Abstract
Thanks to the rapid evolution of therapeutic strategies for muscular and neuromuscular diseases, the identification of quantitative biomarkers for disease identification and monitoring has become crucial. Magnetic resonance imaging (MRI) has been playing an important role by noninvasively assessing structural and functional muscular changes. This exploratory study investigated the potential of dynamic MRI during neuromuscular electrical stimulation (NMES) to detect differences between healthy controls (HCs) and patients with metabolic and myotonic myopathies. The study included 14 HCs and 10 patients with confirmed muscular diseases. All individuals were scanned with 3T MRI with a protocol that included a multi-echo gradient echo sequence for fat fraction quantification, multi-echo spin-echo for water T2 relaxation time calculation, and 3D phase contrast sequences during NMES. The strain tensor, buildup and release rates were calculated from velocity datasets. Results showed that strain and strain buildup rate were reduced in the soleus muscle of patients compared to HCs, suggesting these parameters could serve as biomarkers of muscle dysfunction. Notably, there were no significant differences in fat fraction or water T2 measurements between patients and HCs, indicating that the observed changes reflect alterations in muscle contractile properties that are not reflected by structural changes. The findings provide preliminary evidence that dynamic muscle MRI during NMES can detect abnormalities in muscle contraction in patients with myotonia and metabolic myopathies, warranting further research with larger, more homogeneous patient cohorts.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the Italian Ministry of Health (RC 2022-23).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Ethics Committee "Comitato Etico di Pavia" at the Policlinico San Matteo (now known as "Comitato Etico Territoriale Lombardia 6") gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Updated author's affiliation for Giulia Manco
Data Availability
Tabular data and analysis code are available on Zenodo at the DOI 10.5281/ZENODO.13169702. Raw imaging data are available upon reasonale request to the authors.