508 (10.8%) 

 Mar-Jun 

2021 

33 (7.5%) 50 (6.2%) 43 (6.9%) 114 (9.4%) 62 (6.5%) 337 (7.1%) 

 Jul-Oct 2021 79 (17.9%) 113 (14%) 102 (16.5%) 172 (14.1%) 147 (15.4%) 761 (16.1%) 
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 Nov-Feb 

2022 

155 (35.1%) 295 (36.4%) 220 (35.5%) 390 (32%) 346 (36.3%) 1678 (35.6%) 

 Mar-Jun 

2022 

59 (13.4%) 79 (9.8%) 59 (9.5%) 89 (7.3%) 112 (11.8%) 691 (14.7%) 

 Jul-Aug 

2022 

47 (10.7%) 54 (6.7%) 46 (7.4%) 62 (5.1%) 61 (6.4%) 479 (10.2%) 

ICU (acute) 

(n/%) 

 0 (0%) 2 (0.2%)* 5 (0.8%) 7 (0.6%) 6 (0.6%) 139 (2.9%) 

Hospitalizati

on (acute) 

(n/%) 

 4 (0.9%)* 56 (6.9%) 21 (3.4%) 40 (3.3%) 34 (3.6%) 425 (9%) 

COVID acute 

phase 

severity of 

illness (n/%) 

Asymptoma

tic 

336 (76.2%) 451 (55.7%) 404 (65.2%) 760 (62.4%) 624 (65.5%) 2994 (63.5%) 

 Mild 89 (20.2%) 287 (35.4%) 184 (29.7%) 392 (32.2%) 290 (30.5%) 1222 (25.9%) 

 Moderate 11 (2.5%) 62 (7.7%) 23 (3.7%) 49 (4%) 28 (2.9%) 248 (5.3%) 

 Severe 5 (1.1%) 10 (1.2%) 9 (1.5%) 17 (1.4%) 10 (1.1%) 252 (5.3%) 

Presence of 

existing 

chronic 

condition 

(n/%) 

 160 (36.3%) 373 (46%) 250 (40.3%) 458 (37.6%) 428 (45%) 1596 (33.8%) 

Most 

common 

diagnoses 

 U09.9: Post 

COVID-19 

condition, 

unspecified 

(57.6%)  

R53.83: Other 

fatigue 

(30.8%)  

U07.1: 

Emergency use 

of U07.1 | 

R10.9: 

Unspecified 

abdominal pain 

(45.6%)  

R10.84: 

Generalized 

abdominal pain 

(28.8%)  

R10.13: 

Epigastric pain 

(21.2%)  

R51.9: Headache, 

unspecified 

(37.9%)  

U09.9: Post 

COVID-19 

condition, 

unspecified 

(25.5%)  

G89.29: Other 

chronic pain 

(18.1%) 

G89.29: Other 

chronic pain 

(19.4%)  

M62.81: Muscle 

weakness 

(generalized) 

(14.1%)  

M25.561: Pain in 

right knee (14.0%)  

B94.8: Sequelae of 

other specified 

U09.9: Post 

COVID-19 

condition, 

unspecified 

(24.0%)  

F41.9: Anxiety 

disorder, 

unspecified 

(13.5%)  

U07.1: 

Emergency use 

U09.9: Post COVID-

19 condition, 

unspecified (28.3%)  

U07.1: Emergency 

use of U07.1 | 

COVID-19 (22.3%)  

R05.9: Cough, 

unspecified (18.8%)  

R50.9: Fever, 

unspecified (16.3%)  

R09.81: Nasal 
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COVID-19 

(23.4%) 

R51.9: 

Headache, 

unspecified 

(23.1%)  

R42: Dizziness 

and giddiness 

(22.2%) 

K59.00: 

Constipation, 

unspecified 

(21.2%)  

R11.0: Nausea 

(19.1%) 

R42: Dizziness and 

giddiness (16.3%)  

F41.9: Anxiety 

disorder, 

unspecified 

(14.2%) 

infectious and 

parasitic diseases 

(13.1%)  

M25.562: Pain in 

left knee (13.1%) 

of U07.1 | 

COVID-19 

(13.0%)  

R51.9: Headache, 

unspecified 

(12.2%)  

R10.9: 

Unspecified 

abdominal pain 

(10.2%) 

congestion (11.2%) 

 

 

 

 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity.

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
preprint 

T
he copyright holder for this

this version posted S
eptem

ber 18, 2024. 
; 

https://doi.org/10.1101/2024.09.17.24313742
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2024.09.17.24313742
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

REFERENCES 

[1] Huerne K, Filion KB, Grad R, Ernst P, Gershon AS, Eisenberg MJ. Epidemiological and clinical 
perspectives of long COVID syndrome. Am J Med Open 2023;9:100033. 
https://doi.org/10.1016/j.ajmo.2023.100033. 

[2] Zheng Y-B, Zeng N, Yuan K, Tian S-S, Yang Y-B, Gao N, et al. Prevalence and risk factor for long COVID 
in children and adolescents: A meta-analysis and systematic review. J Infect Public Health 
2023;16:660–72. https://doi.org/10.1016/j.jiph.2023.03.005. 

[3] Rao S, Gross RS, Mohandas S, Stein CR, Case A, Dreyer B, et al. Postacute Sequelae of SARS-CoV-2 in 
Children. Pediatrics 2024;153:e2023062570. https://doi.org/10.1542/peds.2023-062570. 

[4] Rao S, Lee GM, Razzaghi H, Lorman V, Mejias A, Pajor NM, et al. Clinical features and burden of 
post-acute sequelae of SARS-CoV-2 infection in children and adolescents: an exploratory EHR-based 
cohort study from the RECOVER program. MedRxiv Prepr Serv Health Sci 
2022:2022.05.24.22275544. https://doi.org/10.1101/2022.05.24.22275544. 

[5] Lorman V, Rao S, Jhaveri R, Case A, Mejias A, Pajor NM, et al. Understanding pediatric long COVID 
using a tree-based scan statistic approach: An EHR-based cohort study from the RECOVER Program. 
JAMIA Open 2023:ooad016. https://doi.org/10.1093/jamiaopen/ooad016. 

[6] Borch L, Holm M, Knudsen M, Ellermann-Eriksen S, Hagstroem S. Long COVID symptoms and 
duration in SARS-CoV-2 positive children - a nationwide cohort study. Eur J Pediatr 2022;181:1597–
607. https://doi.org/10.1007/s00431-021-04345-z. 

[7] Fainardi V, Meoli A, Chiopris G, Motta M, Skenderaj K, Grandinetti R, et al. Long COVID in Children 
and Adolescents. Life Basel Switz 2022;12:285. https://doi.org/10.3390/life12020285. 

[8] Radtke T, Ulyte A, Puhan MA, Kriemler S. Long-term Symptoms After SARS-CoV-2 Infection in 
Children and Adolescents. JAMA 2021;326:869–71. https://doi.org/10.1001/jama.2021.11880. 

[9] Thallapureddy K, Thallapureddy K, Zerda E, Suresh N, Kamat D, Rajasekaran K, et al. Long-Term 
Complications of COVID-19 Infection in Adolescents and Children. Curr Pediatr Rep 2022;10:11–7. 
https://doi.org/10.1007/s40124-021-00260-x. 

[10] Pellegrino R, Chiappini E, Licari A, Galli L, Marseglia GL. Prevalence and clinical presentation of long 
COVID in children: a systematic review. Eur J Pediatr 2022;181:3995–4009. 
https://doi.org/10.1007/s00431-022-04600-x. 

[11] Reese JT, Blau H, Bergquist T, Loomba JJ, Callahan T, Laraway B, et al. Generalizable Long COVID 
Subtypes: Findings from the NIH N3C and RECOVER Programs. Infectious Diseases (except 
HIV/AIDS); 2022. https://doi.org/10.1101/2022.05.24.22275398. 

[12] Zhang H, Zang C, Xu Z, Zhang Y, Xu J, Bian J, et al. Data-driven identification of post-acute SARS-CoV-
2 infection subphenotypes. Nat Med 2022. https://doi.org/10.1038/s41591-022-02116-3. 

[13] Information for Healthcare Providers about Multisystem Inflammatory Syndrome in Children (MIS-
C) n.d. 

[14] Rao S, Jing N, Liu X, Lorman V, Maltenfort M, Schuchard J, et al. Clinical Subphenotypes of 
Multisystem Inflammatory Syndrome in Children: An EHR-based cohort study from the RECOVER 
program. Pediatrics; 2022. https://doi.org/10.1101/2022.09.26.22280364. 

[15] Botdorf M, Dickinson K, Lorman V, Razzaghi H, Marchesani N, Rao S, et al. EHR-based Case 
Identification of Pediatric Long COVID: A Report from the RECOVER EHR Cohort 2024. 
https://doi.org/10.1101/2024.05.23.24307492. 

[16] De Freitas JK, Johnson KW, Golden E, Nadkarni GN, Dudley JT, Bottinger EP, et al. Phe2vec: 
Automated disease phenotyping based on unsupervised embeddings from electronic health 
records. Patterns N Y N 2021;2:100337. https://doi.org/10.1016/j.patter.2021.100337. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2024. ; https://doi.org/10.1101/2024.09.17.24313742doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.17.24313742
http://creativecommons.org/licenses/by-nc-nd/4.0/


[17] Rao S, Lee GM, Razzaghi H, Lorman V, Mejias A, Pajor NM, et al. Clinical Features and Burden of 
Postacute Sequelae of SARS-CoV-2 Infection in Children and Adolescents. JAMA Pediatr 
2022;176:1000. https://doi.org/10.1001/jamapediatrics.2022.2800. 

[18] Lopez-Leon S, Wegman-Ostrosky T, Ayuzo Del Valle NC, Perelman C, Sepulveda R, Rebolledo PA, et 
al. Long-COVID in children and adolescents: a systematic review and meta-analyses. Sci Rep 
2022;12:9950. https://doi.org/10.1038/s41598-022-13495-5. 

[19] Jason LA, Jordan K, Miike T, Bell DS, Lapp C, Torres-Harding S, et al. A Pediatric Case Definition for 
Myalgic Encephalomyelitis and Chronic Fatigue Syndrome. J Chronic Fatigue Syndr 2006;13:1–44. 
https://doi.org/10.1300/J092v13n02_01. 

[20] Solomon L, Reeves WC. Factors Influencing the Diagnosis of Chronic Fatigue Syndrome. Arch Intern 
Med 2004;164:2241. https://doi.org/10.1001/archinte.164.20.2241. 

[21] Valdez AR, Hancock EE, Adebayo S, Kiernicki DJ, Proskauer D, Attewell JR, et al. Estimating 
Prevalence, Demographics, and Costs of ME/CFS Using Large Scale Medical Claims Data and 
Machine Learning. Front Pediatr 2019;6:412. https://doi.org/10.3389/fped.2018.00412. 

[22] Bakken IJ, Tveito K, Gunnes N, Ghaderi S, Stoltenberg C, Trogstad L, et al. Two age peaks in the 
incidence of chronic fatigue syndrome/myalgic encephalomyelitis: a population-based registry study 
from Norway 2008-2012. BMC Med 2014;12:167. https://doi.org/10.1186/s12916-014-0167-5. 

[23] Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness. Washington, 
D.C.: National Academies Press; 2015. https://doi.org/10.17226/19012. 

[24] Gross RS, Thaweethai T, Kleinman LC, Snowden JN, Rosenzweig EB, Milner JD, et al. Characterizing 
Long COVID in Children and Adolescents. JAMA 2024. https://doi.org/10.1001/jama.2024.12747. 

[25] Khullar D, Zhang Y, Zang C, Xu Z, Wang F, Weiner MG, et al. Racial/Ethnic Disparities in Post-acute 
Sequelae of SARS-CoV-2 Infection in New York: an EHR-Based Cohort Study from the RECOVER 
Program. J Gen Intern Med 2023;38:1127–36. https://doi.org/10.1007/s11606-022-07997-1. 

[26] Simon TD, Cawthon ML, Popalisky J, Mangione-Smith R. Development and Validation of the 
Pediatric Medical Complexity Algorithm (PMCA) Version 2.0. Hosp Pediatr 2017;7:373–7. 
https://doi.org/10.1542/hpeds.2016-0173. 

[27] Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed Representations of Words and 
Phrases and their Compositionality 2013. https://doi.org/10.48550/ARXIV.1310.4546. 

[28] Arora S, Liang Y, Ma T. A simple but tough-to-beat baseline for sentence embeddings. 5th Int Conf 
Learn Represent ICLR 2017 2019. 

[29] McInnes L, Healy J, Saul N, Großberger L. UMAP: Uniform Manifold Approximation and Projection. J 
Open Source Softw 2018;3:861. https://doi.org/10.21105/joss.00861. 

[30] McInnes L, Healy J, Astels S. hdbscan: Hierarchical density based clustering. J Open Source Softw 
2017;2:205. https://doi.org/10.21105/joss.00205. 

[31] Forrest CB, Burrows EK, Mejias A, Razzaghi H, Christakis D, Jhaveri R, et al. Severity of Acute COVID-
19 in Children &lt;18 Years Old March 2020 to December 2021. Pediatrics 2022;149:e2021055765. 
https://doi.org/10.1542/peds.2021-055765. 

[32] Řehůřek R, Sojka P. Software Framework for Topic Modelling with Large Corpora. Proc. LREC 2010 
Workshop New Chall. NLP Framew., Valletta, Malta: ELRA; 2010, p. 45–50. 

[33] Ho DE, Imai K, King G, Stuart EA. MatchItP: Nonparametric Preprocessing for Parametric Causal 
Inference. J Stat Softw 2011;42. https://doi.org/10.18637/jss.v042.i08. 

 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2024. ; https://doi.org/10.1101/2024.09.17.24313742doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.17.24313742
http://creativecommons.org/licenses/by-nc-nd/4.0/

