Right Ventricular Work and Pulmonary Capillary Wedge Pressure in

Heart Failure with Preserved Ejection Fraction

Running title : RV global wasted work and $\triangle PCWP$ in HFpEF

Kuan-Chih Huang^{1,2}, Ting-Tse Lin^{2,3}, Cho-kai Wu^{2,3}, Lung-Chun Lin^{2,3}, Lian-Yu

Lin^{2,3}

¹Division of Cardiology, Department of Internal Medicine, National Taiwan University

Hospital Hsinchu Branch, Hsinchu, Taiwan.

²Department of Internal Medicine, College of Medicine, National Taiwan University,

Taipei, Taiwan.

³Division of Cardiology, Department of Internal Medicine, National Taiwan

University College of Medicine and Hospital, Taipei, Taiwan.

Corresponding Author:

Ting-Tse Lin, MD, PhD, Division of Cardiology, Department of Internal Medicine,

National Taiwan University College of Medicine and Hospital, No. 7, Chung-Shan

South Road, Taipei 100, Taiwan;

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

Phone: +886-972653620; Fax: +886-2-23951841;

Email: aesculapius0214@gmail.com

and

Cho-Kai Wu, MD, PhD, Division of Cardiology, Department of Internal Medicine,

National Taiwan University College of Medicine and Hospital, No. 7, Chung-Shan

South Road, Taipei 100, Taiwan;

Phone: +886-2-23123456 ext 65002; Fax: +886-2-23951841;

Email: <u>chokaiwu@gmail.com</u>

Word counts : 4120

Figure : 3

Table : 3

1 Abstract (276)

2 Background

3	Symptoms of heart failure with preserved ejection fraction (HFpEF) are closely
4	related to elevated pulmonary capillary wedge pressure (PCWP) during exercise.
5	Understanding right ventricular (RV) myocardial work, using RV pressure-strain
6	loops to assess RV function in HFpEF, is lacking. The study aims to evaluate the
7	effectiveness of right ventricular myocardial work parameters in diagnosing HFpEF
8	and their correlation with pulmonary capillary wedge pressure during exercise.
9	Methods
10	The study included patients who underwent invasive cardiopulmonary exercise tests,
11	measuring pressures at rest and during exercise to identify HFpEF. Echocardiography
12	assessed left and right ventricular parameters. RV myocardial work was calculated
13	using strain-rate and pressure curves, matched with ECG data. RV global constructive
14	work (RV GCW), RV global work index (RV GWI), RV global wasted work (RV
15	GWW), and RV global work efficiency (RV GWE) were analyzed and compared with
16	invasively measured PCWP at rest and peak exercise.
17	Results
18	Forty-one patients with adequate data were enrolled, with 21 diagnosed with HFpEF.
19	No significant differences in various echocardiographic parameters were found

20	between HFpEF and non-HFpEF groups, except higher post-exercise PCWP and
21	mean pulmonary artery pressure in HFpEF patients. HFpEF patients had higher RV
22	GWW and lower RV GWE. RV GWW and RV GWE had higher predictive ability for
23	HFpEF diagnosis compared to other echocardiographic parameters. RV GCW (r =
24	0.504, $P = 0.001$) and RV GWW (r = 0.621, P < 0.001) correlated with post-exercise
25	Δ PCWP and exercise PCWP, with RV GWW independently associated with both after
26	adjustment for confounding factors.
27	Conclusions
28	RV GWW is a novel predictive parameter that provides a better explanation of RV
29	performance regarding post-exercise Δ PCWP than other standard echocardiographic
30	parameters in HFpEF.
31	Keywords : RV myocardial work, RV global wasted work, HFpEF, △PCWP
32	
33	
34	
35	
36	
37	
38	

39 WHAT IS NEW?

40	1. Right ventricular global wasted work (RV GWW) is identified as a novel							
41	predictive parameter in heart failure with preserved ejection fraction (HFpEF),							
42	providing a more accurate explanation of right ventricular (RV) performance							
43	regarding post-exercise changes in pulmonary capillary wedge pressure ($\Delta PCWP$)							
44	compared to standard echocardiographic parameters.							
45	2. This study highlights the significant correlation of RV GWW with post-exercise							
46	Δ PCWP and exercise PCWP, demonstrating its independent association after							
47	adjusting for confounding factors.							
48	3. RV myocardial work, assessed using RV pressure–strain loops from invasive							
49	cardiopulmonary exercise tests and echocardiography, offers valuable insights into the							
50	role of RV in exercise intolerance and dyspnea among HFpEF patients.							
51	WHAT ARE THE CLINICAL IMPLICATIONS?							
52	1. RV GWW serves as a superior predictive marker for diagnosing HFpEF,							
53	independently correlating with post-exercise Δ PCWP. This enhances the							
54	understanding of RV contribution to exercise intolerance and dyspnea in HFpEF,							
55	potentially aiding in more accurate diagnosis and tailored management strategies.							
56	2. Incorporating RV GWW analysis in clinical practice may improve the diagnostic							
57	precision and management of HFpEF, optimizing treatment strategies for patients with							

- 58 unexplained dyspnea and suspected HFpEF.
- 59

60 Nonstandard Abbreviations and Acronyms

- 61 ΔPCWP: Change in Pulmonary Capillary Wedge Pressure
- 62 GCW: Global Constructive Work
- 63 GWE: Global Work Efficiency
- 64 GWI: Global Work Index
- 65 GWW: Global Wasted Work
- 66 HFpEF: Heart Failure with Preserved Ejection Fraction
- 67 HFrEF: Heart Failure with Reduced Ejection Fraction
- 68 iCPET: Invasive Cardiopulmonary Exercise Test
- 69 IVCT: Isovolumic Contraction Time
- 70 IVRT: Isovolumic Relaxation Time
- 71 LAV: Left Atrial Volume
- 72 LAVI: Left Atrial Volume Index
- 73 LASb: Left Atrial Booster Strain
- 74 LASc: Left Atrial Conduit Strain
- 75 LASr: Left Atrial Reservoir Strain
- 76 LV: Left Ventricle / Left Ventricular

- 77 LVEDP: Left Ventricular End-Diastolic Pressure
- 78 LVEDV: Left Ventricular End-Diastolic Volume
- 79 LVESV: Left Ventricular End-Systolic Volume
- 80 LVGLS: Left Ventricular Global Longitudinal Strain
- 81 LVEF: Left Ventricular Ejection Fraction
- 82 LVSV: Left Ventricular Stroke Volume
- 83 NT-proBNP: N-terminal pro B-type Natriuretic Peptide
- 84 PA: Pulmonary Artery
- 85 PAP: Pulmonary Artery Pressure
- 86 PCWP: Pulmonary Capillary Wedge Pressure
- 87 RA: Right Atrium / Right Atrial
- 88 RV: Right Ventricle / Right Ventricular
- 89 RVEDA: Right Ventricular End-Diastolic Area
- 90 RVESA: Right Ventricular End-Systolic Area
- 91 RVFAC: Right Ventricular Fractional Area Change
- 92 RVFWS: Right Ventricular Free Wall Strain
- 93 RVGCW: Right Ventricular Global Constructive Work
- 94 RVGLS: Right Ventricular Global Longitudinal Strain
- 95 RVGWE: Right Ventricular Global Work Efficiency

- 96 RVGWI: Right Ventricular Global Work Index
- 97 RVGWW: Right Ventricular Global Wasted Work
- 98 RVMW: Right Ventricular Myocardial Work
- 99 SV: Stroke Volume
- 100 SVi: Stroke Volume Index
- 101 TAPSE: Tricuspid Annular Plane Systolic Excursion

INTRODUCTION 102

103	Heart Failure with Preserved Ejection Fraction (HFpEF) has surpassed Heart
104	Failure with Reduced Ejection Fraction (HFrEF) in terms of prevalence. However,
105	owing to its heterogeneous etiology, the diagnosis of HFpEF is more challenging 1 .
106	Cardiologists rely on clinical demographics, laboratory biomarkers, comprehensive
107	echocardiography and functional studies for disease stratification. Although
108	pulmonary hypertension and right ventricular dysfunction are anticipated in HFpEF ²⁻⁴ ,
109	invasive Cardiopulmonary Exercise Test (iCPET) is still frequently needed to unmask
110	the elevated left ventricular (LV) filling pressure in equivocal patients ^{5,6} . Patients
111	presented as dyspnea of unknown etiology could have normal pulmonary capillary
112	wedge pressure (PCWP) at rest but suffer from increases in PCWP during exercise.
113	The difference between PCWP measured during exercise and rest (Δ PCWP) is an
114	important indicator of heart function, and a higher $\Delta PCWP$ was associated with a
115	higher mortality rate ^{7,8} . Our previous work revealed that exercise left atrial conduit
116	strain was highly associated with $\Delta PCWP$ ⁹ ; however, rest echocardiography
117	parameters predicting such hemodynamic change is lacking.
118	
119	Myocardial work is a recent emerging concept that integrates information on
120	pressure and myocardial strain throughout the entire cardiac cycle ^{10,11} . In addition to

121	the overall ventricular work index, this concept further delineates the notions of
122	constructive work, wasted work, and work efficiency. Unlike global longitudinal
123	strain and ejection fraction, which are limited by afterload dependency, myocardial
124	work is considered a promising tool to detect incipient LV systolic dysfunction in
125	aortic stenosis ¹² . Due to the thinner walls and lower ventricular elastance of the right
126	ventricle (RV), RV longitudinal strain is even more afterload dependent ^{13,14} . Recently,
127	a proof-of-concept study demonstrated a significant correlation of RV myocardial
128	work (RVMW) with invasively measured stroke volume and stroke volume index in a
129	HFrEF population ¹⁵ . Such technique should have considerable potential for detecting
130	early RV dysfunction in patients with HFpEF.
131	
132	Since the currently available non-invasive method for assessing myocardial work
133	is still vendor-specific ¹⁶ , and because right ventricular pressures are naturally lower
134	than left ventricular pressures, the margin of error when estimating RV pressures
135	using modified Bernoulli equation could impacts the results more in HFpEF than in
136	HFrEF or pulmonary hypertension. The aim of this study is to design a semi-invasive

- 137 RVMW method by combining the pressure recordings from Swan-Ganz catheter with
- 138 strain results via echocardiography. We also investigate relationship between the
- 139 values of RVMW and the results of iCPET for better understanding of the RV

pathophysiology in HFpEF. 140

142 MATERIAL AND METHODS

143

144 Study population

145	Patients presenting with dyspnea of unknown etiology were recruited for this
146	study upon the diagnosis of HFpEF. HFpEF was defined according to the 2016
147	ASE/EACVI HF criteria, characterized by the following criteria: (1) typical
148	symptoms and signs of heart failure; (2) left ventricular ejection fraction (LVEF)
149	\geq 50%; (3) elevated NT-proBNP levels (\geq 125 pg/mL); and (4) echocardiographic
150	evidence of structural abnormalities (left atrial volume index >34 mL/m ² or left
151	ventricular mass index ≥ 115 g/m ² for men and ≥ 95 g/m ² for women) or functional
152	abnormalities (E/e' ratio \geq 13 and mean e' velocity of septal and lateral wall <9 cm/s).
153	Exclusion criteria included chronic renal failure (creatinine >250 μ mol/L), significant
154	hepatic disease, significant coronary artery disease (≥70% coronary artery stenosis
155	without intervention or positive stress test), secondary hypertension, pericardial
156	disease, significant valvular heart disease (>mild stenosis and >moderate
157	regurgitation), cancer, cor pulmonale, congenital heart disease, left-to-right shunt,
158	myocardial infarction within 60 days, high-output heart failure, and chronic atrial
159	fibrillation. This study complied with the Declaration of Helsinki and received
160	approval from the institutional review board of the National Taiwan University

161	Hospital (201908057RINC). Informed consent was obtained from all participants
162	prior to inclusion in the study. The patient enrollment algorithm is shown in
163	Supplemental Figure 1. For subjects (N=41) with complete echocardiography and
164	iCPET examination, HFpEF (N=21) diagnosis was confirmed if resting pulmonary
165	capillary wedge pressure (PCWP) was ≥ 15 mm Hg or exercise-induced PCWP was
166	≥25 mm Hg.
167	
168	Invasive cardiopulmonary exercise test
169	A 7-F Swan–Ganz catheter (Biosensors International) was inserted into the
170	pulmonary artery via the internal jugular vein sheath. Before and after a constant
171	20-W workload for 6 min on an electromagnetically braking cycle ergometer
172	(Ergometrics ER800, Ergoline GmbH), patients underwent right cardiac
173	catheterization at rest and during supine exercise ^{17,18} . Transducers were zeroed at the
174	mid-axilla. Right atrial (RA) pressure (RAP), pulmonary artery (PA) pressure (PAP),
175	and PCWP were recorded at end-expiration. Mean RAP and PCWP were recorded at
176	mid A wave. Patients met the criteria of resting PCWP >15mmHg and post-exercise
177	PCWP >25mmHg were considered as HFpEF in the present study.
178	

180 Echocardiography

181	The 2D echocardiographic data set was acquired right before the invasive
182	cardiopulmonary exercise test using a CX50 xMATRIX system equipped with an
183	S5-1 transducer (Philips Medical Systems, Andover, MA) and stored digitally for
184	offline analysis with dedicated software (TTA 2.3 Cardiac performance analysis,
185	TomTec Imaging Systems, Unterschleißheim, Germany). LV apical 4-chamber,
186	2-chamber, and 3-chamber views were used to calculate the left ventricular
187	end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV) as well
188	as the consequent left ventricular stroke volume (LVSV), left ventricular ejection
189	fraction (LVEF), left ventricular global longitudinal strain (LVGLS), left atrial volume
190	(LAV), left atrial reservoir strain (LASr), left atrial conduit strain (LASc) and left
191	atrial booster strain (LASb). RV focused views were analyzed for RV end-diastolic
192	area (RVEDA), RV end-systolic area (RVESA), RV fractional area change (RVFAC),
193	RV global longitudinal strain (RVGLS), RV free wall strain (RVFWS) and tricuspid
194	annular plane systolic excursion (TAPSE). Doppler and tissue doppler
195	echocardiograms were used to calculate early (E) and late (A) diastolic transmitral
196	velocities and mean E/e' ratios. All the echocardiographic analyses were performed by
197	an independent cardiologist who did not involve the image acquisition and was blind
198	to the clinical data.

199 Calculation of right ventricular myocardial work

200	The RVGLS derived strain rate-to-time curves were exported as .xml files via the
201	dedicated software. A Swan-Ganz catheter was delivered into the RV apex during
202	ICPEPT and the RV pressure curves were exported as .xml files along with
203	electro-cardiography (ECG) tracings using a commercially available hemodynamic
204	recording system (Mac-Lab Cardiac Cath Lab Physiological Recording System, GE
205	Healthcare, Milwaukee, U.S.A.). Because the ventricular pressure was recorded but
206	not estimated, we did not use the doppler defined timing (aortic valve opening, aortic
207	valve closure, mitral valve opening, mitral valve closure) to match the RV strain-rate
208	and RV pressure curves; instead, we used the ECG to conjugate the RV strain-rate and
209	RV pressure curves (Figure 1). RV Global work index (GWI), global constructive
210	work (GCW), global waste work (GWW) and global work efficiency (GWE) were
211	defined as their left ventricular counterparts ¹⁹ .
212	

214 **RESULTS**

215	Table 1 summarized the demographic characteristics, medication and basic
216	laboratory data, and there was no significant difference between HFpEF and
217	non-HFpEF groups.
218	
219	Echocardiographic parameters (Table 2)
220	HFpEF groups had higher rest PCWP (21.2 \pm 6.4 vs. 12.9 \pm 3.4 mmHg, p<0.01),
221	higher post-exercise PCWP (28.6 \pm 8.2 vs. 18.9 \pm 4.6 mmHg, <i>p</i> <0.01), higher mean PAP
222	(28.1 \pm 7.4 vs. 20.5 \pm 4.9 mmHg, <i>p</i> <0.01) and higher post exercise men PAP (39.6 \pm 8.5
223	vs. 32.1±8.2 mmHg ,p<0.01).
224	For left heart echocardiographic parameters, there was no significant difference
225	in LVEDV (86.2±20.0 vs. 74.3±22.6 ml, <i>p</i> =0.08), LVEF (66.7±8.1 vs. 65.4±7.3 %,
226	<i>p</i> =0.57), LVGLS (22.7±3.1 vs. 20.2±11.3, <i>p</i> =0.33), mean E/e' (11.3±4.8 vs. 9.3±2.4,
227	<i>p</i> =0.11), LAV (52.1±21.3 vs. 47.1±14.3 ml, <i>p</i> =0.38), LASr (39.1±11.3 vs. 44.7±8.2%,
228	<i>p</i> =0.07), LASc (20.3±7.0 vs. 22.3±6.7%, <i>p</i> =0.35), and LASb (18.7±7.3 vs. 22.4±7.4%,
229	<i>p</i> =0.12).
230	For right heart echocardiographic parameters, there was no significant difference
231	in RVEDA (16.9±4.3 vs. 15.9±4.1 cm ² , <i>p</i> =0.44), RVFAC (38.3±9.7 vs. 41.3±5.5 %,
232	<i>p</i> =0.25), RVGLS (22.8±4.7 vs. 23.9±2.9 %, <i>p</i> =0.39), RVFWS (25.8±5.4 vs. 27.5±3.9

233	%, <i>p</i> =0.29), TAPSE (2.4±0.5 vs. 2.3±0.4 cm, <i>p</i> =0.53), RVFWS/PASP (1.4	±1.0 vs.
-----	---	----------

234 1.3±0.6 %/mmHg, *p*=0.73), and TAPSE/PASP (1.0±0.3 vs. 1.2±0.7 cm/mmHg,

235 *p*=0.57).

236

237	<i>Right ventricular</i>	myocardial	work analysis	(Table 2 and	Figure 2)
		<i>.</i>	2	1	0 /

- 238 For right ventricular myocardial work analysis, there was no significant
- 239 difference in RVGCW (547.6±229.1 vs. 490.1±118.9 mmHg%, *p*=0.33). But HFpEF
- 240 groups had higher RV GWW (255.6±96.0 vs. 149.6±63.3 mmHg%, *p*<0.01) and
- 241 lower RV GWE (67.7±6.8 vs. 76.9±6.7%, *p*<0.01).

Figure 3 reveals that RV GWW is significantly correlated with rest PCWP

243 (r=0.48, p < 0.01), post-exercise $\triangle PCWP$ (r=0.41, p < 0.01), but not LVSVi (r=-0.24,

244
$$p=0.13$$
) or cardiac index (r=-0.05, p=0.76).

245

246 *Prediction of HFpEF with echocardiographic parameters (Table 3)*

- 247 To predict the diagnosis of HFpEF via iCPET, the RV GWW and RV GWE had
- higher AUC (0.84 and 0.83, respectively) than mean E/e' (AUC 0.59), LASr (AUC
- 249 0.64), RVFAC (AUC 0.61), TAPSE/PASP (AUC 0.50) and RVFWS/PASP (AUC

250 0.52).

251 We also examined the relationship of echocardiographic parameters and RV

252	myocardial work with post-exercise Δ PCWP and exercise PCWP (Supplemental Table
253	1). LASb was negatively correlated and RV GCW and GWW were positively
254	correlated with post-exercise Δ PCWP. LASr, LASb and RV GWE were negatively
255	correlated with exercise PCWP. And mean E/e', RV GCW and GWW were positively
256	correlated with exercise PCWP.
257	We performed multivariate analysis to control for possible confounding factors
258	(Table 4), including age, LVGLS, LAVi, LASc and mean E/e'. The β coefficient for
259	every 100 mmHg% of RV GWW was 1.981 (0.056~3.906, <i>p</i> =0.044) for post-exercise

260 \triangle PCWP and 4.323 (2.429~6.218, *p*<0.001) for exercise PCWP after adjustment.

261 **DISCUSSION**

262	Exercise intolerance and dyspnea in patients with HFpEF can be attributed to
263	exercise-induced dynamic congestion caused by rapidly increased PCWP. The
264	elevated afterload and RV dysfunction sustain challenges to cardiac dynamics through
265	an unfavorable RV to LV diastolic interaction ²⁰ . The present study suggests that
266	pressure-strain loop analysis of RVMW improves the accuracy of HFpEF diagnosis.
267	Compared with echocardiographic parameters such as averaged E/e', LAVI, and strain,
268	RV GWW and RV GWE demonstrate better predictive ability for diagnosing HFpEF.
269	Additionally, increased RV GWW is significantly correlated with PCWP and Δ PCWP
270	during exercise. Pressure-strain loop analysis of our HFpEF cohort provides insights
271	into understanding the pathophysiology of patients with HFpEF.
272	
273	Application of myocardial work in RV pathophysiology.
274	The right ventricle is no longer a forgotten chamber. Whenever a new assessment
275	method for the LV emerges, it is quickly extrapolated for RV application. Techniques
276	such as 3D volumetric RVEF, speckle tracking deformational analysis for RV
277	longitudinal strain, and ventricular arterial coupling concepts now have RV-specific
278	versions (i.e. TAPSE/PASP, RVFWS/PASP). These traditional parameters typically
279	represent changes in the heart from end-systole to end-diastole, which are useful for

280	the LV, a pumping chamber, but not entirely suitable for the RV, a peristalsis conduit
281	chamber. The pulmonary artery Doppler w-shape in pulmonary hypertension and the
282	delay in RV peak pressure or contraction ^{21,22} both underscore the need to consider
283	temporal effects and such unique mechanics in RV function evaluation.
284	Pressure-strain analysis is a remarkable invention. Unlike pressure-volume
285	analysis, by differentiating strain into strain rate, more inflection points are introduced
286	in the curve (Figure 1). This allows the integration of pressure to derive the concept of
287	wasted work. Following Butcher's pioneering application of myocardial work analysis
288	to the RV, many teams have validated non-invasive RVMW in various diseases ²³⁻²⁵ .
289	Our team was the first to apply RVMW in a HFpEF population confirmed with iCPET,
290	and found that RV GWW effectively explained and predicted changes in exercise
291	PCWP.
292	Due to the difficulty in obtaining ideal tricuspid regurgitation doppler envelope
293	in our patient population, we adopted a semi-invasive rather than a fully non-invasive
294	approach to perform RVMW analysis. Future improvements in non-invasive RVMW
295	analysis could come from establishing RV pressure reference curves and using
296	ultrasound contrast agents to optimize RV free wall tracking ability and doppler signal
297	quality.

298 Superiority of RVMW over other parameters of RV and pulmonary circulation (Pc)

299 uncoupling

300	PCWP is an essential hemodynamic parameter in HFpEF, reflecting left
301	ventricular diastolic function and influencing symptoms and prognosis in affected
302	patients. Elevated PCWP can increase RV afterload, making the RV stiffer and
303	impairing its filling and contractile properties, leading to uncoupling with pulmonary
304	circulation. ²⁶ Pressure-strain loops theoretically provide a more comprehensive
305	evaluation of RV function through the calculation of RVMW indices, compared to
306	standard echocardiographic measures. ¹¹ Unlike RV longitudinal strain, TAPSE, and
307	RV FAC, RVMW parameters incorporate contractility, RV dyssynchrony, and
308	pulmonary pressures into their assessment. ¹⁵ This comprehensive evaluation of RV
309	function is not affected by the technical limitations present in other standard
310	parameters. TAPSE's measurement is influenced by angle and load and varies with
311	cardiac translation, while RV FAC's reliability is hindered by increased load
312	dependency and only modest interobserver reproducibility. ²⁷ RV longitudinal strain is
313	affected by afterload. By accounting for afterload in the assessment, RVMW provides
314	insight into RV-pulmonary arterial coupling, potentially offering a more accurate
315	evaluation of PCWP and LVEDP. ¹⁵ RVMW integrates RV dyssynchrony and
316	post-systolic shortening into the evaluation of RV function by synchronizing
317	pulmonic and tricuspid valvular events with RV longitudinal strain. For patients with

318	HFpEF, both cardiac and extracardiac components contribute to limited exercise
319	capacity, which can lead to RV and Pc uncoupling, dyssynchronous left-to-right delay,
320	and ventricular interdependence. ^{11,20,22,28} In patients with HFrEF, RVGCW
321	demonstrated a moderate correlation with invasively measured stroke volume and
322	stroke volume index. ¹⁵ Additionally, RV global wasted work (RV GWW) represents
323	myocardial lengthening during systole and shortening during isovolumic relaxation,
324	which do not contribute to RV constructive work. Our study showed that increased
325	RV GWW improves the diagnostic accuracy of HFpEF and moderately correlates
326	with PCWP, though it is not related to stroke volume and cardiac index.
327	Clinical implication
328	Among myocardial work metrics, LVGCW was found to be a superior indicator
329	of exercise capacity compared to global longitudinal strain in a cohort of 114 patients
330	with HFpEF. The increase in LVGCW observed during exercise in patients treated
331	with spironolactone for six months is believed to correlate with improvements in
332	functional capacity. ²⁹ RVGCW, derived from non-invasive assessment, emerges as a
333	superior parameter, offering an integrated analysis of RV systolic function. It
334	correlates more strongly with invasively measured stroke volume and stroke volume
335	index compared to other standard echocardiographic parameters. ¹⁵ In this study, we
336	have demonstrated that RVMW parameters provide a comprehensive assessment of

337	PCWP and \triangle PCWP during exercise in individuals with HFpEF. By combining RV
338	strain with invasive right heart catheterization for strain-pressure loop analysis, we
339	can effectively characterize various RV pathologies and regional RV myocardial
340	energetics in HFpEF. Our findings highlight the impact of increased LVEDP and
341	PCWP on RV dyssynchrony, ventricular interdependence, and wasted RV work.
342	Additionally, the novel parameter RVGWW could predict the rise in PCWP during
343	exercise and explain the exercise intolerance observed in HFpEF patients. Our
344	approach suggests that the need for exercise testing may be eliminated while
345	maintaining the accuracy of HFpEF diagnosis.
346	Limitations
347	The major limitation of this proof-of-concept study is that the pressure-strain
348	analysis utilized is not based on current commercial software. Consequently, our
349	approach is not entirely non-invasive, as RV pressure recordings still depend on
350	measurements obtained from a Swan-Ganz catheter. Currently available commercial
351	software enables the non-invasive assessment of LV myocardial work from the
352	estimated LV pressure-time curve via adjusting the empiric reference LV pressure
353	curve. The crucial step is to use measured systolic and diastolic blood pressures from
354	a sphygmomanometer and to use echocardiography derived isovolumic contraction
355	time (IVCT), ejection time, and isovolumic relaxation time (IVRT) for the simulation

356 of an individualized LV pressure-time curves.

357

358	For the RV, such dedicated empiric reference ventricular pressure curve is
359	lacking ³⁰ . On the other hand, as the typical RV pressure-volume curve is triangular
360	but not rectangular ³¹ , it is hard to precisely define the IVCT and IVRT of RV. In
361	conditions such as pulmonary hypertension or severe left heart congestion, the RV
362	pressure-volume curve can somewhat like their left counterpart, and the adoption of
363	the commercial LV myocardial work analysis software might be feasible. Butcher and
364	colleagues have successfully demonstrated that the RV GWW were significantly
365	higher in HFrEF and pulmonary hypertension patients via such non-invasive
366	pressure-strain analysis ^{15,32} . However, it is difficult to perform a satisfactory
367	non-invasive RV pressure estimation in our HFpEF patients. Instead, we used ECG
368	signals as a reference to conjugate the invasive pressure curve and the non-invasive
369	strain curves for pressure-strain analysis. The applicability of our approach to other
370	pathophysiological conditions, such as HFrEF, mitral valve disease, aortic valve
371	disease, or pulmonary arterial hypertension, remains to be validated in subsequent
372	studies.

373

374 CONCLUSION

375	We developed a vendor-independent semi-invasive myocardial work analysis
376	method by combining RV strain with RV pressure recordings and validated it using
377	iCPET-confirmed HFpEF. Our findings indicate that RV GWW not only effectively
378	predicts HFpEF but also better predicts exercise PCWP and post-exercise Δ PCWP
379	compared to other standard echocardiographic parameters in HFpEF.
380	
381	Declarations
382	Data Availability Statement
383	No new data were generated or analyzed in support of this research. The datasets used
384	in this study were only available in the National Taiwan University Hospital.
385	Ethics approval and consent to participate
386	The study protocol complies with the Declaration of Helsinki and was approved by
387	the Institutional Review Board of National Taiwan University Hospital (IRB
388	201908057RINC).
389	
390	Consent for publication
391	Not applicable.
392	
393	Conflict of interest

394 The authors declare that they have no conflicts of interest.

395

- 396 Funding
- 397 This work was supported by the National Science Council, Taiwan (grant no.
- 398 107-2314-B-002-265-MY3) and National Science and Technology Council (NSTC
- 399 112-2628-B-002 -029 -MY3 and 112-2314-B-002 -277 -MY3). The funders had no
- 400 role in study design, data collection and analysis, decision to publish, or preparation
- 401 of the manuscript.

402

- 403 Authors' contributions
- 404 TT-L and LY-L contributed to the conception or design of the work and analyzed data.
- 405 LY-L, CK-W, and KC-H contributed to the acquisition of data for the work. KC-H and
- 406 TT-L drafted and revised the manuscript. TT-L and CK-W critically revised the
- 407 manuscript. All gave final approval and agreed to be accountable for all aspects of
- 408 work ensuring integrity and accuracy.
- 409
- 410
- 411
- 412

413

414 **References**

415	1.	Borlaug BA. Evaluation and management of heart failure with preserved
416		ejection fraction. Nat Rev Cardiol. 2020;17:559-573. doi:
417		10.1038/s41569-020-0363-2
418	2.	Guazzi M, Dixon D, Labate V, Beussink-Nelson L, Bandera F, Cuttica MJ, Shah
419		SJ. RV Contractile Function and its Coupling to Pulmonary Circulation in Heart
420		Failure With Preserved Ejection Fraction: Stratification of Clinical Phenotypes
421		and Outcomes. JACC Cardiovasc Imaging. 2017;10:1211-1221. doi:
422		10.1016/j.jcmg.2016.12.024
423	3.	Lam CS, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM.
424		Pulmonary hypertension in heart failure with preserved ejection fraction: a
425		community-based study. J Am Coll Cardiol. 2009;53:1119-1126. doi:
426		10.1016/j.jacc.2008.11.051
427	4.	Melenovsky V, Hwang SJ, Lin G, Redfield MM, Borlaug BA. Right heart
428		dysfunction in heart failure with preserved ejection fraction. Eur Heart J.
429		2014;35:3452-3462. doi: 10.1093/eurheartj/ehu193
430	5.	Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM. Exercise
431		hemodynamics enhance diagnosis of early heart failure with preserved
432		ejection fraction. Circ Heart Fail. 2010;3:588-595. doi:
433		10.1161/circheartfailure.109.930701
434	6.	Eisman AS, Shah RV, Dhakal BP, Pappagianopoulos PP, Wooster L, Bailey C,
435		Cunningham TF, Hardin KM, Baggish AL, Ho JE, et al. Pulmonary Capillary
436		Wedge Pressure Patterns During Exercise Predict Exercise Capacity and
437		Incident Heart Failure. Circ Heart Fail. 2018;11:e004750. doi:
438		10.1161/circheartfailure.117.004750
439	7.	Ahlgrim C, Kocher S, Minners J, Jander N, Savarese G, Neumann FJ, Arentz T,
440		Jadidi A, Mueller-Edenborn B. Pulmonary Capillary Wedge Pressure during
441		Exercise Is Prognostic for Long-Term Survival in Patients with Symptomatic
442		Heart Failure. <i>J Clin Med</i> . 2022;11. doi: 10.3390/jcm11195901
443	8.	Dorfs S, Zeh W, Hochholzer W, Jander N, Kienzle RP, Pieske B, Neumann FJ.
444		Pulmonary capillary wedge pressure during exercise and long-term mortality
445		in patients with suspected heart failure with preserved ejection fraction. Eur
446		<i>Heart J</i> . 2014;35:3103-3112. doi: 10.1093/eurheartj/ehu315
447	9.	Cheng JF, Huang PS, Chen ZW, Huang CY, Lan CW, Chen SY, Lin LY, Wu CK.
448		Post-exercise left atrial conduit strain predicted hemodynamic change in
449		heart failure with preserved ejection fraction. <i>Eur Radiol</i> . 2024;34:1825-1835.
450		doi: 10.1007/s00330-023-10142-z

451	10.	Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Remme EW,
452		Haugaa KH, Opdahl A, Fjeld JG, Gjesdal O, et al. A novel clinical method for
453		quantification of regional left ventricular pressure-strain loop area: a
454		non-invasive index of myocardial work. <i>Eur Heart J</i> . 2012;33:724-733. doi:
455		10.1093/eurheartj/ehs016
456	11.	Moya A, Buytaert D, Penicka M, Bartunek J, Vanderheyden M.
457		State-of-the-Art: Noninvasive Assessment of Left Ventricular Function
458		Through Myocardial Work. J Am Soc Echocardiogr. 2023;36:1027-1042. doi:
459		10.1016/j.echo.2023.07.002
460	12.	Smiseth OA, Larsen CK. Finding the "Golden Moment" for TAVR: Look Below
461		the Valve. JACC Cardiovasc Imaging. 2020;13:2573-2575. doi:
462		10.1016/j.jcmg.2020.08.018
463	13.	Walker LA, Buttrick PM. The right ventricle: biologic insights and response to
464		disease. Curr Cardiol Rev. 2009;5:22-28. doi: 10.2174/157340309787048077
465	14.	MacNee W. Pathophysiology of cor pulmonale in chronic obstructive
466		pulmonary disease. Part One. Am J Respir Crit Care Med. 1994;150:833-852.
467		doi: 10.1164/ajrccm.150.3.8087359
468	15.	Butcher SC, Fortuni F, Montero-Cabezas JM, Abou R, El Mahdiui M, van der
469		Bijl P, van der Velde ET, Ajmone Marsan N, Bax JJ, Delgado V. Right ventricular
470		myocardial work: proof-of-concept for non-invasive assessment of right
471		ventricular function. Eur Heart J Cardiovasc Imaging. 2021;22:142-152. doi:
472		10.1093/ehjci/jeaa261
473	16.	Marzlin N, Hays AG, Peters M, Kaminski A, Roemer S, O'Leary P, Kroboth S,
474		Harland DR, Khandheria BK, Tajik AJ, et al. Myocardial Work in
475		Echocardiography. Circ Cardiovasc Imaging. 2023;16:e014419. doi:
476		10.1161/circimaging.122.014419
477	17.	Borlaug BA, Koepp KE, Melenovsky V. Sodium Nitrite Improves Exercise
478		Hemodynamics and Ventricular Performance in Heart Failure With Preserved
479		Ejection Fraction. J Am Coll Cardiol. 2015;66:1672-1682. doi:
480		10.1016/j.jacc.2015.07.067
481	18.	Wu CK, Cheng JF, Huang CY, Chen ZW, Chen SY, Lin LY. Iloprost and exercise
482		haemodynamics in heart failure with preserved ejection fraction—the ILO-
483		HOPE randomised controlled trial. British Journal of Clinical Pharmacology.
484		2020;87:1165-1174. doi: 10.1111/bcp.14484
485	19.	Verbeke J, Calle S, Kamoen V, De Buyzere M, Timmermans F. Prognostic value
486		of myocardial work and global longitudinal strain in patients with heart failure
487		and functional mitral regurgitation. Int J Cardiovasc Imaging. 2021. doi:
488		10.1007/s10554-021-02474-y

489	20.	Guazzi M, Wilhelm M, Halle M, Van Craenenbroeck E, Kemps H, de Boer RA,
490		Coats AJS, Lund L, Mancini D, Borlaug B, et al. Exercise testing in heart failure
491		with preserved ejection fraction: an appraisal through diagnosis,
492		pathophysiology and therapy - A clinical consensus statement of the Heart
493		Failure Association and European Association of Preventive Cardiology of the
494		European Society of Cardiology. Eur J Heart Fail. 2022;24:1327-1345. doi:
495		10.1002/ejhf.2601
496	21.	López-Candales A, Rajagopalan N, Gulyasy B, Edelman K, Bazaz R. A delayed
497		time of the peak tricuspid regurgitation signal: marker of right ventricular
498		dysfunction. Am J Med Sci. 2008;336:224-229. doi:
499		10.1097/MAJ.0b013e31815fa56a
500	22.	Marcus JT, Gan CT, Zwanenburg JJ, Boonstra A, Allaart CP, Götte MJ,
501		Vonk-Noordegraaf A. Interventricular mechanical asynchrony in pulmonary
502		arterial hypertension: left-to-right delay in peak shortening is related to right
503		ventricular overload and left ventricular underfilling. J Am Coll Cardiol.
504		2008;51:750-757. doi: 10.1016/j.jacc.2007.10.041
505	23.	Berg-Hansen K, Gopalasingam N, Clemmensen TS, Andersen MJ, Mellemkjaer
506		S, Poulsen SH, Jensen JK, Nielsen R. Myocardial work across different
507		etiologies of right ventricular dysfunction and healthy controls. Int J
508		Cardiovasc Imaging. 2024;40:675-684. doi: 10.1007/s10554-023-03038-y
509	24.	Lakatos BK, Rako Z, Szijarto A, da Rocha BRB, Richter MJ, Fabian A, Gall H,
510		Ghofrani HA, Kremer N, Seeger W, et al. Right ventricular pressure-strain
511		relationship-derived myocardial work reflects contractility: Validation with
512		invasive pressure-volume analysis. J Heart Lung Transplant. 2024. doi:
513		10.1016/j.healun.2024.03.007
514	25.	Wu J, Huang X, Chen W, Tang Y, Chen X, Wang X, Jing B, Sun Y, Huang K, Gao Q,
515		et al. Noninvasive right ventricular work in patients with atrial septal defects:
516		a proof-of-concept study. Cardiovasc Ultrasound. 2023;21:10. doi:
517		10.1186/s12947-023-00306-8
518	26.	Guazzi M, Naeije R. Right Heart Phenotype in Heart Failure With Preserved
519		Ejection Fraction. Circ Heart Fail. 2021;14:e007840. doi:
520		10.1161/circheartfailure.120.007840
521	27.	Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L,
522		Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, et al. Recommendations
523		for cardiac chamber quantification by echocardiography in adults: an update
524		from the American Society of Echocardiography and the European
525		Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging.
526		2015;16:233-270. doi: 10.1093/ehjci/jev014

527	28.	Badagliacca R, Poscia R, Pezzuto B, Papa S, Gambardella C, Francone M,
528		Mezzapesa M, Nocioni M, Nona A, Rosati R, et al. Right ventricular
529		dyssynchrony in idiopathic pulmonary arterial hypertension: determinants
530		and impact on pump function. J Heart Lung Transplant. 2015;34:381-389. doi:
531		10.1016/j.healun.2014.06.010
532	29.	Przewlocka-Kosmala M, Marwick TH, Mysiak A, Kosowski W, Kosmala W.
533		Usefulness of myocardial work measurement in the assessment of left
534		ventricular systolic reserve response to spironolactone in heart failure with
535		preserved ejection fraction. Eur Heart J Cardiovasc Imaging.
536		2019;20:1138-1146. doi: 10.1093/ehjci/jez027
537	30.	Smiseth OA, Aalen JM. Right ventricular work: a step forward for non-invasive
538		assessment of right ventricular function. Eur Heart J Cardiovasc Imaging.
539		2021;22:153-154. doi: 10.1093/ehjci/jeaa296
540	31.	Sheehan F, Redington A. The right ventricle: anatomy, physiology and clinical
541		imaging. <i>Heart</i> . 2008;94:1510-1515. doi: 10.1136/hrt.2007.132779
542	32.	Butcher SC, Feloukidis C, Kamperidis V, Yedidya I, Stassen J, Fortuni F, Vrana E,
543		Mouratoglou SA, Boutou A, Giannakoulas G, et al. Right Ventricular
544		Myocardial Work Characterization in Patients With Pulmonary Hypertension
545		and Relation to Invasive Hemodynamic Parameters and Outcomes. Am J
546		Cardiol. 2022;177:151-161. doi: 10.1016/j.amjcard.2022.04.058

549 Figure legend

550

551	Figure 1. Method of Semi-Invasive Myocardial Work Analysis
552	Right ventricular (RV) strain curves (red) and RV strain rate curves (blue) are
553	exported from dedicated software. RV pressure recordings obtained via a Swan-Ganz
554	catheter, along with ECG signals, are averaged to create a single cardiac cycle RV
555	pressure curve (from ECG R wave to R wave). Both the strain rate and RV pressure
556	curves are resampled and then multiplied to generate the RV power curve. The
557	positive area under the RV power curve represents constructive work (green), while
558	the negative area represents wasted work (brown).
559	
560	Figure 2. Right Ventricular Myocardial Work Analysis
561	Curves of RV pressure (yellow), RV strain (red), inversed RV strain rate (blue)
562	and RV power (black) are plotted together for a heart failure with preserved ejection
563	fraction (HFpEF) patient (right) and a non-HFpEF patient (left). Peak pressure and
564	peak RV shortening are delayed and the RV wasted work (the negative area of the RV
565	power curve) is more in the HFpEF patient.

567 Figure 3. Correlation of RVGWW with Parameters from Invasive

568 Cardiopulmonary Exercise Test

569	Significant correlations between RVGWW and invasively derived rest PCWP, as
570	well as post-exercise Δ PCWP, are evident. However, no significant correlations are
571	observed with stroke volume index and cardiac index.
572	
573	Central illustration
574	Right Ventricular Myocardial Work in Heart Failure with Preserved Ejection Fraction.
575	Right ventricle global waste work (RVGWW) is significantly increased in HFpEF
576	patients and correlated with the change of PCWP at peak exercise.
577	Abbreviations :
578	HFpEF, heart failure with preserved ejection fraction; iCPET, invasive
579	cardiopulmonary exercise test; RV, right ventricle; PCWP, pulmonary capillary wedge
580	pressure.
581	
582	Supplemental Figure 1. The Patient Enrollment Algorithm
583	

Table 1. Patient characteristics

	Non-HFpEF patients HFpEF patients		р	
n	20	21		
age	68.3±6.6	65.8±11.3	0.40	
Sex	9/20	9/21	0.89	
BMI	25.6±3.9	26.3±3.8	0.56	
BSA	1.70±0.16	1.72±0.19	0.82	
H2FPEF score	2.10	2.33	0.57	
Comorbidities				
Coronary artery	10 (50)	11 (48)	0.88	
disease				
Hypertension	16 (80)	13 (62)	0.20	
Dyslipidemia	10 (50)	10 (48)	0.88	
Diabetes mellitus	5 (25)	5 (23)	0.92	
Medications				
ACEI or ARB	7 (35)	5 (23)	0.43	
Betablocker	10 (50)	13 (62)	0.26	
ССВ	4 (20)	3 (14)	0.73	

statin	8 (40)	9 (43)	0.65				
Diuretics	4 (20)	2 (10)	0.41				
Nitrate	4 (20)	3 (14)	0.73				
Laboratories							
Hemoglobin	13.7±0.9	13.5±1.5	0.63				
NT-proBNP	109.1±133.2	389.6±1076.3	0.25				
HbA1bac	6.0±1.1	5.9±0.6	0.84				
LDL	100.9±32.6	103.5±31.3	0.80				

ACEI, angiotensin-converting enzyme inhibitors; ARB, angiotensin receptor blockers;

BMI, body mass index; BSA, body surface area; CCB, calcium channel blocker;

HFpEF, heart failure with preserved ejection fraction; LDL, low density lipoprotein;

NT-proBNP, N-terminal pro- brain natriuretic peptide;

	Non-HFpEF patients	HFpEF patients	р
n	20	21	
Rest PCWP	12.9±3.4	21.2±6.4	<0.01
Exercise PCWP	18.9±4.6	28.6±8.2	<0.01
Mean PAP (rest)	20.5±4.9	28.1±7.4	<0.01
Mean PAP (ex)	32.1±8.2	39.6±8.5	<0.01
Resting cardiac	5.5±1.2	5.2±1.5	0.45
output (L/min)			
LVEDV (ml)	74.3±22.6	86.2±20.0	0.08
LVEDVi	43.3±11.2	50.6±12.7	0.057
LVEF (%)	65.4±7.3	66.7±8.1	0.57
LVGLS (%)	20.2±11.3	22.7±3.1	0.33
Mean E/e'	9.3±2.4	11.3±4.8	0.11
LAV (ml)	47.1±14.3	52.1±21.3	0.38
LAVi	27.4±6.7	30.4±11.8	0.32
LASr (%)	44.7±8.2	39.1±11.3	0.07
LASc (%)	22.3±6.7	20.3±7.0	0.35

Table 2. Echocardiographic and hemodynamic parameters

LASb (%)	22.4±7.4	18.7±7.3	0.12
RVEDA (cm ²)	15.9±4.1	16.9±4.3	0.44
RVEDAi	9.4±2.1	9.9±2.2	0.44
RVFAC (%)	41.3±5.5	38.3±9.7	0.25
RVGLS (%)	23.9±2.9	22.8±4.7	0.39
RVFWS (%)	27.5±3.9	25.8±5.4	0.29
PASP (mmHg)	23.3±7.2	22.6±8.7	0.76
RVFWS/PASP	1.3±0.6	1.4±1.0	0.73
(%/mmHg)			
TAPSE (cm)	2.3±0.4	2.4±0.5	0.53
TAPSE/PASP	0.10±0.07	0.11±0.3	0.57
(mm/mmHg)			
RV GCW (mmHg%)	490.1±118.9	547.6±229.1	0.33
RV GWW	149.6±63.3	255.6±96.0	<0.01
(mmHg%)			
RV GWE (%)	76.9±6.7	67.7±6.8	<0.01

E, early mitral inflow velocity; e', early mitral annulus velocity; EDV, end-diastolic volume; EDA, end-diastolic area; FAC, fractional area change; GCW, global constructive work; GLS, global longitudinal strain; GWW, global waste work; GWE,

global waste efficiency; LA, left atrium; LAESV, left atrial end-systolic volume; LASr, left atrial reservoir strain; LASc, left atrial conduit strain; LASb, left atrial booster strain; LAV, left atrial volume; LV, left ventricle; LVEF, left ventricular ejection fraction; PAP, catheter pulmonary arterial pressure; PASP, pulmonary artery systolic pressure (echo); PCWP, pulmonary capillary wedge pressure; RV, right ventricle; RVFWS, right ventricular free wall longitudinal strain; TAPSE, tricuspid annular plane systolic excursion;

HFpEF	AUC	95% C.I.	Sensitivity (%)	Specificity (%)	Diagnostic accuracy (%)	Cut-off
RVGWW	0.85	0.73-0.97	95	57	92	173
RVGWE	0.83	0.70-0.96	80	86	84	74
RVGCW	0.59	0.41-0.77	50	76	67	453
Averaged E/e'	0.59	0.41-0.77	55	42	43	10.3
E/A	0.5	0.31-0.69	60	40	52	0.88
LASr	0.64	0.47-0.81	90	38.1	58	35
LAVi	0.57	0.39-0.75	70	24	55	31.5
RVFAC	0.61	0.43-0.79	80	52	54	37.2
RVFWS	0.60	0.42-0.79	85	52	50	24.6

Table 3. Prediction of HFpEF with echocardiographic parameters

TAPSE/PASP	0.50	0.30-0.70	88.2	40	62	0.23
RVFWS/PASP	0.52	0.33-0.7	40	75	61	1.35

Abbreviations as in Table 2

Table 4. Multivariate regression analyses with post-exercise $\Delta PCWP$ and exercise

PCWP as the dependent variables

	Post-exe	ercise ΔPCWP		exercise PCWP		
	β (95%	CI)	р	β (95% CI)		p value
			value			
RV	1.981 0.056~3.906		0.044	4.323	2.429~6.218	< 0.001
GWW*						
age	0.033	-0.186~0.253	0.759	0.036	-0.178~0.250	0.734
LVGLS	-0.007	-0.216~0.202	0.945	0.122	0.081~0.325	0.229
LAVi	0.026	-0.180~0.232	0.799	0.130	-0.078~0.337	0.209
LASc	0.284	-0.163~0.365	0.443	-0.145	-0.115~0.405	0.263
Mean E/e'	-0.101	-0.184~0.752	0.226	0.918	0.463~1.373	< 0.001

Abbreviations as in Table 2; * β value per 100 mmHg