Pre-chronic kidney disease -- Serial creatinine tracks glomerular filtration rate decline above 60 mL/min ========================================================================================================= * Cyril O. Burke III * John G. Toffaletti * Leanne M. Burke * Joshua Ray Tanzer ## ABSTRACT **OBJECTIVES** To allow primary clinicians to detect early decline in glomerular filtration rates above 60 milliliters per minute, before stage-three chronic kidney disease. **METHODS** We re-examined a standard reference that found low tubular secretion of creatinine at glomerular filtration rates above 80 milliliters per minute and suggested “observation of subtle changes in serum creatinine levels”. We explained why that method extends to the 80 to 60 milliliters per minute range by **(1)** expanding the y-axis (to reflect accuracy of modern creatinine assays), **(2)** fitting a hyperbolic curve, and **(3)** showing reasonable continuity down to 60 milliliters per minute. We summarized why equations estimating glomerular filtration rate are unsuitable above 60 milliliters per minute. **RESULTS** Four patient cases show how serum creatinine referenced to an individual’s historical maximum can suggest increased risk, triggering investigation to separate benign processes that alter serum creatinine from true decline in glomerular filtration rate of prechronic kidney disease. **CONCLUSIONS** At glomerular filtration rates above 60 milliliters per minute, serial creatinine is more reliable than estimating equations and appears practical for clinical monitoring and early intervention. ## 1. INTRODUCTION **NOTE:** An eminent European nephrologist insisted that our study (to reduce US ‘racial’ disparity in kidney disease) separate discussion of ‘race’ from serial creatinine. After multiple rounds of review, we relented. The sister article added orientation to socially constructed ‘race’ and re-analyzed racialized kidney data under new ethics of ‘race’ [1]. An estimated 90% of adults with chronic kidney disease (CKD) remain undiagnosed [2] because, without other biomarkers (e.g., proteinuria), the 2012 guidelines of the Kidney Disease Improving Global Outcomes (KDIGO) indicate CKD when glomerular filtration rate (GFR) is halved (functional loss equivalent to one kidney when GFR falls to 60 mL/min) and recommend nephrology evaluation when reduced by three-quarters. In 2012, with a scope excluding patients diagnosed with diabetes or hypertension, the US Preventive Services Task Force (USPSTF) found insufficient evidence to recommend screening for early CKD [3]. In 2024, USPSTF is reconsidering, “driven in part by new drugs” because “For a screening to help people live longer, healthier lives, clinicians must be able to treat the condition once it is found” [4]. However, with early detection, primary care can slow progression and Prevent kidney failure (KF) [5,6]. Early GFR decline occurs well within the serum creatinine (sCr) reference interval (‘normal range’ or population variation), which is much broader than any person’s usual within-individual variation. At GFRs above 60 mL/min, finding a within-individual change of sCr over a defined period can reveal early decline in GFR—‘preCKD’. PreCKD is like prediabetes [7] and prehypertension [8], but because serum glucose and blood pressure have smaller between-individual variations, those conditions do not require within-individual comparison. Gretz suggested tracking pediatric CKD with “progression charts” of direct markers (e.g., sCr) versus time [9]. Onuigbo and Agbasi charted sCr over time to signal acute kidney injury and late-stage CKD in adults [10]. Graverson et al detected far more episodes of acute kidney injury by referencing within-individual changes of sCr [11]. **Primary care opportunity:** CKD with GFRs down to 30 mL/min exceeds the availability of nephrology specialists [12]. Tracking sCr above 60 mL/min in adult serum creatinine (ASC) charts may allow primary clinicians [13,14] to identify and counsel a higher risk group [15,16] (enriched by the 90% with undiagnosed CKD) under a new diagnosis: ‘preCKD’. ## 2. RESULTS ### 2.1 Diagnosing preCKD In **Fig 1**, we broke KDIGO guidelines [17] for GFRs of 120 to 60 mL/min into three subgroups: **(1)** stable ‘normal’ function (not shown), **(2)** CKD stages G1 and G2 with other identifying abnormalities (e.g., proteinuria), and **(3)** preCKD identified by rising sCr-max, the latter including reversible impairment (i.e., not CKD) and early CKD without a non-sCr biomarker for early diagnosis. (See **Methods** for our detailed mathematical-statistical justification of creatinine reliability above 60 mL/min.) ![Fig 1.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2025/01/09/2024.09.17.24313678/F1.medium.gif) [Fig 1.](http://medrxiv.org/content/early/2025/01/09/2024.09.17.24313678/F1) Fig 1. Staging early kidney impairment. Diagnosis of early CKD (stages G1 and G2) depends on sCr and another sign of kidney injury (e.g., proteinuria). Before diagnostic certainty of CKD, rising maximum sCr (sCr-max) on an adult serum creatinine (ASC) chart identifies preCKD patients at higher risk for CKD. To facilitate examining the patient cases, we first define ‘sCr-max’ (within-individual maximum sCr referent) and ‘sCr-RCV’ (‘reference change value’ or minimum meaningful change in sCr). **Maximum creatinine—sCr-max:** Charting sCr levels over time creates a cluster of datapoints that defines an individual’s “normal range”. The upper limit of that range is the sCr maximum (sCr-max). The span of the sCr cluster along the y-axis reflects combined dietary and medicine effects, analytic variability (within and between laboratories), and biologic variability (individual factors). Its position (offset) above age (or years from the first known sCr) on the x-axis reflects combined individual characteristics (e.g., muscularity, diet), medicine effects, and biases of the assays. Before a new level exceeding the sCr-max becomes the new sCr-max, investigation may determine the likelihood it represents a decline in GFR versus a reversible process. Because increments push the upper limit higher until sCr-max is stable (for a time), the accuracy and precision of assays and the between- and within-laboratory variability are less critical—sCr-max rises a little higher to encompasses the variability in that patient. A subsequent increase in sCr-max more likely represents a bona fide new process, possibly decline in GFR. Prospective collection of sCr values from age 18 will reveal the complete pattern of a patient’s kidney health. Due to limited data retention, retrospective data collection often lacks the baseline sCr-max, but change in sCr-max still reflects subsequent relative change in GFR capacity. **Reference change value—RCV:** The sCr-max reference change value (sCr-max-RCV) represents the minimum clinically meaningful sCr change. Physical activity affects the sCr coefficient of variation: sCr-RCVs are 13.3% in healthy sedentary individuals and 26.8% if physically active [18]. Results from several laboratories may need a between-laboratory RCV (BL-RCV) [19], but because the sCr-max equals the peak of all previously included sCr values, a new level exceeding that by the sCr-RCV exceeds all prior values by at least that amount. Therefore, sCr-max-RCV is the relevant (e.g., sedentary or active) RCV for creatinine (sCr-RCV). Patients often use several laboratories, so obtaining all previous results for one graph can be a logistical challenge. Furthermore, although enzymatic methods and standardization with isotope-dilution mass spectrometry (IDMS) strengthen recommendations to monitor for small changes in sCr [20], comparability of results measured by different labs remains suboptimal. Defining a stable reference point (sCr-max) and meaningful percentage change (sCr-RCV) makes ASC charting a useful tool to diagnose preCKD. ### 2.2 ASC charts To chart ASC over time, we set upper margin and horizontal CKD-stage boundary lines by approximating limits at **200** μ**mol/L**—CKD G3b to G4 and referral to nephrology, **150** μ**mol/L**—CKD 3a to 3b, residual function of one-half kidney, **110** μ**mol/L**—preCKD to CKD G3, residual function of one kidney, **68.6** μ**mol/L**—maximum sensitivity and specificity of future (male) CKD, Jhee et al [21]. Different markers indicate results from various laboratories. A solid black line represents stable or rising sCr-max (i.e., an approximation of minimum GFR capacity demonstrated to that date). All sCr levels below the sCr-max line represent relative improvement in GFR (e.g., from fluid hydration, volume expansion, medicine changes). In the lower right, for comparison, any estimated GFR (eGFR) reported simultaneously with sCr is represented by a blue ‘**x**’. The horizontal blue line marks the 60 mL/min limit between CKD stages G2 and G3, and a blue ‘**+**’ on that line indicates a nonspecific eGFR result (i.e., “>60 mL/min” or equivalent). ### 2.3 Selection of cases Over two years (August 2019 to November 2021), in a referral-based, neurology (i.e., non-nephrology) specialty practice, 11 patients without diagnosed kidney disease had sCr ≥1.0 mg/dL, prompting retrospective collection of sCr results, **Fig 2** (See supporting file **S1_dataset**). All had primary care providers and Medicare or private insurance. The median availability of retrospective data was 11.6 years (mean 12.8, range 4.4 to 21.0 years), and all lacked youthful baseline sCr-max. To calculate relative change in sCr (used to order the list), we assigned the higher of the first two historical sCr values as the baseline sCr-max. Patients referred back to their PCP after completion of neurologic evaluation or declining ongoing care during the COVID-19 pandemic were ‘lost to follow up’, and neither they nor their laboratories were contacted thereafter for this retrospective data re-analysis. ![Fig 2.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2025/01/09/2024.09.17.24313678/F2.medium.gif) [Fig 2.](http://medrxiv.org/content/early/2025/01/09/2024.09.17.24313678/F2) Fig 2. Patients with serum creatinine ≥1.0 mg/dL and no kidney diagnosis in a non-nephrology specialty practice. Highlighted (orange) cells indicate results that prompted referral to nephrology and impressions of the various nephrologists. Dashed lines represent boundaries of serum creatinine reference change value (sCr-RCV) for “change relative to sCr-max”: 13.3% (lower) in healthy sedentary individuals and 26.8% (upper) if physically active patients. For comparison, Patient N, in green, had stable medical issues and kidney function over many years. Seven patients were White, three Black, and one Asian American-Native Hawaiian/Pacific Islander. The median age was 73 for White and 65 for Black patients. Hypertension was present in 10 of the 11 patients (absent in one White patient). Diabetes or pre-diabetes was noted in three Black patients and none of the others. In four White patients (mean age 72.3), sCr did not prompt nephrology referral. **Patient 1** had peak sCr 1.0 mg/dL and relative change 0.0%. **Patients 4, 5, and 11** fit the definition of preCKD with highest sCr ranging from 1.16 to 1.2 mg/dL and relative change from 19% to 66%. Six patients had sCr ≥1.4 mg/dL: three White (mean age 75.3) and three Black (mean age 66.7). Of the three White patients, two were referred to nephrology: **Patient 3** had gout dependent on nonsteroidal anti-inflammatory drugs (NSAIDs) (sCr range: 1.14-1.68 mg/dL), and **Patient 8** had sarcoidosis but declined nephrology evaluation (sCr range: 1.19-2.8 mg/dL). The third, **Patient 9**, was octogenarian, with “fairly stable sCr” that regressed (sCr range: 0.8-1.4 mg/dL). All three Black patients had sCr ≥1.4 mg/dL and were referred for nephrology evaluation. **Patient 2** was diagnosed with “polycystic kidney disease” (sCr range: 1.08-1.54 mg/dL, relative change 2.7%—lacking an earlier baseline sCr, urine protein 215 mg/24hr, renal cysts by computed tomography). **Patient 7** was back-referred as “does NOT have CKD” (sCr range: 1.0-1.4 mg/dL, urine protein 98 mg/24hr, relative change 27%). **Patient 6** was diagnosed as “could be genetic (Alport’s)” (sCr range: 1.0-1.46 mg/dL, relative change 33%). ### 2.4 Longitudinal creatinine To show practical aspects of ASC charting, we present charts for three of the 11 patients with sCr ≥1.0 mg/dL and, for comparison, another with stable sCr <1.0 mg/dL. #### 2.4.1 Stable for decades **Patient N** was White, on no relevant medicines, with normal-range sCr-max for 21 years, **Fig 3**, showing ASC charts can provide more information than isolated sCr concentrations. ![Fig 3.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2025/01/09/2024.09.17.24313678/F3.medium.gif) [Fig 3.](http://medrxiv.org/content/early/2025/01/09/2024.09.17.24313678/F3) Fig 3. Adult serum creatinine (ASC) chart, stable for two decades. **Patient N,** for “normal”, was on no relevant medicines. This ASC chart shows a six-year gap in sCr testing but stable maximum sCr (sCr-max) for 21 years. **Note:** In ASC charts, sCr levels below the line of sCr-max (see text) represent improved glomerular filtration (e.g., after fluid hydration, volume expansion), varying within a range that may reflect renovascular adaptive capacity. The sCr-max line smooths the limit of apparent minimum glomerular filtration capacity. Different markers represent results from various standardized laboratories. Dashed horizontal lines represent sCr limits at 70 μmol/L for increased risk of CKD, at 110 μmol/L residual function of one kidney and boundary between preCKD and CKD stage G3, and at 150 μmol/L for residual function of one-half kidney and KDIGO cutoff between CKD stages 3a and 3b. The top margin, at 200 μmol/L, approaches KDIGO CKD stage G4 and recommendation for referral to nephrology. When shown, a blue arrow indicates the sCr result that prompted search for all prior sCr levels. In the lower right, a blue ‘**x**’ represents the eGFR reported with the sCr at that age, the horizontal blue line is the 60 mL/min eGFR boundary between CKD stages 2 and 3, and a blue ‘+’ above that line indicates a reported eGFR of “>60 mL/min” or its equivalent. #### 2.4.2 High-risk, stepwise progression **Patient 6** was Black, ‘muscular’ (stable diet and activity for over 15 years), with hypertension, discoid lupus [22,23,24], type-2 diabetes (hemoglobin A1c 7.9%), and a first-degree relative with KF. Relevant medicines included low-dose aspirin, losartan, and as-needed NSAIDs [25]. Serum creatinine of 1.4 mg/dL prompted nephrology consultation, and back-referral concluded, “muscular build…. Elevated serum creatinine level — normal renal function…. Does NOT have CKD”. ASC chart, **Fig 4**, lacked youthful baseline sCr-max but showed discontinuities at years 7 and 13 totaling 27.8% rise, exceeding the ‘physically active’ sCr-RCV. Urine albumin-creatinine ratio of 16.67 μg/mg Cr and 24-hour urine protein-creatinine ratio of 98 mg/g Cr appeared normal, but high urine creatinine (1,905 mg/24 hours) can mask non-nephrotic proteinuria [26], suggesting possible KDIGO CKD stage A2 [27,28]. The preCKD pattern prompted counseling and referral to endocrinology to optimize diabetes care. ![Fig 4.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2025/01/09/2024.09.17.24313678/F4.medium.gif) [Fig 4.](http://medrxiv.org/content/early/2025/01/09/2024.09.17.24313678/F4) Fig 4. High pre-test probability, stepwise progression. **Patient 6** had hypertension, discoid lupus, type-2 diabetes mellitus, microproteinuria, and a first-degree relative with kidney failure. Relevant medicines included low-dose aspirin, losartan, and frequent NSAIDs. Adult serum creatinine (ASC) chart showed a six-year gap in sCr testing and a stepwise progression in sCr-max, suggesting two periods of injury, at years 7 and 13. See Fig 3 for a description of chart axes, reference lines, and construction. #### 2.4.3 Familial and environmental **Patient 7** was Black, with a history of hypertension, congestive heart failure, pre-diabetes, microscopic hematuria, and a first-degree relative with KF. Relevant medicines included NSAIDs. Nephrology consultation suspected genetic nephropathy (Alport syndrome). ASC chart, **Fig 5**, lacked youthful baseline sCr-max but showed progressive rise in sCr, possibly worsened by NSAID use. Horizontal lines indicate stable sCr-max (i.e., maintained over one or more lower sCr levels). Where the line is sloped (i.e., non-zero), there were no intervening sCr values below sCr-max, sometimes signaling prolonged unmonitored intervals and potential benefit of increased frequency of sCr sampling. ![Fig 5.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2025/01/09/2024.09.17.24313678/F5.medium.gif) [Fig 5.](http://medrxiv.org/content/early/2025/01/09/2024.09.17.24313678/F5) Fig 5. Familial and environmental factors. **Patient 7** had hypertension, congestive heart failure (CHF), microscopic 2+ hematuria, pre-diabetes, and a first-degree relative with kidney failure. Relevant medicines included NSAIDs. Adult serum creatinine (ASC) chart showed a three-year gap in sCr testing and progressive increase in sCr-max. See Fig 3 for a description of chart axes, reference lines, and construction. #### 2.4.4 Thiazide holiday **Patient 10** was Asian American-Native Hawaiian/Pacific Islander, with hypertension. Relevant medicines included thiazide diuretics, losartan, and frequent NSAIDs. The inciting sCr level (blue arrow) raised concern for combined functional loss equivalent to one kidney. The 24-hour creatinine clearance (CrCl) was 84 mL/min, with no significant proteinuria. ASC chart, **Fig 6**, lacked youthful baseline sCr-max but showed progressive rise in sCr-max over 11 years (solid line). Lower sCr during two intervals, when thiazide diuretic was stopped (clear area—stopped for hyponatremia, resumed for ankle edema) or reduced (arrow), suggested preCKD with thiazide bias and potential for clarification by trial off thiazides before consultation with nephrology. ![Fig 6.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2025/01/09/2024.09.17.24313678/F6.medium.gif) [Fig 6.](http://medrxiv.org/content/early/2025/01/09/2024.09.17.24313678/F6) Fig 6. Chlorthalidone holiday. **Patient 10** had hypertension. Relevant medicines included thiazide diuretics, losartan, and frequent NSAIDs. Adult serum creatinine (ASC) chart showed a four-year gap in sCr testing and a progressive increase of maximum sCr (sCr-max) over eleven years. Gray zones represent treatment with a thiazide diuretic. The five-month clear zone represents sCr without thiazide bias—off due to hyponatremia, then resumed for ankle swelling. The blue zone indicates imprecise date of resuming thiazide diuretic. See Fig 3 for a description of chart axes, reference lines, and construction. ## 3. DISCUSSION ### 3.1 Early diagnosis Detecting early kidney disease remains challenging, but the patient cases suggest earlier diagnosis may be possible using longitudinal sCr, selective nephrology consultation to confirm nascent kidney disease, and appropriate back-referral for ongoing preCKD management. A crucial, unanswered question is whether the specificity (i.e., positive predictive value) of the suspicion of early kidney disease based on sCr-max, sCr-RCV, and serial sCr will be reasonable enough for use in a real-world clinical context—whether earlier diagnosis of kidney disease is possible without too much background noise (e.g., functional impairment from intercurrent illness and drug effects, such as NSAIDs, thiazides, and even nephroprotective treatment using ACEI/ARB and SGLT2-I classes of drugs that induce a dip in eGFR). Some presentations may prompt evaluation with urinary proteomics and other novel biomarkers [29,30] or lead to co-management with nephrology in a multidisciplinary team approach suggested for later stages of CKD [31,32]. However, even without diagnostic certainty, tracking longitudinal sCr-max may identify a subset at higher risk. Generic preventive measures [33] and caution when prescribing nephrotoxic drugs are simple enough to be universal but could be targeted to selected preCKD patients and potential kidney donors [34,35]. ASC charts may inspire patients to monitor kidney health, as many now do for blood pressure. A notable finding in the ASC charts is that, in addition to lacking youthful baseline sCr-max, each showed a period of three- to six-years with no sCr measurements, possibly limiting early detection of GFR decline. CKD prevention might benefit from one or two annual sCr measurements, especially with increasing NSAID use after age 40. The counterintuitive goal of monitoring longitudinal sCr is to reduce its positive predictive value by reducing CKD through early detection and patient awareness—even when sCr changes prove benign. ### 3.2 Why sCr works in preCKD Diagnosing preCKD with sCr works for several reasons: #### 3.2.1 Screening test A “normal-range” screening test for preCKD need not be perfectly sensitive or specific to identify a patient for counseling. #### 3.2.2 Optimal clinical use The fundamental purpose of a lab test is to provide optimal clinical use whether or not it agrees with a highly variable physiologic parameter. For preCKD, sCr is a convenient, stable, and almost ideal endogenous filtration marker, and Delanaye et al noted, sCr explained virtually all eGFR variability in longitudinal studies [36]. Within-individual change gives superior decision-making for preCKD (versus simply looking at the measured GFR or a newly modified eGFR) and eliminates the need to tolerate an enormous (±30%) “error”. Of the two reported physiologic limitations to monitoring GFR with creatinine [37], sCr is only affected by tubular secretion of creatinine (TScr), which is acceptably low at preCKD GFRs (see **Methods** for detailed justification). #### 3.2.3 PreCKD urine flow Urine collection is simpler at preCKD urine flows. Thus, without the complexities of exogenous mGFRs (see **Section 3.3 eGFR Drawbacks**) but on the same short interval [38], ‘quick CrCl’ may have acceptable performance under certain conditions. Above 60 mL/min, GFR changes can signal marked increase of “augmented renal clearance” [39,40,41] or decline into preCKD. #### 3.2.4 Low Index of Individuality Despite larger between-individual (population) variation, sCr has low analytical variation (especially enzymatic assays) and low within-individual variation [42,43], hence a low Index of Individuality, which favors comparison to an individual’s baseline sCr rather than a population reference range [44,45]. This should also be true for laboratory values derived from sCr, including eGFR. Creatinine’s low Index of Individuality undermines one goal of eGFR equations—to offer universal population reference intervals, a goal that remains elusive despite their decades of incremental adjustments. The problem with population reference intervals is less noticeable after entering CKD stage G3 because the effects diminish as GFR falls with advancing CKD—smaller shifts still have consequences but mainly occur under the expert care of nephrologists. However, where early CKD overlaps normal, false-negative results have major consequences—the difference between being cautious or being unaware of possible kidney disease. False-positive results also have consequences. A decision analysis by den Hartog et al concluded that the benefit of eGFR over sCr was reversed with even minimal reduction in quality of life from incorrect diagnosis of CKD [46]. This was due to markedly more false-positive diagnoses of CKD with eGFR than with sCr alone. #### 3.2.5 Makes ‘race’ irrelevant Within-individual sCr reference makes ‘race’ irrelevant, mitigating one source of disparities in kidney care [47]. Despite higher risk of KF, Black Americans received less early kidney care due to incorrect assertions of their “greater muscle mass” [48,49]. Early injury and chronic dehydration might contribute to apparent ‘racial’ differences modeled into “normal” eGFRs [50]. Although typically ascribed to genetics [51,52], ‘racial’ differences in prenatal and early life exposures (and deprivations) can injure kidneys [53,54]. One-third of living kidney donors aged 18 to 29 showed early “senile nephrosclerosis”, and 10% of those aged 60 to 69 patients showed none [55]. Black people are more often dehydrated [56] (e.g., inaccessible toileting encourages chronic fluid restriction [57,58,59,60,61]), which keeps sCr closer to sCr-max (especially on fasting labs), may contribute to ‘racialized’ correlations between sCr and eGFR, and increases risk of AKI [62] and CKD [63]. Black patients are more often prescribed thiazide diuretics (complicating CKD diagnosis [64]) and subjected to tight blood pressure control that showed no benefit [65] but twice the risk of AKI [66]. Secondary re-analysis of ‘race’ under more equal conditions revealed similar CKD and KF, regardless of ‘race’, with implications for further research, including studies of *APOL1* gene variants [1]. Journal rules limiting discussion of socially-constructed ‘race’ may unwittingly perpetuate it by obscuring **(1)** stark international contradictions in semantics of ‘race’ and **(2)** that socially constructed ‘race’ is a proxy for socially constructed toxicities and deprivations in ‘racialized’ societies [1]. #### 3.2.6 Other confounders Finally, within-individual sCr reference also minimizes effects of age, sex, and (if their stability can be confirmed) individual traits (e.g., BMI, ingesting meat [67,68], fasting, hydration, activity), which along with medicines and acute illness, need to be monitored clinically for accurate serial creatinine usage. The classic cofactors of eGFR equations are weak, changing slowly (age increases by one every year, body surface area may vary with weight) or almost not at all (sex, ‘race’). Indexing to body surface area had little effect in “normal” but created significant bias in obese and anorectic patients [69]. In comparison, serum cystatin C (sCysC) is affected by inflammation, corticosteroid use, diabetes, age, height, weight, smoking status, concentration of C-reactive protein, and cystatin C gene variants [70,71]. ### 3.3 eGFR drawbacks above 60 mL/min Comparing CrCl to the measured GFRs (mGFRs) shows why sCr is potentially useful. Because mGFR has population variation as wide as sCr, with much greater physiologic variability compared to the relatively stable sCr and sCysC [42,72], eGFR equations have wide error margins that overlap the normal range. The eGFR equations (Modification of Diet in Renal Disease, CKD Epidemiology Collaboration, others) cannot eliminate this overlap. Consequently, eGFR has poor predictive value at GFRs above 60 mL/min (often misinterpreted as “absence of kidney disease”). At sCr below 1.0 mg/dL (GFR above 60 mL/min), the inverse amplifies errors in sCr into the calculated eGFR, contributing to wide “P30” error margins—percentage of estimates within ±30% of the reference value. An eGFR of 60 could represent an mGFR between 42 and 78 mL/min, with 15% of eGFRs falling outside even that broad range. Porrini et al examined eGFR equations from the 1950s to the present and identified the mismatch between the equations and analytes, noting that regardless of the analyte (sCr, sCysC, or Beta Trace Protein), the equations misclassify the stage of CKD in 30 to 60 percent of patients [73], especially in the preCKD range. Misclassification was shown for potential kidney donors [74]. Even the recently proposed ‘race’-free eGFR equations misclassify 29 to 33 percent of patients [75,76]. Farrance et al showed that uncertainty in eGFR equations is mathematically unavoidable [77], and neither a switch to sCysC nor a panel of tests [78] is likely to remedy them. As Kallner noted, “the larger uncertainty associated with the eGFR will emphasize the sensitivity of S-Creatinine in relation to eGFR” [79]. Although within-individual referencing of eGFRs could suggest early decline in GFR, the accumulated inaccuracies and false hope that eGFR represents true GFR make it especially misleading for preCKD regardless of whether a baseline is available. Compared to sCr alone, in the preCKD range, there appears no need to introduce the mathematical errors and uncertainties of converting sCr to eGFR. Direct, within-individual comparison of sCr “measurands” (the results of direct analytical measurement) is mathematically cleaner, and preferable for preCKD, than manipulating calculated eGFR “quantity values” that accumulate uncertainties of the equations and their inputs [77]. #### 3.3.1 True GFR True GFR is a dynamic variable, constantly changing with variation in physiologic factors like blood pressure, sympathetic autonomic activity, and volume status (e.g., volume expansion from intravenous infusion or contraction from “dehydration”). And because compensatory mechanisms blunt the decline in GFR by increasing pressure, perfusion, and filtration in remaining nephrons, even ‘true’ GFR is not strictly proportional to perhaps the ultimate measure of CKD: the loss of functional nephrons, which cationic ferritin-enhanced MRI (CFE-MRI) might eventually reveal [80,81]. Serum creatinine is produced, excreted, sequestered, and metabolized [82]. The latter two processes are significant at higher levels of sCr, but at steady state, these creatinine processes are balanced. As GFR approaches zero, filtered clearance of creatinine and TScr are critically limited by low urine flow, and the differences may reflect increasing analytical errors in CrCl, even greater analytical errors in inulin clearance (because declining GFR can markedly lengthen collection times for the exogenous filtration markers [83]), and increased error in measuring urine volumes at low GFRs. We limited our observations to the preCKD range of GFRs to avoid the marked increase in TScr (the difference between mGFR and CrCl) reported at lower GFRs by Shemesh et al [84] and Bauer et al [85], who used similar methods to measure these clearances simultaneously. However, although Zhang et al also found CrCl always larger than 125I-iothalamate GFR on simultaneous measurement [86], they found differences within the range of measurement error on asynchronous measurement [87], suggesting that intravenous infusions for mGFR perturb steady-state parameters measured for CrCl. #### 3.3.2 Gold standard vs reference standard Because GFR cannot be measured instantaneously or directly, it has no true, 100% sensitive, 100% specific “gold standard” (GS). Lack of a GS precludes having an imperfect GFR reference standard with known diagnostic accuracy. We acknowledge the belief that inulin clearance is a GS, but we do not agree for this reason: like CrCl, all the mGFRs are simply clearances of a filtration marker, with the exogenous mGFRs subject to significant additional complexities [37,83,88]. The common assertion that injecting inulin or another filtration marker for mGFR is the GS overlooks unverifiable assumptions and other challenges in their various methods [89], which cannot be validated and have physiologic, within-individual variation, some potentially altering GFR (e.g., by expanding volume). The exogenous mGFRs are mutually inconsistent [90,91,92,93]. And “…where the reference standard… has a misclassification error” [94], that must be accounted for. Plotting a true gold standard on the Bland and Altman x-axis makes sense [95], but many studies plot mGFR on the x-axis [72] and wrongly attribute all error to CrCl [96,84]. This practice misleads because error must be divided between them [97]. Bland and Altman plots of two “field-methods” properly put their difference on the y-axis against their mean on the x-axis because both are sources of error [98,99]. Bland and Altman plots demonstrate challenges in properly interpreting numeric information that has limits on the values it can assume. Cross-sectional data are not equipped to represent this dynamic system. We noted influences of urine volume, sCr, and value of the denominator. Even today, collecting data on a time-specific dynamic system like this is challenging. This shows how limited methods could result in systematic problems with interpreting lab tests, but more research is needed to understand these relationships in more detail. Unfortunately, inulin is no longer available in the US, and legacy studies of inulin and similar biomarkers typically sampled CrCl simultaneously and misused ‘race’ [100]. Novel filtration markers and advanced diagnostics have profit-potential that studies of creatinine do not, so government funding is essential for the latter. #### 3.3.3 Validity and reliability A fundamental assumption in all empirical pursuits is that the measurements are valid indicators of the traits they operationalize. Validity, by definition, is context-dependent, so more important than identifying an unobtainable GS, the focus should be on the context in which obtainable measurements are valid indicators of GFR in CKD patients. Another important consideration is reliability, which represents the extent to which two measurements will provide the same values to the same traits—the precision of measurements made. Reliability is a necessary (but not sufficient) criterion for validity, so the claim that sCr is less precise than other mGFRs could be a justifiable cause for concern. For this reason, we emphasize the importance of examining sCr over time. Even if other measures of mGFR were to have better reliability, and thereby better concurrent validity as an estimate of GFR at the point of measurement, it is not cross-sectional validity that is important for identifying CKD. CKD by definition is longitudinal, so a limitation of reliability at one point in time would be less concerning than proper interpretation of a pattern within the same individual. Furthermore, given the availability of sCr relative to other mGFRs, sCr is a more practical indicator of CKD condition so long as the interpretation is informed by any identified limitations in reliability. While some argue that one measure of sCr may not be as precise as another mGFR and could occasionally provide erroneously high values, a valid inference can still be drawn from a pattern of increasing sCr values within the same individual over time. And as our cases showed, this pattern may already be evident in historical sCr results, which could be stored in personal devices for access during acute care. Limiting our observations to preCKD, the range above 60 mL/min, creatinine appears at least comparable to inulin and, in many respects, superior to other mGFRs, **Fig 7**. ![Fig 7.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2025/01/09/2024.09.17.24313678/F7.medium.gif) [Fig 7.](http://medrxiv.org/content/early/2025/01/09/2024.09.17.24313678/F7) Fig 7. Comparative advantages/disadvantages of filtration markers at GFRs above 60 mL/min. Over the preCKD range, above 60 mL/min, creatinine compares favorably to the classic exogenous filtration markers. With fractional TScr at most 16% over the preCKD range, screening with creatinine appears closer to an imperfect reference standard with known diagnostic accuracy. This suggests that the “validation technique” may be most appropriate to assess the predictive value of longitudinal changes in sCr [101]. It also suggests that interpretive parameters will be clarified by experience gained over time, especially given the long latencies to endpoints of interest. The process of validation studies may appeal to the needs of primary care clinicians:With validation studies, we can determine the extent to which the results of the test fit within our understanding of the target condition, the likely causes, its clinical course, and the results of treatment [102]. Finally, in addition to clinical validity, Kassirer advocated weighing clinical utility— expense, risks, invasiveness, availability, and practicality for clinical use [103]. At GFRs above 60 mL/min, all favor creatinine. Creatinine at or above 1.0 mg/dL limited investigations for preCKD in a non-nephrology specialty practice. Further research may show a level that optimizes clinical predictive value. ## 4. CONCLUSION At glomerular filtration rates above 60 milliliters per minute, where tubular secretion of creatinine is low, direct measurement of serum creatinine is an approach to detect early kidney impairment, where currently there is none. By tracking within-individual comparisons of longitudinal serum creatinine and evaluating prechronic kidney disease (to identify and exclude benign causes like changes in diet, medicine effect, muscle mass), primary clinicians may achieve early diagnosis of chronic kidney disease to reveal early risk factors, including social determinants of health. Incidental creatinine 1.0 mg/dL or higher triggered limited investigations for preCKD in a non-nephrology specialty practice. Further research may define an action level that optimizes clinical predictive value and may show whether self-tracking on adult serum creatinine charts can encourage patients to avoid kidney risks. ## 5. METHODS ### 5.1 Ethics statement **‘Race’ in research:** We do not present ‘race’ as an input to clinical decisions, a means of stratifying care, nor to hypothesize genetic difference without data [100]. **Human subjects:** The data presented in patient cases were obtained for non-research purposes in a direct-treatment relationship that was not considered human subject research. Brown University Health (formerly Lifespan Health System) Human Reseach Protection Program waived ethical approval for this work. **Privacy:** We completely de-identified the cases, as required by Privacy Act regulations [104,105]. De-identified patient data is not considered protected health information nor governed by the Privacy Rule, and its use is authorized without patient consent and without review or waiver by a research ethics board [106,107]. ### 5.2 A standard reference In an impressive study, Shemesh et al noted limitations of creatinine as a filtration marker and insensitivity of the sCr population reference interval, now commonly referred to as the “creatinine-blind range” [84]. Our reliance on Shemesh et al preCKD creatinine followed close correlation of their observations and conclusions to three GFR segments: above 80, 80 to 40, and below 40 mL/min. #### 5.2.1 Modeling Shemesh et al Shemesh et al focused on the middle range, 80 to 40 mL/min [84], but the dichotomized segments are parts of a continuous physiologic process that can be modeled as a hyperbolic function, with each segment’s slope equally hyperbolic. We digitized the mGFR versus sCr data in their third figure, using Graph Grabber v2.0.2 for Windows 10 (Quintessa, Henley-on-Thames, United Kingdom), shown as solid circles (●), left y-axis scale, **Fig 8** (see supporting file **S2_dataset**). For intuitive insights, we started with a visual fit of the approximate relationship of sCr to mGFR by overlaying a simple hyperbolic curve (dashed line: y = m/x + k, with m = 40, k = 0.5). We defined a one-sided confidence box to minimize distortion of the fitted curve by datapoints at the extreme low end, excluding values to the left of where TScr visually began its marked increase (as the slope reached minus one). We derived a best-fit curve modeling the preCKD range (above 60 mL/min) through iterative minimizing of the sum of the squared residuals (squaring the difference between each original data point and the corresponding output of the best-fit equation), adjusting the ‘slope = minus one’ confidence box, and repeating, eventually excluding seven extreme datapoints (their inverse amplified even small experimental or digitization errors), fitting data across the 80 mL/min dichotomization and converging to a 6.2 mL/min cutoff, for a best-fit curve of m = 39.2, k = 0.60. ![Fig 8.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2025/01/09/2024.09.17.24313678/F8.medium.gif) [Fig 8.](http://medrxiv.org/content/early/2025/01/09/2024.09.17.24313678/F8) Fig 8. Shemesh et al third figure, graph of sCr versus mGFR. Solid circles (●) represent the primary source’s 171 patients with glomerular disease. Overlaying basic hyperbolic curves appeared to be a reasonable first visual approximation (see text) of the mGFR-sCr relationship: sCr = a/GFR + b, where a = 40 for the dotted curves or 20 and 60 for the solid bracketing curves, and where b = 0.5. An equivalent expression is GFR = a/(sCr – b). The figure also shows the effect of scale and hyperbola on perception. Open circles (○) represent eighty-eight subjects (51%) with normal sCr (all the solid circles below the dashed horizontal line at 1.4 mg/dL, or 124 μmol/L, on the left y-axis scale) plotted to the right y-axis scale. The top edge at 124 μmol/L (equivalent to 1.4 mg/dL), on the right y-axis scale, is roughly the cutoff for referral to nephrology. Accuracy of serum creatinine (sCr) is compressed at 1.0 mg/dL scale (left, primary y-axis), giving the appearance of small increases in sCr as glomerular filtration rate (GFR) declines along a hyperbolic curve—lower dotted curve. Significance is better represented in μmol/L (right, secondary y-axis), which has been expanded tenfold, and shifted downward—upper dotted curve. Vertical lines at 40 and 80 mL/min represent boundaries of the three primary segments. Despite including all datapoints (even those most affected by the inverse function) in our statistical analysis of the fitted curve versus dichotomization, that analysis (see below) supported the Shemesh et al recommendation over the entire preCKD range. The best fit of model to data would indicate how to interpret sCr results for understanding GFR. We hypothesized that a continuous model—the inverse function of kidney filtration and implied sCr and mGFR—would better fit the data and inform how the recommendation of Shemesh et al [84] can be interpreted with more precision over the preCKD range. Unfortunately, the inverse relationship between GFR and sCr amplifies errors in the dependent variable when the independent variable is small. This influenced the statistical analysis when deriving sCr (along the y-axis) from mGFR (along the x-axis), especially as mGFR neared zero, **Fig 8**. Conversely, calculating preCKD eGFRs from the inverse of small values of sCr (e.g., above 60 mL/min) amplifies analytical and physiological variations of sCr into much larger variance in the eGFR, making eGFR a poor indicator in the preCKD range and favoring use of sCr. #### 5.2.2 Improving perception with International Units Reporting sCr in mg/dL and International Units (or reporting mg/L) improves perception of sCr sensitivity without requiring clinician re-education. Modern automated creatinine assays are accurate to 0.05 mg/dL (about 4 μmol/L) or less, and highly precise methods measure differences of 0.03 to 0.04 mg/dL (about 3 to 4 μmol/L) [108]. Advances in creatinine assays, including enzymatic methods and standardization by isotope-dilution mass spectrometry (IDMS), strengthen the Shemesh et al recommendation (based on the Jaffe assay) for “observation of subtle changes in serum creatinine levels” [84]. Lee et al found absolute interlaboratory biases to within ±0.11 mg/dl and relatively constant across the range of sCr, with standard deviations smaller at lower than higher sCr concentrations—0.06 for sCr <1.36 mg/dl (1.36 mg/dl. [109]. Enzymatic assays had less bias than Jaffe assays. There were smaller ranges of difference between highest and lowest sCr value for patients with lower sCr values: the mean ±SD for sCr <1.36 mg/dl (120 μmol/L) was 0.20 ±0.09 mg/dl, and despite susceptibility to interfering substances, absolute differences between Jaffe and enzymatic results for sCr <1.36 mg/dl (120 μmol/L) were only 0.05 ±0.07 mg/dL higher. Neubig et al studied paired creatinine values (performed adjacent to each other on the same analytical machine) and found that 75% fell within 5% of equivalence, and 95% fell within 10.3% of equivalence [110]. To demonstrate this, we expanded the scale of mGFR versus sCr, plotting open circles (○), right y-axis scale, **Fig 8**. Hyperbolic functions graphed to near-zero necessarily compact data along the y-axis, as done by Shemesh et al, into 0 to 10 mg/dL (0 to 884 μmol/L) [84]. Labeling the y-axis with International Units, right scale, and expanding the 0.57 to 1.36 mg/dL range (50 to 120 μmol/L) sends sCr off the chart below 40 mL/min but matches visual perception to sCr accuracy over the entire preCKD range [111] (note the downward right y-axis shift for maximum dispersion). The expanded scale in **Fig 8** supports the Shemesh et al recommendation for “observation of subtle changes in serum creatinine levels” to herald changes in GFR [84]. This conclusion was reinforced by subsequent studies correlating small increases in “normal-range” sCr—as little as 0.2 mg/dL (18 μmol/L) compared to the patient’s baseline—with decreased mGFR and more adverse outcomes during long-term follow-up [21,112,113]. Conversion to International Units is helpful but insufficient if the sCr upper reference limit is insensitive. For example, of 171 Shemesh et al glomerulopathic patients, 88 (51%) had sCr below the 1.4 mg/dL (124 μmol/L) normal limit, implying they were diagnosed from other signs (e.g., proteinuria) [84]. **Fig 8** shows these patients as solid circles (●) below the horizontal dashed line, left scale, and open circles (○) expanded to the upper edge—the equivalent limit on the right. #### 5.2.3 Tubular secretion of creatinine A critical observation is that Shemesh et al reported insensitivity of sCr and advised against using sCr alone to monitor GFR in the middle segment, 80 to 40 mL/min, but not above 80 mL/min). They hypothesized that the slow rise of sCr over the middle segment reflected blunting by increasing compensatory TScr [84], **Fig 9 Left panel,** shown graphically, **Right panel**. However, the primary data was quite limited (only three data points), and the difference between CrCl and InCl could also be interpreted as relatively stable, with increasing ratio due to decreasing GFR in the denominator as rising sCr saturates its membrane transporter, limiting tubular secretion in the numerator—a mathematical artifact. ![Fig 9.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2025/01/09/2024.09.17.24313678/F9.medium.gif) [Fig 9.](http://medrxiv.org/content/early/2025/01/09/2024.09.17.24313678/F9) Fig 9. Left panel: Because the data is limited (only three data points), tubular secretion of creatinine (TScr) could be viewed as relatively stable as GFR, approximated by inulin clearance (InCl), declines. Increasing fractional TScr (the ratio of TScr to InCl) may be largely due to declining InCl in the denominator. **Right panel:** Displaying the three datapoints graphically suggests the change in TScr over the preCKD range is modest. More importantly, the data suggest TScr does not significantly increase over the preCKD range. The earliest decreases in GFR occur in the upper segment, above 80 mL/min, where fractional TScr averaged only 16%—within modern P30 standards for kidney tests. #### 5.2.4 Residuals We calculated best-fit residuals (the difference between each datapoint and the regression curve), graphed them against mGFR, and assessed their distribution around the x-axis for insights from the modeled GFR. Note: without demographics for individual data points, we could not calculate (or compare) residuals using recent eGFR equations. The funnel-shaped residuals down to 6.2 mL/min, **Fig 10**, suggested random errors and random inter-individual baseline differences by appearing equally distributed above and below the x-axis, supporting use of sCr in the segment above 80 mL/min and even below 80 mL/min to cover the entire preCKD range. Nonuniformity (heteroskedasticity) of residuals to the right of 6.2 mL/min appears to reflect increases in residuals proportional to increases in data values, following the hyperbolic function that also amplifies 30% error bands around each mGFR value, (solid black curves), **Fig 10**. ![Fig 10.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2025/01/09/2024.09.17.24313678/F10.medium.gif) [Fig 10.](http://medrxiv.org/content/early/2025/01/09/2024.09.17.24313678/F10) Fig 10. Residuals of Shemesh’s measured sCr minus calculated best-fit sCr. Statistical analysis prefers homoskedasticity, but heteroskedasticity can be explained in some cases. Here, the symmetrical, funnel-shaped variation around the x-axis extends from GFRs of 180 down to 6.2 mL/min. The P30 standard of ±30% for GFRs means about 85% of the sCr residual values calculated from mGFR will fall between the upper limit defined by the difference between the calculated GFR and the same calculation substituting (1.3 x mGFR) for mGFR (upper solid black curve) and the lower limit defined by subtracting the calculated sCr with (0.7 x mGFR) substituted for mGFR (lower solid black curve). The dotted black curves represent the limits of sampling error from obtaining data by digitizing figure 3 of Shemesh et al. Though small, that error still becomes significant as mGFR approaches zero. The available data was quite limited (only three data points), but correlating the calculated fractional tubular secretion of creatinine (TScr) over Shemesh’s three intervals, suggested 16% above 80 mL/min, 57% from 40 to 80 mL/min, and 92% below 40 mL/min, but the absolute TScr appeared to be modest, Fig 9. The optimized function is sCr = 39.2/mGFR + 0.60 mg/dL. At 40 and 80 mL/min, solid vertical lines represent boundaries between GFR segments chosen by Shemesh et al. Dashed vertical lines indicate the confidence range to which the hyperbolic function was optimized. Small measurement errors at the lower end cause large residuals, mathematically overweighting those data points and skewing the fitted function. Although our narrow focus was the preCKD range, above 60 mL/min, statistical comparison required including the entire mGFR range and all 170 datapoints (one mGFR-sCr pair was not a datapoint because the inverse of zero is mathematically undefined). We used maximum likelihood estimation, which represents the most probable numeric solution for a proposed model, to compare the accuracy of understanding the data either as segmented groups (sCr below 1.36, between 1.37 and 2.36, or above 2.37 mg/dL—the sample sCr maxima for each GFR segment proposed by Shemesh et al [84]) or as the more conventional continuous inverse function. Including datapoints at extremely low GFRs (i.e., those most affected by combined rising TScr and digitization errors) significantly altered the statistical model equation from the fitted regression curve. Nevertheless, although the actual agreement between the regression curve and data over the preCKD range is not well demonstrated in the model fit statistics, **Fig 11**, the statistics still favor the simpler continuous hyperbolic (inverse) curve over the dichotomized (grouped) model, which is consistent with the Shemesh et al recommendation to monitor sCr for early GFR changes [84]. ![Fig 11.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2025/01/09/2024.09.17.24313678/F11.medium.gif) [Fig 11.](http://medrxiv.org/content/early/2025/01/09/2024.09.17.24313678/F11) Fig 11. Model fit statistics. **Note:** The goal of regression modeling is parsimony—to identify the simplest model that most completely explains the data. The number of parameters represents the number of statistics estimated, with preference given to a model with fewer parameters. The −2 log likelihood estimates the probability of the data given the model, and the AIC and BIC are adjustments to the −2 log likelihood penalizing based on model complexity. A smaller number indicates a better fit of model to data. However, the −2 log likelihood is *X*2 distributed and can be used to directly test the comparative fit of two models as the difference of their −2 log likelihood values with degrees of freedom equal to the difference of their degrees of freedom. Here, the inverse model has significantly better model fit (*X*2 (1) = 13.33, *p* = 0.0003). McFadden’s R2 and marginal R2 both estimate the percentage of variance accounted for by the model from 0.00 (no variance explained) to 1.00 (perfect variance explained). McFadden’s R2 is based on the −2 log likelihood relative to a model which only uses the sample mean to explain the data. Marginal R2 looks at prediction accuracy, estimated as the correlation between observed GFR scores and predicted GFR scores squared. Our focus on the preCKD range and within-individual reference depends on not oversimplifying the early physiological processes by segmenting and dichotomizing continuous measurements [114]. Randomness of the residuals above 60 mL/min suggests reasonable agreement between best-fit curve and data over preCKD GFRs, which supports conceptualizing sCr as continuous across the 80 mL/min dichotomized boundary between the upper and middle segments for incremental comparison to the patient’s own baseline, thus unifying the entire preCKD range. Statistical superiority of a continuous over dichotomized approach for a physiologic process is not surprising but is important to allow use of within-individual change for preCKD. Spanaus et al used a similar approach [112]. Reassessing the data as a continuous function and each segment as equally ‘hyperbolic’ supported incremental comparison to the patient’s baseline and removed some ambiguity that confounds dichotomized eGFRs (broken into ranges by arbitrary limits), wherein a slight change in eGFR (or mGFR) can mean the difference between CKD and ‘not CKD.’ ## Data Availability All data produced in the present work are contained in the manuscript and supporting files. ## ACKNOWLEDGMENTS In memory of Rear Admiral W. Norman Johnson and many others who endured kidney failure after prescribed nephrotoxic drugs that might have been avoided with early warning and caution, and of the Rev. Dr. Canon Cyril C. Burke, Sr, who taught ethics and whose final medical care was complicated by ‘race’. The authors gratefully acknowledge Edward Feller, MD, FACP, FACG, Ruth Levy Guyer, PhD, and anonymous colleagues for critical review of a draft of this article; and Joseph J. Fins, MD, MACP, FRCP, and John C. Kotelly, PhD, US Air Force mathematician (ret.), for their insights. ## Footnotes * Several clarifications throughout the text; Minor revision of Figures 9, 11; Note added explaining division of original manuscript, with link to sister article. ## ABBREVIATIONS ASC : adult serum creatinine CKD : chronic kidney disease CrCl : creatinine clearance eGFR : estimated GFR GFR : glomerular filtration rate IDMS : isotope-dilution mass spectrometry KDIGO : Kidney Disease Improving Global Outcomes KF : kidney failure m2 : square meters mGFR : measured GFR mg/dL : milligrams per deciliter mL/min : milliliter per minute μmol/L : micromoles per liter NSAID : nonsteroidal anti-inflammatory drugs P30 : percentage of estimates within ±30% sCr : serum creatinine sCr-max : maximum sCr to date sCysC : serum cystatin C TScr : tubular secretion of creatinine USPSTF : US Preventive Services Task Force. * Received September 17, 2024. * Revision received January 6, 2025. * Accepted January 9, 2025. * © 2025, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at [http://creativecommons.org/licenses/by/4.0/](http://creativecommons.org/licenses/by/4.0/) ## REFERENCES 1. 1.Burke CO, Tanzer JR, Toffaletti JG, Burke LM. Re-analyzed *APOL1* kidney data support new ethics of ‘race’. medRxiv doi: 10.1101/2024.09.15.24313684 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyNC4wOS4xNS4yNDMxMzY4NHYzIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjUvMDEvMDkvMjAyNC4wOS4xNy4yNDMxMzY3OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 2. 2.Chu CD, Chen MH, McCulloch CE, Powe NR, Estrella MM, Shlipak MG, et al. Patient Awareness of CKD: A Systematic Review and Meta-analysis of Patient-Oriented Questions and Study Setting. Kidney Med. 2021 Jun 1;3(4):576–585.e1. doi: 10.1016/j.xkme.2021.03.014. PMID: 34401725; PMCID: PMC8350814. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.xkme.2021.03.014&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34401725&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 3. 3.Moyer VA; U.S. Preventive Services Task Force. Screening for chronic kidney disease: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2012 Oct 16;157(8):567–70. doi: 10.7326/0003-4819-157-8-201210160-00533. PMID: 22928170. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7326/0003-4819-157-8-201210160-00533&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22928170&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 4. 4.Beasley D. U.S. Task Force to consider routine kidney disease screening as new drugs available. Reuters [online]. 2022 May 23 [Cited 2022 June 3]. Available from: [https://www.reuters.com/world/us/us-task-force-consider-routine-kidney-disease-screening-2022-05-23/](https://www.reuters.com/world/us/us-task-force-consider-routine-kidney-disease-screening-2022-05-23/) 5. 5.Li PK, Garcia-Garcia G, Lui SF, Andreoli S, Fung WW, Hradsky A, et al; for the World Kidney Day Steering Committee. Kidney Health for Everyone Everywhere - From Prevention to Detection and Equitable Access to Care. Am J Nephrol. 2020;51(4):255–262. doi: 10.1159/000506499. Epub 2020 Mar 11. PMID: 32160623. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000506499&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32160623&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 6. 6.Niu SF, Wu CK, Chuang NC, Yang YB, Chang TH. Early Chronic Kidney Disease Care Programme delays kidney function deterioration in patients with stage I-IIIa chronic kidney disease: an observational cohort study in Taiwan. BMJ Open. 2021 Jan 19;11(1):e041210. doi: 10.1136/bmjopen-2020-041210. PMID: 33468527; PMCID: PMC7817788. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYm1qb3BlbiI7czo1OiJyZXNpZCI7czoxMjoiMTEvMS9lMDQxMjEwIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjUvMDEvMDkvMjAyNC4wOS4xNy4yNDMxMzY3OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 7. 7.Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012 Jun 16;379(9833):2279-90. doi: 10.1016/S0140-6736(12)60283-9. Epub 2012 Jun 9. PMID: 22683128; PMCID: PMC3891203. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(12)60283-9&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22683128&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000305511400035&link_type=ISI) 8. 8.Huang Y, Wang S, Cai X, Mai W, Hu Y, Tang H, et al. Prehypertension and incidence of cardiovascular disease: a meta-analysis. BMC Med. 2013 Aug 2;11:177. doi: 10.1186/1741-7015-11-177. PMID: 23915102; PMCID: PMC3750349. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1741-7015-11-177&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23915102&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 9. 9.Gretz NM. How to assess the rate of progression of chronic renal failure in children? Pediatr Nephrol. 1994 Aug;8(4):499–504. doi: 10.1007/BF00856550. PMID: 7947048. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/BF00856550&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7947048&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 10. 10.Onuigbo MA, Agbasi N. Diabetic Nephropathy and CKD-Analysis of Individual Patient Serum Creatinine Trajectories: A Forgotten Diagnostic Methodology for Diabetic CKD Prognostication and Prediction. J Clin Med. 2015 Jun 26;4(7):1348–68. Doi: 10.3390/jcm4071348. PMID: 26239680; PMCID: PMC4519794. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/jcm4071348&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26239680&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 11. 11.Graversen HV, Jensen SK, Vestergaard SV, Heide-Jørgensen U, Christiansen CF. Defining Baseline Creatinine for Identification of AKI in Population-Based Laboratory Databases: A Danish Nationwide Cohort Study. Kidney360. 2021 Nov 15;3(2):232–241. doi: 10.34067/KID.0006082021. PMID: 35373126; PMCID: PMC8967652. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToia2lkbmV5MzYwIjtzOjU6InJlc2lkIjtzOjc6IjMvMi8yMzIiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNS8wMS8wOS8yMDI0LjA5LjE3LjI0MzEzNjc4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 12. 12.Vassalotti JA, Centor R, Turner BJ, Greer RC, Choi M, Sequist TD; National Kidney Foundation Kidney Disease Outcomes Quality Initiative. Practical Approach to Detection and Management of Chronic Kidney Disease for the Primary Care Clinician. Am J Med. 2016 Feb;129(2):153–162.e7. doi: 10.1016/j.amjmed.2015.08.025. Epub 2015 Sep 25. PMID: 26391748. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.amjmed.2015.08.025&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 13. 13.Ellner AL, Phillips RS. The Coming Primary Care Revolution. J Gen Intern Med. 2017 Apr;32(4):380–386. doi: 10.1007/s11606-016-3944-3. Epub 2017 Feb 27. PMID: 28243869; PMCID: PMC5377886. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11606-016-3944-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28243869&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 14. 14.McCleery E, Christensen V, Peterson K, Humphrey L, Helfand M. Evidence Brief: The Quality of Care Provided by Advanced Practice Nurses. 2014 Sep. In: VA Evidence Synthesis Program Evidence Briefs [Internet]. Washington (DC): Department of Veterans Affairs (US); 2011–. PMID: 27606392. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27606392&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 15. 15.Bragg-Gresham J, Zhang X, Le D, Heung M, Shahinian V, Morgenstern H, et al. Prevalence of Chronic Kidney Disease Among Black Individuals in the US After Removal of the Black Race Coefficient From a Glomerular Filtration Rate Estimating Equation. JAMA Netw Open. 2021 Jan 4;4(1):e2035636. doi: 10.1001/jamanetworkopen.2020.35636. PMID: 33512516; PMCID: PMC7846942. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamanetworkopen.2020.35636&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33512516&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 16. 16.Chen TK, Knicely DH, Grams ME. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA. 2019 Oct 1;322(13):1294–1304. Doi: 10.1001/jama.2019.14745. PMID: 31573641; PMCID: PMC7015670. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jama.2019.14745&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31573641&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 17. 17.Stevens PE, Levin A; Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013 Jun 4;158(11):825–30. doi: 10.7326/0003-4819-158-11-201306040-00007. PMID: 23732715. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7326/0003-4819-158-11-201306040-00007&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23732715&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000320379800005&link_type=ISI) 18. 18.Nunes LA, Brenzikofer R, de Macedo DV. Reference change values of blood analytes from physically active subjects. Eur J Appl Physiol. 2010 Sep;110(1):191–8. doi: 10.1007/s00421-010-1493-8. Epub 2010 May 6. PMID: 20446091. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00421-010-1493-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20446091&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 19. 19.Paal M, Habler K, Vogeser M. Estimation of inter-laboratory reference change values from external quality assessment data. Biochem Med (Zagreb). 2021 Oct 15;31(3):030902. doi: 10.11613/BM.2021.030902. Epub 2021 Aug 5. PMID: 34393596; PMCID: PMC8340502. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.11613/BM.2021.030902&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34393596&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 20. 20.Heinegård D, Tiderström G. Determination of serum creatinine by a direct colorimetric method. Clin Chim Acta. 1973 Feb 12;43(3):305–10. doi: 10.1016/0009-8981(73)90466-x. PMID: 4690902. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0009-8981(73)90466-X&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=4690902&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1973O867000003&link_type=ISI) 21. 21.Jhee JH, Hwang SD, Song JH, Lee SW. Upper Normal Serum Creatinine Concentrations as a Predictor for Chronic Kidney Disease: Analysis of 14 Years’ Korean Genome and Epidemiology Study (KoGES). J Clin Med. 2018 Nov 21;7(11):463. doi: 10.3390/jcm7110463. PMID: 30469454; PMCID: PMC6262490. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/jcm7110463&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30469454&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 22. 22.Santiago-Casas Y, Vilá LM, McGwin G Jr, Cantor RS, Petri M, Ramsey-Goldman R, et al. Association of discoid lupus erythematosus with clinical manifestations and damage accrual in a multiethnic lupus cohort. Arthritis Care Res (Hoboken). 2012 May;64(5):704–12. doi: 10.1002/acr.21581. PMID: 22190480; PMCID: PMC3559016. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/acr.21581&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22190480&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 23. 23.Chong BF, Song J, Olsen NJ. Determining risk factors for developing systemic lupus erythematosus in patients with discoid lupus erythematosus. Br J Dermatol. 2012 Jan;166(1):29–35. doi: 10.1111/j.1365-2133.2011.10610.x. Epub 2011 Dec 5. PMID: 21910708. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1365-2133.2011.10610.x.&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21910708&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 24. 24.Elman SA, Joyce C, Costenbader KH, Merola JF. Time to progression from discoid lupus erythematosus to systemic lupus erythematosus: a retrospective cohort study. Clin Exp Dermatol. 2020 Jan;45(1):89–91. doi: 10.1111/ced.14014. Epub 2019 May 23. PMID: 31120600; PMCID: PMC7924407. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/ced.14014&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31120600&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 25. 25.Baker M, Perazella MA. NSAIDs in CKD: Are They Safe? Am J Kidney Dis. 2020 Oct;76(4):546–557. doi: 10.1053/j.ajkd.2020.03.023. Epub 2020 May 30. PMID: 32479922. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1053/j.ajkd.2020.03.023&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32479922&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 26. 26.Mattix HJ, Hsu CY, Shaykevich S, Curhan G. Use of the albumin/creatinine ratio to detect microalbuminuria: implications of sex and race. J Am Soc Nephrol. 2002 Apr;13(4):1034–1039. doi: 10.1681/ASN.V1341034. PMID: 11912263. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiam5lcGhyb2wiO3M6NToicmVzaWQiO3M6OToiMTMvNC8xMDM0IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjUvMDEvMDkvMjAyNC4wOS4xNy4yNDMxMzY3OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 27. 27.Roujeau JC, Belghiti D, Hirbec G, Poli F, Sobel AT, Revuz J, et al. Silent lupus nephritis among patients with discoid lupus erythematosus. Acta Derm Venereol. 1984;64(2):160–3. PMID: 6203307. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=6203307&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1984SM27300014&link_type=ISI) 28. 28.Chedid A, Rossi GM, Peyronel F, Menez S, Atta MG, Bagnasco SM, et al. Low-Level Proteinuria in Systemic Lupus Erythematosus. Kidney Int Rep. 2020 Sep 18;5(12):2333–2340. doi: 10.1016/j.ekir.2020.09.007. PMID: 33305127; PMCID: PMC7710831. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ekir.2020.09.007&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33305127&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 29. 29.Chen TK, Parikh CR. Management of Presumed Acute Kidney Injury during Hypertensive Therapy: Stay Calm and Carry on? Am J Nephrol. 2020;51(2):108–115. doi: 10.1159/000505447. Epub 2020 Jan 15. PMID: 31940606; PMCID: PMC7021215. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000505447&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31940606&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 30. 30.Dubin RF, Rhee EP. Proteomics and Metabolomics in Kidney Disease, including Insights into Etiology, Treatment, and Prevention. Clin J Am Soc Nephrol. 2020 Mar 6;15(3):404–411. doi: 10.2215/CJN.07420619. Epub 2019 Oct 21. PMID: 31636087; PMCID: PMC7057308. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiY2xpbmphc24iO3M6NToicmVzaWQiO3M6ODoiMTUvMy80MDQiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNS8wMS8wOS8yMDI0LjA5LjE3LjI0MzEzNjc4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 31. 31.Fogelfeld L, Hart P, Miernik J, Ko J, Calvin D, Tahsin B, et al. Combined diabetes-renal multifactorial intervention in patients with advanced diabetic nephropathy: Proof-of-concept. J Diabetes Complications. 2017 Mar;31(3):624–630. doi: 10.1016/j.jdiacomp.2016.11.019. Epub 2016 Dec 8. PMID: 28041817. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jdiacomp.2016.11.019&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28041817&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 32. 32.Greer RC, Liu Y, Cavanaugh K, Diamantidis CJ, Estrella MM, Sperati CJ, et al; National Kidney Foundation Education Committee. Primary Care Physicians’ Perceived Barriers to Nephrology Referral and Co-management of Patients with CKD: a Qualitative Study. J Gen Intern Med. 2019 Jul;34(7):1228–1235. doi: 10.1007/s11606-019-04975-y. Epub 2019 Apr 16. PMID: 30993634; PMCID: PMC6614220. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11606-019-04975-y&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30993634&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 33. 33.Mendu ML, Schneider LI, Aizer AA, Singh K, Leaf DE, Lee TH, et al. Implementation of a CKD checklist for primary care providers. Clin J Am Soc Nephrol. 2014 Sep 5;9(9):1526–35. doi: 10.2215/CJN.01660214. Epub 2014 Aug 18. PMID: 25135764; PMCID: PMC4152808. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiY2xpbmphc24iO3M6NToicmVzaWQiO3M6ODoiOS85LzE1MjYiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNS8wMS8wOS8yMDI0LjA5LjE3LjI0MzEzNjc4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 34. 34.Lentine KL, Lam NN, Segev DL. Risks of Living Kidney Donation: Current State of Knowledge on Outcomes Important to Donors. Clin J Am Soc Nephrol. 2019 Apr 5;14(4):597–608. Doi: 10.2215/CJN.11220918. Epub 2019 Mar 11. PMID: 30858158; PMCID: PMC6450354. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiY2xpbmphc24iO3M6NToicmVzaWQiO3M6ODoiMTQvNC81OTciO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNS8wMS8wOS8yMDI0LjA5LjE3LjI0MzEzNjc4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 35. 35.Kestenbaum BR, Seliger SL. Commentary on Risks of Living Kidney Donation: Current State of Knowledge on Core Outcomes Important to Donors. Clin J Am Soc Nephrol. 2019 Apr 5;14(4):609–610. doi: 10.2215/CJN.01650219. Epub 2019 Mar 11. PMID: 30858157; PMCID: PMC6450341. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiY2xpbmphc24iO3M6NToicmVzaWQiO3M6ODoiMTQvNC82MDkiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNS8wMS8wOS8yMDI0LjA5LjE3LjI0MzEzNjc4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 36. 36.Delanaye P, Cavalier E, Pottel H. Serum Creatinine: Not So Simple! Nephron. 2017;136(4):302–308. doi: 10.1159/000469669. Epub 2017 Apr 26. PMID: 28441651. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000469669&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28441651&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 37. 37.Stevens LA, Levey AS. Measured GFR as a confirmatory test for estimated GFR. J Am Soc Nephrol. 2009 Nov;20(11):2305–13. doi: 10.1681/ASN.2009020171. Epub 2009 Oct 15. Erratum in: J Am Soc Nephrol. 2016 Jul;27(7):2216. PMID: 19833901. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiam5lcGhyb2wiO3M6NToicmVzaWQiO3M6MTA6IjIwLzExLzIzMDUiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNS8wMS8wOS8yMDI0LjA5LjE3LjI0MzEzNjc4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 38. 38.Herrera-Gutiérrez ME, Seller-Pérez G, Banderas-Bravo E, Muñoz-Bono J, Lebrón-Gallardo M, Fernandez-Ortega JF. Replacement of 24-h creatinine clearance by 2-h creatinine clearance in intensive care unit patients: a single-center study. Intensive Care Med. 2007 Nov;33(11):1900–6. doi: 10.1007/s00134-007-0745-5. Epub 2007 Jul 4. PMID: 17609929. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00134-007-0745-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17609929&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000250407600007&link_type=ISI) 39. 39.Silva CM, Udy AA, Baptista JP. Urinary Creatinine Clearance and Pharmacokinetics Studies: If We Can Measure It, Why Do We Estimate It? Antimicrob Agents Chemother. 2020 Aug 20;64(9):e00980–20. doi: 10.1128/AAC.00980-20. PMID: 32571825; PMCID: PMC7449153. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjE0OiI2NC85L2UwMDk4MC0yMCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI1LzAxLzA5LzIwMjQuMDkuMTcuMjQzMTM2NzguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 40. 40.Hefny F, Stuart A, Kung JY, Mahmoud SH. Prevalence and Risk Factors of Augmented Renal Clearance: A Systematic Review and Meta-Analysis. Pharmaceutics. 2022 Feb 19;14(2):445. doi: 10.3390/pharmaceutics14020445. PMID: 35214177; PMCID: PMC8878755. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/pharmaceutics14020445&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35214177&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 41. 41.Dhondt L, Croubels S, De Paepe P, Goethals K, De Cock P, Devreese M. Unraveling the Contribution of Fluid Therapy to the Development of Augmented Renal Clearance in a Piglet Model. Front Pharmacol. 2021 Jan 26;11:607101. doi: 10.3389/fphar.2020.607101. PMID: 33574754; PMCID: PMC7870502. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fphar.2020.607101&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33574754&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 42. 42.Toffaletti JG, McDonnell EH. Variation of serum creatinine, cystatin C, and creatinine clearance tests in persons with normal renal function. Clin Chim Acta. 2008 Sep;395(1-2):115–9. doi: 10.1016/j.cca.2008.05.020. Epub 2008 Jun 3. PMID: 18573244. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cca.2008.05.020&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18573244&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000258799300022&link_type=ISI) 43. 43.Selvin E, Juraschek SP, Eckfeldt J, Levey AS, Inker LA, Coresh J. Within-person variability in kidney measures. Am J Kidney Dis. 2013 May;61(5):716–22. doi: 10.1053/j.ajkd.2012.11.048. Epub 2013 Jan 20. PMID: 23337799; PMCID: PMC3628297. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1053/j.ajkd.2012.11.048&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23337799&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 44. 44.Fraser CG. Inherent biological variation and reference values. Clin Chem Lab Med. 2004;42(7):758–64. doi: 10.1515/CCLM.2004.128. PMID: 15327011. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1515/CCLM.2004.128&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15327011&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000222473000013&link_type=ISI) 45. 45.Fraser C. Estimating GFR: What’s wrong with using serum creatinine alone? [AACC.org](http://AACC.org) [online]. 2011 January 25 [Cited 2022 April 22]. Available from: [https://www.aacc.org/science-and-research/scientific-shorts/2011/estimating-gfr-whats-wrong-with-using-serum-creatinine-alone](https://www.aacc.org/science-and-research/scientific-shorts/2011/estimating-gfr-whats-wrong-with-using-serum-creatinine-alone) 46. 46.den Hartog JR, Reese PP, Cizman B, Feldman HI. The costs and benefits of automatic estimated glomerular filtration rate reporting. Clin J Am Soc Nephrol. 2009 Feb;4(2):419–27. doi: 10.2215/CJN.04080808. Epub 2009 Jan 28. PMID: 19176794; PMCID: PMC2637597. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiY2xpbmphc24iO3M6NToicmVzaWQiO3M6NzoiNC8yLzQxOSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI1LzAxLzA5LzIwMjQuMDkuMTcuMjQzMTM2NzguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 47. 47.Martin T. The color of kidneys. Am J Kidney Dis. 2011 Nov;58(5):xxvii–xxviii. doi: 10.1053/j.ajkd.2011.08.018. PMID: 22014639. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1053/j.ajkd.2011.08.018&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22014639&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 48. 48.Schmidt IM, Waikar SS. Separate and Unequal: Race-Based Algorithms and Implications for Nephrology. J Am Soc Nephrol. 2021 Mar;32(3):529–533. doi: 10.1681/ASN.2020081175. Epub 2021 Jan 28. PMID: 33510038; PMCID: PMC7920170. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiam5lcGhyb2wiO3M6NToicmVzaWQiO3M6ODoiMzIvMy81MjkiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNS8wMS8wOS8yMDI0LjA5LjE3LjI0MzEzNjc4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 49. 49.Grubbs V. Precision in GFR Reporting: Let’s Stop Playing the Race Card. Clin J Am Soc Nephrol. 2020 Aug 7;15(8):1201–1202. doi: 10.2215/CJN.00690120. Epub 2020 May 11. PMID: 32401730; PMCID: PMC7409745. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiY2xpbmphc24iO3M6NToicmVzaWQiO3M6OToiMTUvOC8xMjAxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjUvMDEvMDkvMjAyNC4wOS4xNy4yNDMxMzY3OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 50. 50.Hsu CY. Eliminating the race coefficient in kidney function estimating equations: The center did hold. Trans Am Clin Climatol Assoc. 2023;133:247–261. PMID: 37701614; PMCID: PMC10493757. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=37701614&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 51. 51.Mulinari S, Bredström A. “Black race”, “Schwarze Hautfarbe”, “Origine africaine”, or “Etnia nera”? The absent presence of race in European pharmaceutical regulation. BioSocieties. 2022 Dec 14. doi:10.1057/s41292-022-00291-7 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1057/s41292-022-00291-7&link_type=DOI) 52. 52.Roberts DE. Debating the Cause of Health Disparities: Implications for Bioethics and Racial Equality. University of Pennsylvania Law School, Legal Scholarship Repository, Faculty Scholarship, Paper 573. 2012 [Cited: 2022 July 5]. [https://scholarship.law.upenn.edu/faculty\_scholarship/573](https://scholarship.law.upenn.edu/faculty_scholarship/573) 53. 53.Politis MD, Yao M, Gennings C, Tamayo-Ortiz M, Valvi D, Kim-Schulze S, et al. Prenatal Metal Exposures and Associations with Kidney Injury Biomarkers in Children. Toxics. 2022 Nov 16;10(11):692. doi: 10.3390/toxics10110692. PMID: 36422900; PMCID: PMC9699100. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/toxics10110692&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36422900&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 54. 54.Sanders AP, Gennings C, Tamayo-Ortiz M, Mistry S, Pantic I, Martinez M, et al. Prenatal and early childhood critical windows for the association of nephrotoxic metal and metalloid mixtures with kidney function. Environ Int. 2022 Aug;166:107361. doi: 10.1016/j.envint.2022.107361. Epub 2022 Jun 27. PMID: 35797845; PMCID: PMC9792626. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.envint.2022.107361&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35797845&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 55. 55.Rule AD, Cornell LD, Poggio ED. Senile nephrosclerosis--does it explain the decline in glomerular filtration rate with aging? Nephron Physiol. 2011;119 Suppl 1(Suppl 1):p6–11. doi: 10.1159/000328012. Epub 2011 Aug 10. PMID: 21832860; PMCID: PMC3280422. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000328012&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21832860&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 56. 56.Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect. 2005 Feb;113(2):192–200. doi: 10.1289/ehp.7337. PMID: 15687057; PMCID: PMC1277864. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1289/ehp.7337&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15687057&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000227169400038&link_type=ISI) 57. 57.Camenga DR, Brady SS, Hardacker CT, Williams BR, Hebert-Beirne J, James AS, et al. Prevention of Lower Urinary Tract Symptoms (PLUS) Research Consortium. U.S. Adolescent and Adult Women’s Experiences Accessing and Using Toilets in Schools, Workplaces, and Public Spaces: A Multi-Site Focus Group Study to Inform Future Research in Bladder Health. Int J Environ Res Public Health. 2019 Sep 10;16(18):3338. doi: 10.3390/ijerph16183338. PMID: 31510038; PMCID: PMC6765808. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/ijerph16183338&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31510038&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 58. 58.Kowalik CG, Daily A, Delpe S, Kaufman MR, Fowke J, Dmochowski RR, et al. Toileting Behaviors of Women-What is Healthy? J Urol. 2019 Jan;201(1):129–134. doi: 10.1016/j.juro.2018.07.044. PMID: 30053511; PMCID: PMC6309941. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.juro.2018.07.044&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30053511&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 59. 59.Pierce HM, Perry L, Gallagher R, Chiarelli P. Delaying voiding, limiting fluids, urinary symptoms, and work productivity: A survey of female nurses and midwives. J Adv Nurs. 2019 Nov;75(11):2579–2590. doi: 10.1111/jan.14128. Epub 2019 Aug 5. PMID: 31236988. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/jan.14128&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31236988&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 60. 60.Beck AM, Seemer J, Knudsen AW, Munk T. Narrative Review of Low-Intake Dehydration in Older Adults. Nutrients. 2021 Sep 9;13(9):3142. doi: 10.3390/nu13093142. PMID: 34579019; PMCID: PMC8470893. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/nu13093142&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34579019&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 61. 61.Lacey J, Corbett J, Forni L, Hooper L, Hughes F, Minto G, et al. A multidisciplinary consensus on dehydration: definitions, diagnostic methods and clinical implications. Ann Med. 2019 May-Jun;51(3-4):232–251. doi: 10.1080/07853890.2019.1628352. Epub 2019 Jun 17. PMID: 31204514; PMCID: PMC7877883. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/07853890.2019.1628352&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31204514&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 62. 62.Mehta RL, Burdmann EA, Cerdá J, Feehally J, Finkelstein F, García-García G, et al. Recognition and management of acute kidney injury in the International Society of Nephrology 0by25 Global Snapshot: a multinational cross-sectional study. Lancet. 2016 May 14;387(10032):2017–25. doi: 10.1016/S0140-6736(16)30240-9. Epub 2016 Apr 13. Erratum in: Lancet. 2016 May 14;387(10032):1998. PMID: 27086173. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(16)30240-9&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27086173&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 63. 63.Wang HW, Jiang MY. Higher volume of water intake is associated with lower risk of albuminuria and chronic kidney disease. Medicine (Baltimore). 2021 May 21;100(20):e26009. doi: 10.1097/MD.0000000000026009. PMID: 34011099; PMCID: PMC8137104. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/MD.0000000000026009&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34011099&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 64. 64.Fitzpatrick JK, Yang J, Ambrosy AP, Cabrera C, Stefansson BV, Greasley PJ, et al. Loop and thiazide diuretic use and risk of chronic kidney disease progression: a multicentre observational cohort study. BMJ Open. 2022 Jan 31;12(1):e048755. doi: 10.1136/bmjopen-2021-048755. PMID: 35105612; PMCID: PMC8808372. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1136/bmjopen-2021-048755&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35105612&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 65. 65.SPRINT Research Group; Wright JT Jr., Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med. 2015 Nov 26;373(22):2103–16. doi: 10.1056/NEJMoa1511939. Epub 2015 Nov 9. Erratum in: N Engl J Med. 2017 Dec 21;377(25):2506. PMID: 26551272; PMCID: PMC4689591. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/NEJMoa1511939&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26551272&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 66. 66.Rocco MV, Sink KM, Lovato LC, Wolfgram DF, Wiegmann TB, Wall BM, et al; SPRINT Research Group. Effects of Intensive Blood Pressure Treatment on Acute Kidney Injury Events in the Systolic Blood Pressure Intervention Trial (SPRINT). Am J Kidney Dis. 2018 Mar;71(3):352–361. doi: 10.1053/j.ajkd.2017.08.021. Epub 2017 Nov 20. PMID: 29162340; PMCID: PMC5828778. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1053/j.ajkd.2017.08.021&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29162340&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 67. 67.Nair S, O’Brien SV, Hayden K, Pandya B, Lisboa PJ, Hardy KJ, Wilding JP. Effect of a cooked meat meal on serum creatinine and estimated glomerular filtration rate in diabetes-related kidney disease. Diabetes Care. 2014 Feb;37(2):483–7. doi: 10.2337/dc13-1770. Epub 2013 Sep 23. PMID: 24062331. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiZGlhY2FyZSI7czo1OiJyZXNpZCI7czo4OiIzNy8yLzQ4MyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI1LzAxLzA5LzIwMjQuMDkuMTcuMjQzMTM2NzguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 68. 68.Toffaletti JG, Hammett-Stabler C, Handel EA. Effect of beef ingestion by humans on plasma concentrations of creatinine, urea, and cystatin C. Clin Biochem. 2018 Aug;58:26–31. doi: 10.1016/j.clinbiochem.2018.05.016. Epub 2018 May 26. PMID: 29842868. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.clinbiochem.2018.05.016&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29842868&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 69. 69.Delanaye P, Mariat C, Cavalier E, Krzesinski JM. Errors induced by indexing glomerular filtration rate for body surface area: reductio ad absurdum. Nephrol Dial Transplant. 2009 Dec;24(12):3593–6. doi: 10.1093/ndt/gfp431. Epub 2009 Sep 3. PMID: 19734136. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ndt/gfp431&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19734136&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000272183400010&link_type=ISI) 70. 70.Toffaletti JG. Clarifying the confusion of GFRs, creatinine, and cystatin C. Acute Care Testing [online]. 2018 June [Cited 2022 June 7]. Available from: [https://acutecaretesting.org/en/articles/clarifying-the-confusion-of-gfrs-creatinine-and-cystatin-c](https://acutecaretesting.org/en/articles/clarifying-the-confusion-of-gfrs-creatinine-and-cystatin-c) 71. 71.Lujan HL, DiCarlo SE. The racist “one drop rule” influencing science: it is time to stop teaching “race corrections” in medicine. Adv Physiol Educ. 2021 Sep 1;45(3):644–650. doi: 10.1152/advan.00063.2021. PMID: 34402675. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1152/advan.00063.2021&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34402675&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 72. 72.Soveri I, Berg UB, Björk J, Elinder CG, Grubb A, Mejare I, et al; SBU GFR Review Group. Measuring GFR: a systematic review. Am J Kidney Dis. 2014 Sep;64(3):411–24. doi: 10.1053/j.ajkd.2014.04.010. Epub 2014 May 17. PMID: 24840668 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1053/j.ajkd.2014.04.010&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24840668&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 73. 73.Porrini E, Ruggenenti P, Luis-Lima S, Carrara F, Jiménez A, de Vries APJ, et al. Estimated GFR: time for a critical appraisal. Nat Rev Nephrol. 2019 Mar;15(3):177–190. doi: 10.1038/s41581-018-0080-9. Erratum in: Nat Rev Nephrol. 2018 Dec 18;: PMID: 30518813. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41581-018-0080-9&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30518813&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 74. 74.González-Rinne A, Luis-Lima S, Escamilla B, Negrín-Mena N, Ramírez A, Morales A, et al. Impact of errors of creatinine and cystatin C equations in the selection of living kidney donors. Clin Kidney J. 2019 Mar 18;12(5):748–755. doi: 10.1093/ckj/sfz012. Erratum in: Clin Kidney J. 2019 Apr 30;13(5):910. PMID: 31584569; PMCID: PMC6768301. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ckj/sfz012&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31584569&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 75. 75.Inker LA, Eneanya ND, Coresh J, Tighiouart H, Wang D, Sang Y, et al; Chronic Kidney Disease Epidemiology Collaboration. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N Engl J Med. 2021 Nov 4;385(19):1737–1749. doi: 10.1056/NEJMoa2102953. Epub 2021 Sep 23. PMID: 34554658. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/NEJMoa2102953&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34554658&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 76. 76.Delanaye P, Masson I, Maillard N, Pottel H, Mariat C. The New 2021 CKD-EPI Equation Without Race in a European Cohort of Renal Transplanted Patients. Transplantation. 2022 Aug 2:TP.0000000000004234. doi: 10.1097/TP.0000000000004234. Epub ahead of print. PMID: 35915546. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/TP.0000000000004234&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35915546&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 77. 77.Farrance I, Badrick T, Frenkel R. Uncertainty in measurement: A review of the procedures for determining uncertainty in measurement and its use in deriving the biological variation of the estimated glomerular filtration rate. Pract Lab Med. 2018 Apr 5;12:e00097. doi: 10.1016/j.PLABM.2018.e00097. PMID: 30050968; PMCID: PMC6058083. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.PLABM.2018.e00097&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30050968&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 78. 78.Inker LA, Couture SJ, Tighiouart H, Abraham AG, Beck GJ, Feldman HI, et al; CKD-EPI GFR Collaborators. A New Panel-Estimated GFR, Including β2-Microglobulin and β-Trace Protein and Not Including Race, Developed in a Diverse Population. Am J Kidney Dis. 2021 May;77(5):673–683.e1. doi: 10.1053/j.ajkd.2020.11.005. Epub 2020 Dec 7. PMID: 33301877; PMCID: PMC8102017. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1053/j.ajkd.2020.11.005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33301877&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 79. 79.Kallner A. Estimated GFR. Comparison of five algorithms: implications for drug dosing. J Clin Pathol. 2014 Jul;67(7):609–13. doi: 10.1136/jclinpath-2014-202245. Epub 2014 May 16. PMID: 24839297. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiamNsaW5wYXRoIjtzOjU6InJlc2lkIjtzOjg6IjY3LzcvNjA5IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjUvMDEvMDkvMjAyNC4wOS4xNy4yNDMxMzY3OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 80. 80.Charlton JR, Xu Y, Parvin N, Wu T, Gao F, Baldelomar EJ, et al. Image analysis techniques to map pyramids, pyramid structure, glomerular distribution, and pathology in the intact human kidney from 3-D MRI. Am J Physiol Renal Physiol. 2021 Sep 1;321(3):F293-F304. doi: 10.1152/ajprenal.00130.2021. Epub 2021 Jul 20. PMID: 34282957; PMCID: PMC8530750. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1152/ajprenal.00130.2021&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34282957&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 81. 81.Bennett KM, Baldelomar EJ, Morozov D, Chevalier RL, Charlton JR. New imaging tools to measure nephron number *in vivo*: opportunities for developmental nephrology. J Dev Orig Health Dis. 2021 Apr;12(2):179–183. doi: 10.1017/S204017442000001X. Epub 2020 Jan 27. PMID: 31983353; PMCID: PMC8765346. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/S204017442000001X&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31983353&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 82. 82.Kalantari K, Bolton WK. A good reason to measure 24-hour urine creatinine excretion, but not to assess kidney function. Clin J Am Soc Nephrol. 2013 Nov;8(11):1847–9. doi: 10.2215/CJN.09770913. Epub 2013 Oct 24. PMID: 24158794; PMCID: PMC3817914. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiY2xpbmphc24iO3M6NToicmVzaWQiO3M6OToiOC8xMS8xODQ3IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjUvMDEvMDkvMjAyNC4wOS4xNy4yNDMxMzY3OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 83. 83.Seegmiller JC, Ebert N. Measuring glomerular filtration rate with iohexol plasma disappearance: blood collection duration is essential for accurate glomerular filtration rate determinations. Kidney Int. 2020 Mar;97(3):616. doi: 10.1016/j.kint.2019.11.034. PMID: 32087892 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.kint.2019.11.034&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32087892&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 84. 84.Shemesh O, Golbetz H, Kriss JP, Myers BD. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int. 1985 Nov;28(5):830–8. doi: 10.1038/ki.1985.205. PMID: 2418254. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/ki.1985.205&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=2418254&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1985AXC0400017&link_type=ISI) 85. 85.Bauer JH, Brooks CS, Burch RN. Clinical appraisal of creatinine clearance as a measurement of glomerular filtration rate. Am J Kidney Dis. 1982 Nov;2(3):337–46. doi: 10.1016/s0272-6386(82)80091-7. PMID: 7148824. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/s0272-6386(82)80091-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7148824&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1982PT30900005&link_type=ISI) 86. 86.Zhang X, Rule AD, McCulloch CE, Lieske JC, Ku E, Hsu CY. Tubular secretion of creatinine and kidney function: an observational study. BMC Nephrol. 2020 Mar 30;21(1):108. doi: 10.1186/s12882-020-01736-6. PMID: 32228497; PMCID: PMC7104490. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12882-020-01736-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32228497&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 87. 87.Zhang X, McCulloch CE, Lin F, Lin YC, Allen IE, Bansal N, et al. Measurement Error as Alternative Explanation for the Observation that CrCl/GFR Ratio is Higher at Lower GFR. Clin J Am Soc Nephrol. 2016 Sep 7;11(9):1574–81. doi: 10.2215/CJN.12821215. Epub 2016 Aug 3. PMID: 27489301; PMCID: PMC5012489. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiY2xpbmphc24iO3M6NToicmVzaWQiO3M6OToiMTEvOS8xNTc0IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjUvMDEvMDkvMjAyNC4wOS4xNy4yNDMxMzY3OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 88. 88.Speeckaert MM, Seegmiller J, Glorieux G, Lameire N, Van Biesen W, Vanholder R, et al. Measured Glomerular Filtration Rate: The Query for a Workable Golden Standard Technique. J Pers Med. 2021 Sep 24;11(10):949. doi: 10.3390/jpm11100949. PMID: 34683089; PMCID: PMC8541429. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/jpm11100949&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34683089&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 89. 89.Boele-Schutte E, Gansevoort RT. Measured GFR: not a gold, but a gold-plated standard. Nephrol Dial Transplant. 2017 Apr 1;32(suppl_2):ii180–ii184. doi: 10.1093/ndt/gfw441. PMID: 28158649. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ndt/gfw441&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28158649&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 90. 90.Malik SI, Abideen ZU, Alam MF, Khan R, Habib R, Shah SU. Glomerular Filtration Rate Estimation With Commonly Used Methods Among Healthy Live Kidney Donors of South Punjab, Pakistan. Cureus. 2021 Nov 15;13(11):e19588. doi: 10.7759/cureus.19588. PMID: 34956743; PMCID: PMC8675590. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7759/cureus.19588&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34956743&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 91. 91.Al-Dorzi HM, Alsadhan AA, Almozaini AS, M Alamri A, Tamim H, Sadat M, Al-Swaidan L, Elhassan E, Arabi YM. The Performance of Equations That Estimate Glomerular Filtration Rate against Measured Urinary Creatinine Clearance in Critically Ill Patients. Crit Care Res Pract. 2021 May 18;2021:5520653. doi: 10.1155/2021/5520653. PMID: 34055406; PMCID: PMC8149233. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1155/2021/5520653&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34055406&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 92. 92.Liu X, Cheng MH, Shi CG, Wang C, Cheng CL, Chen JX, Tang H, Chen ZJ, Ye ZC, Lou TQ. Variability of glomerular filtration rate estimation equations in elderly Chinese patients with chronic kidney disease. Clin Interv Aging. 2012;7:409–15. doi: 10.2147/CIA.S36152. Epub 2012 Oct 11. PMID: 23091374; PMCID: PMC3474145. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2147/CIA.S36152&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23091374&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 93. 93.Seegmiller JC, Burns BE, Schinstock CA, Lieske JC, Larson TS. Discordance Between Iothalamate and Iohexol Urinary Clearances. Am J Kidney Dis. 2016 Jan;67(1):49–55. doi: 10.1053/j.ajkd.2015.08.020. Epub 2015 Oct 9. PMID: 26454686. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1053/j.ajkd.2015.08.020&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26454686&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 94. 94. Umemneku Chikere CM, Wilson K, Graziadio S, Vale L, Allen AJ. Diagnostic test evaluation methodology: A systematic review of methods employed to evaluate diagnostic tests in the absence of gold standard - An update. PLoS One. 2019 Oct 11;14(10):e0223832. doi: 10.1371/journal.pone.0223832. PMID: 31603953; PMCID: PMC6788703. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0223832&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31603953&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 95. 95.Krouwer JS. Why Bland-Altman plots should use X, not (Y+X)/2 when X is a reference method. Stat Med. 2008 Feb 28;27(5):778–80. doi: 10.1002/sim.3086. PMID: 17907247. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/sim.3086&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17907247&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 96. 96.Onuigbo MA. The CKD enigma with misleading statistics and myths about CKD, and conflicting ESRD and death rates in the literature: results of a 2008 U.S. population-based cross-sectional CKD outcomes analysis. Ren Fail. 2013;35(3):338–43. doi: 10.3109/0886022X.2013.764272. Epub 2013 Feb 8. PMID: 23391263. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3109/0886022X.2013.764272&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23391263&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 97. 97.Bland JM, Altman DG. Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet. 1995 Oct 21;346(8982):1085-7. doi: 10.1016/s0140-6736(95)91748-9. PMID: 7564793. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(95)91748-9&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7564793&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1995TA69700017&link_type=ISI) 98. 98.Altman DG, Bland JM. Measurement in medicine: the analysis of method comparison studies. Journal of the Royal Statistical Society: Series D (The Statistician). 1983 Sep;32(3):307–17. doi: 10.2307/2987937 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2307/2987937&link_type=DOI) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1983RP04600005&link_type=ISI) 99. 99.Giavarina D. Understanding Bland Altman analysis. Biochem Med (Zagreb). 2015 Jun 5;25(2):141–51. doi: 10.11613/BM.2015.015. PMID: 26110027; PMCID: PMC4470095. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.11613/BM.2015.015&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26110027&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 100.100.National Academies of Sciences, Engineering, and Medicine. Using Population Descriptors in Genetics and Genomics Research: A New Framework for an Evolving Field. Washington, DC: National Academies Press (US), 2023 Mar 14. PMID: 36989389. doi: 10.17226/26902. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.17226/26902&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36989389&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 101.101.Trikalinos TA, Balion CM. Chapter 9: options for summarizing medical test performance in the absence of a “gold standard”. J Gen Intern Med. 2012 Jun;27 Suppl 1(Suppl 1):S67–75. doi: 10.1007/s11606-012-2031-7. PMID: 22648677; PMCID: PMC3364362. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11606-012-2031-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22648677&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 102.102.Reitsma JB, Rutjes AW, Khan KS, Coomarasamy A, Bossuyt PM. A review of solutions for diagnostic accuracy studies with an imperfect or missing reference standard. J Clin Epidemiol. 2009 Aug;62(8):797–806. doi: 10.1016/j.jclinepi.2009.02.005. Epub 2009 May 17. PMID: 19447581. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jclinepi.2009.02.005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19447581&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000268200300003&link_type=ISI) 103.103.Kassirer JP. Clinical evaluation of kidney function--glomerular function. N Engl J Med. 1971 Aug 12;285(7):385–9. doi: 10.1056/NEJM197108122850706. PMID: 4933769. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/NEJM197108122850706&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=4933769&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1971K021700006&link_type=ISI) 104.104.45 CFR 164.502(d). United States Code of Federal Regulations, Title 45 - Public Welfare, Part 164 - Security and Privacy, Subpart E - Privacy of Individually Identifiable Health Information, § 164.502(d) - Standard: Uses and disclosures of de-identified protected health information. [Cited 2022 April 3]. Available from: [https://www.ecfr.gov/current/title-45/subtitle-A/subchapter-C/part-164/subpart-E#p-164.502(d)](https://www.ecfr.gov/current/title-45/subtitle-A/subchapter-C/part-164/subpart-E#p-164.502(d)) 105.105.45 CFR 164.514(a)-(c). United States Code of Federal Regulations, Title 45 - Public Welfare, Part 164 - Security and Privacy, Subpart E - Privacy of Individually Identifiable Health Information, § 164.514 (a)-(c) - Other requirements relating to uses and disclosures of protected health information. [Cited 2022 April 3]. Available from: [https://www.ecfr.gov/current/title-45/subtitle-A/subchapter-C/part-164/subpart-E#p-164.514(a)](https://www.ecfr.gov/current/title-45/subtitle-A/subchapter-C/part-164/subpart-E#p-164.514(a)) 106.106.45 CFR 164.502(d). United States Code of Federal Regulations, Title 45 - Public Welfare, Part 164 - Security and Privacy, Subpart E - Privacy of Individually Identifiable Health Information, § 164.502(d) - Standard: Uses and disclosures of de-identified protected health information. [cited 2022 April 3]. Available from: [https://www.ecfr.gov/current/title-45/subtitle-A/subchapter-C/part-164/subpart-E#p-164.502(d)](https://www.ecfr.gov/current/title-45/subtitle-A/subchapter-C/part-164/subpart-E#p-164.502(d)) 107.107.45 CFR 164.514(a)-(c). United States Code of Federal Regulations, Title 45 - Public Welfare, Part 164 - Security and Privacy, Subpart E - Privacy of Individually Identifiable Health Information, § 164.514 (a)-(c) - Other requirements relating to uses and disclosures of protected health information. [cited 2022 April 3]. Available from: [https://www.ecfr.gov/current/title-45/subtitle-A/subchapter-C/part-164/subpart-E#p-164.514(a)](https://www.ecfr.gov/current/title-45/subtitle-A/subchapter-C/part-164/subpart-E#p-164.514(a)) 108.108.Toffaletti JG, Hammett-Stabler CA, Gearhart M, Roy Choudhury K, Handel EA. The analytical change in plasma creatinine that constitutes a biologic/physiologic change. Clin Chim Acta. 2016 Aug 1;459:79–83. doi: 10.1016/j.cca.2016.05.008. Epub 2016 May 13. PMID: 27181911. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cca.2016.05.008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27181911&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 109.109.Lee E, Collier CP, White CA. Interlaboratory Variability in Plasma Creatinine Measurement and the Relation with Estimated Glomerular Filtration Rate and Chronic Kidney Disease Diagnosis. Clin J Am Soc Nephrol. 2017 Jan 6;12(1):29–37. doi: 10.2215/CJN.05400516. Epub 2016 Nov 8. PMID: 27827312; PMCID: PMC5220660. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiY2xpbmphc24iO3M6NToicmVzaWQiO3M6NzoiMTIvMS8yOSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI1LzAxLzA5LzIwMjQuMDkuMTcuMjQzMTM2NzguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 110.110.Neubig S, Grotevendt A, Kallner A, Nauck M, Petersmann A. Analytical robustness of nine common assays: frequency of outliers and extreme differences identified by a large number of duplicate measurements. Biochem Med (Zagreb). 2017 Feb 15;27(1):192–198. doi: 10.11613/BM.2017.021. PMID: 28392740; PMCID: PMC5382864. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.11613/BM.2017.021&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28392740&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) 111.111.Toffaletti JG. Relationships and Clinical Utility of Creatinine, Cystatin C, eGFRs, GFRs, and Clearances. J Appl Lab Med. 2017 Nov 1;2(3):413–422. doi: 10.1373/jalm.2017.023713. PMID: 33636846. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiamFsbSI7czo1OiJyZXNpZCI7czo3OiIyLzMvNDEzIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjUvMDEvMDkvMjAyNC4wOS4xNy4yNDMxMzY3OC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 112.112.Spanaus KS, Kollerits B, Ritz E, Hersberger M, Kronenberg F, von Eckardstein A; Mild and Moderate Kidney Disease (MMKD) Study Group. Serum creatinine, cystatin C, and beta-trace protein in diagnostic staging and predicting progression of primary nondiabetic chronic kidney disease. Clin Chem. 2010 May;56(5):740–9. doi: 10.1373/clinchem.2009.138826. Epub 2010 Mar 11. PMID: 20224047. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiY2xpbmNoZW0iO3M6NToicmVzaWQiO3M6ODoiNTYvNS83NDAiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNS8wMS8wOS8yMDI0LjA5LjE3LjI0MzEzNjc4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 113.113.Bhavsar NA, Appel LJ, Kusek JW, Contreras G, Bakris G, Coresh J, et al; AASK Study Group. Comparison of measured GFR, serum creatinine, cystatin C, and beta-trace protein to predict ESRD in African Americans with hypertensive CKD. Am J Kidney Dis. 2011 Dec;58(6):886–93. doi: 10.1053/j.ajkd.2011.07.018. Epub 2011 Sep 22. PMID: 21944667; PMCID: PMC3221777. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1053/j.ajkd.2011.07.018&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21944667&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2025%2F01%2F09%2F2024.09.17.24313678.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000297267500008&link_type=ISI) 114.114.Naggara O, Raymond J, Guilbert F, Roy D, Weill A, Altman DG. Analysis by categorizing or dichotomizing continuous variables is inadvisable: an example from the natural history of unruptured aneurysms. AJNR Am J Neuroradiol. 2011 Mar;32(3):437–40. doi: 10.3174/ajnr.A2425. Epub 2011 Feb 17. PMID: 21330400; PMCID: PMC8013096. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czo4OiIzMi8zLzQzNyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI1LzAxLzA5LzIwMjQuMDkuMTcuMjQzMTM2NzguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9)