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38 Abstract:

39 Rapid urbanization in India is contributing to heightened poor air quality. Yet research on the impact of poor air 

40 on adverse birth outcomes (ABOs) especially in the public health aspect is less in India. This study investigates 

41 the influence of air quality on birth weight (LBW) and preterm birth (PTB). Utilizing data from the National 

42 Family Health Survey and satellite images, the study employs various statistical analyses and spatial models to 

43 elucidate the connection between in-utero exposure to air pollution and birth outcomes, both at the individual 

44 and district levels. It was observed that approximately 13% of children were born prematurely, and 17% were 

45 born with low birth weight. Increased ambient PM2.5 concentrations during pregnancy were associated with 

46 higher odds of LBW (AOR: 1.4; 95% CI: 1.29–1.45). Mothers exposed to PM2.5 during pregnancy had a 

47 heightened likelihood of delivering prematurely (AOR: 1.7; 95% CI: 1.57–1.77) in comparison to unexposed 

48 mothers. Climatic factors such as rainfall and temperature had a greater association with ABOs. Children 

49 residing in the Northern districts of India appeared to be more susceptible to the adverse effects of ambient air 

50 pollution. Furthermore, indoor air pollution was found to be associated with LBW. Employing a distributed 

51 spline approach, the study identified a discernible upward trend in the risk of adverse birth outcomes as the level 

52 of exposure increased, particularly following an exposure level of 40 PM2.5 ug/m3. Among the spatial models 

53 employed, the MGWR spatial model exhibited the highest level of goodness of fit. In addition to addressing 

54 immediate determinants such as nutrition and maternal healthcare, it is imperative to collaboratively address 

55 distal factors encompassing both indoor and outdoor pollution to attain lasting enhancements in child health.

56
57 Keywords: Air pollution; low birth weight; NFHS data; PM2.5 risk; preterm birth, spatial modeling.

58
59 Highlights:

60 • An estimated 13% of the children were preterm and 17% were low birth weight in India in 2019-21.

61  • High PM2.5 concentration during pregnancy was associated with LBW and PTB.  

62 • Children residing in the Northern districts of India were found to be more vulnerable to poor air quality. 

63 • A rising trend in the risk of adverse birth outcomes was observed after exposure level of 40 PM2.5 ug/m3. 

64 • The MGWR spatial model demonstrated the highest level of goodness of fit.
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72 1. Introduction

73 Ambient air pollution poses an existential global environmental threat to planetary and human health, with a  

74 disproportionate burden of its detrimental effects falling on those residing in low and middle-income countries 1. 

75 Consequently, the United Nations Climate Change Conference has urged developed countries to provide 

76 financial support to less developed and developing countries to confront the adverse impacts of air pollution and 

77 establish appropriate mechanisms to mitigate climate change 2. Besides being a significant driver of climate 

78 change, air pollution is the most critical risk factor for adverse health consequences 3. Referred to as the "silent 

79 killer," ambient air pollution is among the top five risk factors for mortality in both males and females 4–6. In 

80 2019 alone, ambient particulate matter pollution was responsible for 118 million disability-adjusted life years 

81 (DALY) and 4.14 million deaths in 2019 7. Among air pollutants, ambient fine particulate matter (PM2.5) is 

82 considered the most harmful air pollutant [4, 8–10]. These particles primarily originate from the burning of 

83 fossil fuels and biomass 11. With a diameter of less than 2.5 microns, exposure to these particles increases the 

84 risk of respiratory diseases, lung cancer, stroke, and heart disease 9,12–16.

85
86 In the 2023 World Air Quality Report, India was ranked as the third most polluted country out of 134 nations 

87 based on its average yearly PM2.5 levels 17. Notably, about 7 out of 10 Indians are exposed to air pollution 

88 levels that exceed the national standard of 40 µg/m3 18. Alarmingly, in 2019, as many as 0.98 million deaths in 

89 India were attributed to ambient particulate matter pollution 19. The key factors of this alarming trend are 

90 primarily attributed to the rising air pollution levels in the country due to urbanization and industrialization 

91 1,20,21. To address this critical air pollution situation, the government of India introduced the National Clean Air 

92 Program in 2019, setting a targeted reduction in air pollution. It envisages reaching a minimum 20% reduction 

93 in particulate matter concentration by 2024, compared to 2014 levels 22,23. However, despite these significant 

94 efforts, India still ranks as the second most polluted country in the world 22.

95 While air pollution has adverse impacts on the health of individuals across all age groups, infants and children 

96 are considered more vulnerable due to their developing organs and higher air intake per unit of body weight 24,25. 

97 Ambient air pollution has been associated with a range of pediatric morbidities, including adverse birth 

98 outcomes (ABO), asthma, cancer, and an increased risk of chronic diseases in life stages 9,13,26–30. Among the 

99 ABOs associated with ambient air pollution are preterm birth (PTB) and low birth weight (LBW) 25,27,31,32. PTB 

100 and LBW are important predictors of under-five mortality and malnutrition 33,34. The World Health Organization 

101 estimates that approximately 15 million babies are born preterm (<37 weeks) each year 34. Furthermore, 15% of 

102 babies worldwide are born with LBW, defined as  <2500 grams at birth 35. While LBW is a global public health 

103 concern, its prevalence is particularly higher in low and middle-income countries 36.

104 A systematic review of 41 studies found that exposure to PM2.5 is associated with PTB, LBW, and small-for-

105 gestational-age births 37.  A prospective cohort study conducted in Tamil Nadu provided the first quantitative 

106 evidence linking rural-urban PM2.5 exposures during pregnancy of LBW 38. This study concluded that increased 

107 exposure to particulate matter exposure during pregnancy is associated with a decrease in birth weight among 

108 newborns 39. However, research in developing countries, albeit limited, established that maternal exposure to 

109 ambient air pollution is  associated with higher odds of LBW and PTB among children 40–43.

110
111 The majority of studies investigating the association between ambient air pollution with ABOs have primarily 

112 been conducted in high-income countries 36,40. The evidence regarding this particular issue is somewhat less in  

113 developing countries 32. According to National Family Health Survey-5, 18% of children born in the five years 
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114 preceding the survey had low birth weight. India has been identified as a significant contributor to global 

115 preterm births 44. Moreover, ambient air pollution levels are expected to increase in India as the country is 

116 transitioning from a rural economy to an urban one, with the urban population projected to reach 53% by 2050 

117 from 35.87 in 2022 45. Despite the alarming rise in air pollution levels in India, there has been a paucity of 

118 research exploring its impact on ABOs. Moreover, the findings of a spatial analysis on the effects of air 

119 pollution on adverse birth outcomes (ABOs) will be helpful for implementing area-specific schemes for 

120 policymakers or stakeholders, which has not yet been done at the national level in India. Therefore, the study 

121 hypothesizes a negative impact of PM2.5 on birth outcomes in India. In order to address this research gap in the 

122 available evidence, the present study endeavors to investigate the impact of ambient air pollution on ABOs, 

123 particularly focusing on LBW and PTB at the national level. Further, the study utilized different geospatial 

124 models to highlight the vulnerable areas that need to be focused on, with robust estimated outcomes controlling 

125 for environmental, demographic, and socioeconomic confounding factors. The study utilizes nationally 

126 representative data from the latest round of the NFHS, 2019-21, thus ensuring the generalizability of results 46. 

127 The results of this study might be imperative as LBW and PTB continue to be significant public health concerns 

128 in India. Moreover, this study will augment the existing but limited literature focused on investigating the 

129 association of ambient air pollution with LBW and PTBs, a question of paramount public health significance. 

130

131 2.Data and Methods

132 2.1. Population and health data

133 Population data were extracted from the fifth NFHS, conducted across 36 states and union territories at the 

134 national level. A stratified two-stage sampling procedure was employed in the survey design. Primary Sampling 

135 Units (PSUs) were villages in rural areas and census enumeration blocks (CEBs) in urban areas. Survey 

136 questionnaires were prepared to take out detailed information on maternal and child health, as well as 

137 socioeconomic data. Additionally, the NFHS data incorporated the collection of biomarker data 46. The survey 

138 encompassed reproductive history, including data on contraceptive use, pregnancy, birth, termination, and 

139 abortion. Children born 0 to 5 years preceding the survey were considered in the research. The protocol for the 

140 NFHS-5 survey, including the content of all the survey questionnaires, received approval from both the 

141 International Institute of Population Sciences (IIPS) institutional review board and the ICF institutional review 

142 board. Furthermore, it underwent review protocol by the U.S. Centres for Disease Control and Prevention 

143 (CDC). Further details on the sampling design can be obtained in the Indian National Report 

144 (https://dhsprogram.com/pubs/).

145 2.2. Air pollution data

146 In this study, global level PM2.5 data was derived from the Atmospheric Composition Analysis Group (ACAG), 

147 to measure the exposure of mothers during the pregnancy period 47. The spatial resolution of PM2.5 was 

148 0.01° × 0.01° and Resolution-Tiered Approach (RTA) was employed to estimate the concertation of PM2.5. The 

149 data is prepared by the fusion of multiple sensors including Aerosol Optical Depth (AOD) measurements from 

150 NASA's Moderate–Resolution Imaging Spectro-radiometers (MODIS), Multi-Resolution Imaging Spectro-

151 Radiometers (MISR), and Sea–viewing Wide Field–of–View Sensor (SeaWiFS) instruments with the Goddard 
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152 Earth Observing System (GEOS) and chemical transport model (Chem) data. The data was further calibrated to 

153 match  global ground-based observations using a Geographically Weighted Regression (GWR) technique, and 

154 its accuracy has been validated in several previous studies 43,48–55. Each survey participant was assigned an 

155 average in-utero air pollution exposure based on the child’s date of birth and the duration of pregnancy, as 

156 recorded in the NFHS survey data. For instance, if a child was born in January 2019 with a pregnancy duration 

157 of 9 months, the in-utero exposure period was considered from May 2018 to the end of January 2019. The 

158 cluster points were randomly displaced by 2 and 5 km in urban and rural areas, respectively, to maintain the 

159 privacy of participants. Thus, a 3 km buffer was created around each cluster point for the extraction of pollutant 

160 data.

161 2.3 Climate data

162 We used the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) precipitation dataset, 

163 covering a span of 43 years from 1981 to the present 56, with a spatial resolution of 5 km 

164 (https://www.chc.ucsb.edu/data/chirps). This high-quality dataset served as the foundation for developing a 

165 comprehensive and robust climatic index, laying the groundwork for deeper insights into the long-term trends 

166 and patterns of climatic hazards in various geographical areas. 

167 We also utilized the ERA5-Land product, distributed by the Copernicus Climate Change Service (C3S) Climate 

168 Data Store (CDS) of ECMWF, to analyze land surface temperature (LST) in our study 57. This dataset provides 

169 monthly temperature values at a spatial resolution of 0.1 degrees (approximately 11,200 meters at the equator) 

170 on a latitude/longitude Climate Modelling Grid (CMG), covering the period from January 1981 onwards. The 

171 ERA5-Land product, along with its fine resolution and long-term availability, enables detailed assessments of 

172 LST variations and their implications for various ecosystems and human activities 56,58–60. 

173 2.4 Variable description

174 2.4.1. Dependent variables

175 According to the World Health Organization (WHO), Preterm birth is defined as a live birth before 37 

176 completed weeks of gestation, while low birth weight is defined as weight at birth less than 2500 grams 61. In 

177 the present study, we followed the methodology outlined by Jana, Banerjee, and Khan (2023) 62, to measure 

178 preterm birth using the calendar method of the Demographic and Health Surveys (DHS). The NFHS collected 

179 data on birth weight using the following questions: Was (name of the child) weighed at birth? How much did 

180 (name of the child) weigh? The information was reported in two ways; first, the mother recalled about her 

181 baby’s weight, and second, reported with the help of any card of their baby’s weight 46. The other outcome 

182 variable in this study was preterm birth, which is estimated based on the duration of pregnancy. Both outcome 

183 variables are dichotomous, with ‘0’ signifying that the child did not have LBW/was not preterm, and ‘1’ 

184 indicating that the child had LBW/was preterm.

185 2.4.2. Model covariates

186 We selected the factors associated with adverse birth outcomes based on published literature and the availability 

187 of variables within the dataset. The study included the child's characteristics, such as the sex of the child (male 
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188 and female) and birth order (1st, 2nd and 3rd & above), which were considered as confounding factors. Babies 

189 born at home was defined as non-institutional delivery and delivery taken place at any medical institution was 

190 considered as institutional delivery. Mother's general health plays a pivotal role in determining the health of 

191 newborns 63,64. NFHS-5 collected anthropometric measurements using biomarkers. These measurements were 

192 used to calculate Body Mass Index (BMI) by dividing weight in kilograms by height in meters squared (kg/m2). 

193 BMI was categorized into four groups; thin (BMI <18.5), normal (BMI 18.5–24.9), overweight (BMI 25–30), 

194 and obese (BMI≥30.0). 

195
196 The model incorporated several maternal variables, such as mother's level of education (categorized as 

197 illiterate/primary, secondary, and higher education) and mother's age at the time of childbirth (< 20, 20 – 24, 25-

198 29, and 30 years & above). In the survey, respondents were asked about their primary cooking fuel source. We 

199 classified wood, coal, dung cake, and crop residue as solid or unclean fuel and natural gas, liquefied petroleum 

200 gas, and electricity as clean fuels. The household’s wealth quintile was categorized into three categories; 'poor', 

201 'middle' and 'rich'. Additionally, the household’s religion was recoded as 'Hindu', 'Muslim' and 'Others' (such as 

202 Sikh, Christian, Jain etc.). 

203 2.5. Statistical analysis

204 The weighted prevalence of LBW and PTB was estimated using the exposed sample, and the Chi-square test 

205 (χ2) was performed to evaluate the association between dependent and independent variables. Geospatial 

206 analysis has been conducted using ArcGIS (version 10.8) to prepare the prevalence maps. Further, multivariate 

207 logistic regression was employed to examine the association between exposure to PM2.5 during pregnancy and 

208 birth outcomes after controlling all the possible confounding factors. The logistic regression model is defined as,   

209 𝑙𝑜𝑔𝑖𝑡(𝑝) = log ( 𝑝
1 ― 𝑝) = 𝛽0 + 𝛽1 ∗ 𝑥1……. + 𝛽𝑘 ∗ 𝑥𝑘 + 𝜀  

210 Where, 𝛽0 is intercept and β1… βk are regression coefficients indicating the relative effect of a particular 

211 explanatory variable on the outcome, while 𝜀 is an error term. Further, bivariate Local Indicators of Spatial 

212 Association (LISA) was used in the study to explore the spatial association between exposure to PM2.5 and 

213 adverse birth outcomes. A sensitivity analysis was employed by adjusting different determinants to explore the 

214 relation between in-utero exposure to PM2.5 and birth outcomes such as PTB and LBW. Further, in the study, a 

215 spline function was utilized to visually depict the connection. This connection involved the likelihood of 

216 occurrences such as having children with LBW and PTB, all influenced by exposure to air pollution during 

217 pregnancy. A spline function integrates several polynomial sections linked by knots, forming a continuous 

218 curve. The quantity of knots can be modified to control the curve and smoothness, increasing or decreasing it as 

219 needed. To determine knot placement, we employed quantiles of the exposure level of PM2.5 in the individuals. 

220
221 Bivariate LISA measures the local correlation between a variable and the weighted average of another variable 

222 in the neighborhood.

223 i i ij j
j

I n w z 
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224 Where, Zi denotes standardized variable of interest and Wij is weight matrix. The bivariate LISA functionality 

225 the cluster maps of the association between two variables. The cluster map is a special choropleth map showing 

226 those locations with a significant local Moran statistic classified by the type of spatial correlation: bright red for 

227 high-high associations, bright blue for low-low, light blue for low-high and light red for high-low. The high-

228 high and low-low suggest clustering of similar values, whereas high-low and low-high locations indicate spatial 

229 outliers. The scatter plot of the dependent and independent variables of a spatial unit shows the statistical figure 

230 of the association. 

231
232 Several geostatistical models were used in this study to identify the best-fitting model, and the results will be 

233 helpful for policymakers to launch area-specific schemes for vulnerable regions. . . First, Ordinary Least 

234 Squares (OLS) technique was used. This is a classic linear regression model that seeks to find the best-fitting 

235 line through the data by minimizing the sum of squared differences between observed and predicted values. 

236 OLS assumes that the relationship between the dependent and independent variables is constant across space. 

237 Second, we employed Geographically Weighted Regression (GWR) which is a spatial regression technique that 

238 allows for the exploration of spatially varying relationships between variables. It recognizes that the 

239 relationships may change across different geographic locations, providing a localized understanding of the data. 

240 Finally, Multiscale Geographically Weighted Regression (MGWR) which extends GWR by considering 

241 relationships at multiple spatial scales was applied 65. This model accounts for varying relationships not only at 

242 the local level but also extends its analysis across different geographic scales, providing a more comprehensive 

243 analysis of spatial variability. The model employs two spatial regression models, namely the Spatial Lag Model 

244 (SLM) and the Spatial Error Model (SEM), each addressing distinct aspects of spatial dependency. The Spatial 

245 Lag Model (SLM) is a type of spatial autoregressive model that considers the spatial dependency of 

246 observations. It assumes that the values of the dependent variable are influenced by the values of neighboring 

247 observations, incorporating spatial relationships into the model 66.  It accounts for the spatial interdependence of 

248 data points. On the other hand, the Spatial Error Model (SEM) is another spatial regression model that accounts 

249 for spatial autocorrelation in the error terms of the model. It assumes the presence of spatially correlated errors 

250 that are not captured by the independent variables, allowing for a more accurate representation of the data's 

251 spatial structure. 

252
253 3. Results

254 3.1 Characteristics of the sample 

255 Table 1 represents the percentage distribution of the sample size used in the present study. Approximately 52% 

256 of the sample consisted of female children, and the rest of the sample was male children. Among the sample, 

257 13% of the sample were born preterm, whereas 17% of the sample were LBW. About half of the sample 

258 belonged to 2nd birth order category. One out of 10 mothers were teenagers (under 20 years of age). About 14% 

259 of the children were born at home, and nearly 19% of the mothers were undernutrition or categorized as ‘thin’. 

260 Half of the sample belonged to households classified as ‘poor’, and 73% of the sample belonged to the Hindu 

261 religion. Additionally, 58% of the households reported using solid fuels for cooking. 

262
263 3.2 Spatial distribution of ABO and PM2.5

264 The spatial distribution of ambient PM2.5 shows a high concentration over the upper Gangetic region (Figure 1), 

265 covering states like Uttar Pradesh, Bihar, Delhi, Punjab and Haryana, whereas a lower concentration was 
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266 observed in the Southern and North-Eastern regions of India. The highest prevalence of preterm was observed in 

267 the Northern states, such as Himachal Pradesh (39%), Uttarakhand (27%) and Rajasthan (18%), and Delhi 

268 (17%), including North-Eastern states like Nagaland (Table S1). In contrast, a lower prevalence of PTB was 

269 observed in Mizoram, Manipur and Tripura. As for LBW, the highest prevalence was in Punjab (22%), followed 

270 by Delhi, Dadra and Nagar Haveli, Madhya Pradesh, Haryana and Uttar Pradesh. Conversely, fewer children 

271 with LBW were observed in the North-East region of India (Figures 1b and 1c).  

272
273 3.3 Effects of PM2.5 on ABO at the individual level

274 Figure 2 shows the weighted percentage of LBW and PTB by selected background characteristics. The 

275 observation revealed that the prevalence of LBW was higher among females (20%) compared to males (17%), 

276 whereas a significant difference was not observed for PTB (Table S2). In both cases, the proportion was higher 

277 among teenage mothers. However, a decreasing percentage was found with age for LBW, but an increasing 

278 level of PTB can be observed after age 30 years. The percentage of adverse birth outcomes was greater among 

279 children born at home and residing in rural areas. Underweighted mothers had more LBW (22%) and PTB 

280 (13%) children than normal mothers, 17% and 12%, respectively. Illiterate and primary educated mothers were 

281 having more LBW and PTB children. A similar result can be observed for wealth status. Poor mothers had more 

282 adverse birth outcomes. However, mothers who belonged to the Muslim religion had a lower percentage of 

283 LBW and a higher proportion of PTB. Households using solid fuels for cooking had more adverse birth 

284 outcomes. 

285 Our unadjusted and adjusted multivariate logistic regression models consistently revealed associations between 

286 air pollution during pregnancy and birth outcomes, as shown in Table 2. Higher ambient PM2.5 concentrations 

287 during pregnancy were associated with higher odds of both low birth weight (LBW) (AOR: 1.37; 95% CI: 1.29–

288 1.45) and preterm birth (PTB) (AOR: 1.67; 95% CI: 1.57–1.77). The odds ratios were higher in the unadjusted 

289 models for both LBW (OR: 1.56; 95% CI: 1.50–1.63) and PTB (OR: 1.62; 95% CI: 1.55–1.69). A slight 

290 increase in temperature was associated with higher odds of LBW (AOR: 1.03; 95% CI: 1.01–1.04), though it 

291 was not significantly associated with PTB, while higher rainfall was significantly associated with both LBW 

292 (AOR: 1.07; 95% CI: 1.03–1.12) and PTB (AOR: 1.04; 95% CI: 1.02–0.10). The use of solid fuel for cooking 

293 was associated with higher odds of LBW (AOR: 1.04; 95% CI: 1.01–1.07), but it was not significantly 

294 associated with PTB. Female children had higher odds of being born with LBW (AOR: 1.18; 95% CI: 1.15–

295 1.20) compared to male children but had slightly lower odds of PTB (AOR: 0.97; 95% CI: 0.95–1.00). Higher 

296 birth order was associated with lower odds of LBW (AOR for second birth: 0.89; 95% CI: 0.86–0.91; AOR for 

297 third or higher birth: 0.84; 95% CI: 0.80–0.88). For PTB, only a third or higher birth order showed a significant 

298 decrease in odds (AOR: 0.94; 95% CI: 0.89–0.98). Teenage mothers (below 20 years) had higher odds of giving 

299 birth to children with LBW (AOR: 1.09; 95% CI: 1.04–1.15) and PTB (AOR: 1.08; 95% CI: 1.02–1.14). 

300 Children born at home had higher odds of LBW (AOR: 1.11; 95% CI: 1.06–1.16). Urban residence was 

301 associated with higher odds of LBW (AOR: 1.07; 95% CI: 1.04–1.11) and lower odds of PTB (AOR: 0.96; 95% 

302 CI: 0.92–0.99). Underweight mothers had higher odds of both LBW (AOR: 1.27; 95% CI: 1.24–1.31) and PTB 

303 (AOR: 1.04; 95% CI: 1.01–1.08), while overweight or obese mothers had lower odds of both LBW (AOR: 0.93; 

304 95% CI: 0.90–0.96) and PTB (AOR: 0.95; 95% CI: 0.92–0.99). Lower maternal education levels were 

305 associated with higher odds of LBW (AOR for illiterate/primary: 1.40; 95% CI: 1.34–1.46; AOR for secondary: 

306 1.23; 95% CI: 1.18–1.28), while higher education was associated with lower odds of PTB (AOR: 0.95; 95% CI: 
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307 0.91–0.99). Poor mothers had higher odds of LBW (AOR: 1.09; 95% CI: 1.05–1.13) and lower odds of PTB 

308 (AOR: 0.92; 95% CI: 0.88–0.95). Muslim mothers had lower odds of LBW (AOR: 0.87; 95% CI: 0.84–0.91) 

309 and similar odds of PTB compared to Hindu mothers.

310 There was a high likelihood of LBW in women who experienced high levels of PM2.5 during their gestational 

311 period (Figure 3 a and 2b). Employing a distributed spline approach, the study identified a growing trend in the 

312 risk of delivering LBW babies as the exposure level increased, especially after the exposure level of 40 PM2.5 

313 ug/m3. Concerning PTB, the odds displayed a rapid and exponential increase in relation to the PM2.5 exposures 

314 and the increasing trend became notably rapid after reaching the exposure level of 50 PM2.5 ug/m3.

315
316 3.4 Sensitivity analysis

317 The unadjusted odds ratio demonstrates a significantly higher likelihood of LBW associated with PM2.5 

318 exposures during pregnancy (OR: 1.56; 95% CI: 1.50–1.63). However, the strength of this association decreased 

319 after adjusting for environmental, socioeconomic, maternal, and child characteristics (Table 3). In contrast, for 

320 PTB, the odds ratio shifted from 1.62 in the unadjusted model to 1.67 after accounting for these determinants. 

321 This discrepancy underscores the influence of the various determinants considered in the study on the odds ratio 

322 values, highlighting their importance in the analysis.

323 3.5 Spatial association between PM2.5 and ABO

324 The findings of the bivariate LISA map showed that children living in the Northern districts of India faced a 

325 higher vulnerability to ambient air pollution as the high-high clusters of spatial association were found in 

326 Punjab, Delhi, Madhya Pradesh, Rajasthan and some parts of Uttar Pradesh (Figure 4). A total of 109 districts 

327 had a significant association between in-utero exposure to PM2.5 and LBW. On the other hand, 40 districts had 

328 high-high clusters of autocorrelations between PM2.5 and PTB. Notably, it was observed that most of the 

329 districts of Uttar Pradesh were found to be more vulnerable to PM2.5 in the context of preterm birth. 

330 Additionally, the study employed OLS, GWR, MGWR, SLM, and SEM, to investigate the spatial relationship 

331 between PM2.5 exposures during pregnancy and the occurrences of LBW and PTB, while considering potential 

332 confounding factors. In line with our hypothesis, the analysis revealed a robust spatial association between 

333 PM2.5 exposures and LBW, although the strength of this association varied across the different models. Notably, 

334 the GWR model showed the highest impact of PM2.5 exposures (β=0.122, SE=0.009), while MGWR 

335 demonstrated the highest goodness-of-fit (R2 = 68%) (Table 4). Regarding PTB, the MGWR model provided 

336 the best explanatory power, accounting for 54% of the variance, surpassing other models. In the GWR model, a 

337 noteworthy finding was that a one-unit increase in PM2.5 exposure corresponded to a 5% increase in the 

338 prevalence of PTB (Table 5) and a 12% increase in LBW. Overall, a reduction in the prevalence of LBW and 

339 PTB was observed across all models, with MGWR and GWR models showing particularly promising outcomes. 

340 Nevertheless, higher prevalence rates persisted in Northern India and certain parts of the eastern region, most 

341 notably in Odisha (Figure 5).

342
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343 4. Discussion

344 The study is the first attempt to measure preterm birth at the Indian district level by exploring the calendar data 

345 of NFHS 62. The analysis establishes the evidence of the association between in-utero exposure to PM2.5 and 

346 adverse birth outcomes by leveraging satellite data and large-scale survey data. The individual-level analysis 

347 reveals that an increase in ambient PM2.5 is associated with a greater likelihood of LBW and PTB, consistent 

348 with previous studies 36,67–69. We observe a higher value of the odds ratio of having preterm infants whose 

349 mothers were exposed to PM2.5 during pregnancy as compared to the results for LBW. A significant role of 

350 indoor air pollution has been observed in the study for LBW. Further, climatic factors such as rainfall and 

351 temperature are significantly associated with ABOs in India. To the best of our knowledge, this study is the first 

352 of its kind to understand the association between in-utero exposure to PM2.5 and adverse birth outcomes in India. 

353 It is worth noting that except for Nagaland, North-Eastern states had a lower prevalence of preterm birth and 

354 low birth weight, coinciding with lower pollution levels in that region. Previous studies have found that the 

355 concentration of ambient PM2.5 is highest in the states of upper-Gangetic plains such as Delhi, Punjab, Haryana, 

356 Uttar Pradesh and Bihar, as observed in the present study 70–73. A recent Lancet study suggests that the average 

357 PM2.5 concentrations in Delhi were 13.8 times higher than that in Kerala 74. The Northern states had the highest 

358 PM2.5 concentrations. The NFHS-5 report suggests that a large proportion of households in the Northern parts of 

359 India use solid fuels compared to other regions 46. It is well documented that the residential sector is a 

360 significant contributor to the total PM2.5 emissions along with the industry, energy and agriculture sectors 75. 

361 Among industrial, residential and energy sources, the contribution of energy sources to total emissions is the 

362 maximum, while residential sources contribute the maximum to PM2.5 emissions during winter and post-

363 monsoon 75. In contrast, certain studies conducted on future emissions scenarios in India forecast an increase in 

364 PM2.5 levels 76. However, at the urban or city level, where most households are already using cleaner fuel, 

365 reducing vehicular emissions (both exhaust and non-exhaust) emerges as a crucial strategy for reducing PM2.5 

366 levels. It was prominently observed during the coronavirus pandemic (COVID-19) lockdown in Indian cities 

367 when traffic reduction substantially minimized urban areas’ exposure to air pollutants 70,77. Moreover, the issue 

368 of air pollution is exacerbated by crop residue burning and forest fires in northern India, significantly 

369 contributing to the toxic air quality in the region 78,79. The higher prevalence of low birth weight and preterm 

370 birth in the districts of the Northern region indicates a spatial association between PM2.5 and birth outcomes. In 

371 line with our hypothesis, the study finds an individual level and spatial association between in-utero exposure to 

372 PM2.5 and LBW and PTB. 

373 The mechanisms behind preterm birth due to exposure to PM2.5 are not clearly understood. Some 

374 epidemiological and toxicological studies proposed different pathways to explain the paradox. Due to the finer 

375 size of PM2.5, inhaling particulate matter deposits in the lungs and affects the circulatory system 80. Which is a 

376 reason of having oxidative stress, blood coagulation and placental inflammation that restricts the fetal growth 81–

377 85. Nevertheless, the presence of particulate matter in the human body disturbs oxygen transport and causes 

378 hormone dysfunction, which is the reason for placental insufficiency 86–89. 

379 An earlier study identified that maternal exposure to PM2.5 in the latter stages of pregnancy induces cytokine 

380 activation, favouring inflammation 90. Sometimes inhaled PM2.5 penetrates the toxic gases that damage 

381 deoxyribonucleic acid (DNA), restricting nutrient supply to the fetus resulting in pregnancy complications 
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382 during the last trimester of pregnancy that triggers the possibility of having a preterm birth 91,92. Moreover, 

383 substantial exposure to a large amount of PM2.5 has been linked to fetal malformation, miscarriage and stillbirth, 

384 all of which can influence subsequent birth outcomes 93–95. 

385 Medical studies found that the mother's fetus grows rapidly in the third trimester of pregnancy 96,97. That period 

386 is more sensitive, and exposure to PM2.5 can hemorrhage the foetal growth easily 98,99. Nevertheless, the level of 

387 thyroid hormone might be affected by the toxicity of PM2.5, which is a responsible factor for less fetus weight 

388 100. Previous studies have found that fetal growth depends on many factors, such as mothers' health, 

389 socioeconomic condition and genetic factors 101,102,102,103. Thus, the present study has adjusted for those potential 

390 plausible factors. Nevertheless, the study establishes a significant association between PM2.5 and LBW. Further 

391 investigation is required to explore the biological mechanism by considering the biomarker measurement of the 

392 fetus.    

393 Low birth weight and preterm birth significantly contribute to the highest number of stunting and premature 

394 deaths in India 104–106. Since 1970, the Indian government has been trying to improve child health by adopting 

395 several schemes that promote the utilization of maternal healthcare facilities, spread awareness of reproductive 

396 health, supply nutrients to mothers and newborns, etc. Adverse birth outcomes not only impact a child's health 

397 but also reduce the productivity of the human resources of a country. 

398 Understanding the impact of exposure to indoor air pollution during pregnancy is also important because 

399 pregnant women tend to spend most of their time indoors and this time only increases once the pregnancy 

400 progresses. Past studies found that releasing pollutants from uncleaned biomass burning in the household 

401 restricts fetal growth, increasing the probability of having a child with low weight and preterm birth 107,108. In 

402 line with the hypothesis, our study also found a negative association between in-utero exposure to PM2.5 and 

403 birth weight, whereas the result for PTB was the opposite. As PTB mostly depends on the mother’s health and 

404 obstetric factors 62, which could explain the absence of a discernible effect of PM2.5 on PTB in the study. 

405 However, addressing indoor air pollution through interventions such as promoting cleaner fuels and improving 

406 home ventilation is crucial for improving pregnancy outcomes and neonatal health. 

407 The present finds a significant role of climatic factors for ABOs. Previous evidence suggests that high 

408 temperatures can cause heat stress, dehydration, and reduced uteroplacental blood flow, impairing fetal growth 

409 and increasing the risk of LBW 109. Additionally, heat-induced oxidative stress and inflammation can disrupt 

410 placental function, while cardiovascular strain and hormonal imbalances can further complicate pregnancy 

411 outcomes. On the other hand, extreme rainfall can heighten the risk of waterborne and vector-borne diseases, 

412 leading to maternal infections that adversely affect fetal development (Poursafa et al., 2015). Flooding can also 

413 result in nutritional deficiencies, physical and psychological stress, and disrupted healthcare access, all of which 

414 contribute to LBW and PTB 110,111. Improved healthcare access, infrastructure development, and policies 

415 addressing climate change are essential to protect maternal and neonatal health against these challenges.

416 Our findings suggest that both indoor and ambient air pollution along with climatic factor are significantly 

417 associated with ABOs. However, to gain a deeper understanding of the biological mechanisms underpinning the 

418 relationship between air pollution and malnutrition, which cannot be fully explored using existing datasets, 

419 conducting an in-depth epidemiological study is imperative. It is important to note that our research assumes 
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420 that mothers did not change their residence during the period from pregnancy to the conducting date of the 

421 survey.  The study acknowledges that like some other possible determinants, smoking practices and alcohol 

422 consumption were not considered in the model due to the under-reporting nature. Also, the possibility of biases 

423 due to self-reporting cannot be ignored. Due to the cross-sectional nature of the study, we cannot draw a causal 

424 relationship, other aspects including the seasonality effects can be explored using the longitudinal study in the 

425 future. As India is not satisfactorily progressing in child nutrition, hence consorted effort to improve 

426 environmental conditions, especially air quality, is essential to tackle issues related to child health.

427 5. Conclusion

428 The present study provides robust evidence linking in-utero exposure to ambient PM2.5 and climatic factors, 

429 such as temperature and rainfall, with adverse birth outcomes in India. The geostatistical analysis underscores 

430 the need for targeted interventions, particularly in Northern districts identified as highly vulnerable. To address 

431 these challenges, comprehensive strategies are essential. The National Clean Air Program should be intensified, 

432 with stricter emission standards and enhanced air quality monitoring. Integrating air quality data with health 

433 surveillance systems will enable precise identification of at-risk populations. Additionally, policies promoting 

434 clean cooking fuels and energy-efficient technologies can reduce indoor air pollution. Climate adaptation 

435 strategies, such as developing heat action plans and improving water management, should be incorporated into 

436 public health planning to mitigate the effects of extreme temperatures and irregular rainfall. Public health 

437 initiatives must raise awareness about the risks of air pollution and climate change, particularly among pregnant 

438 women. 
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456
457 Data Availability
458 The study uses secondary data that are available on reasonable request through 
459 https://dhsprogram.com/data/dataset_admin/
460
461
462 Ethics approval

463 The Indian Demographic and Health Survey (DHS) is known as National Family Health Survey (NFHS) in India. 
464 We used published large scale national data where every respondent was anonymized in the data set itself. As it 
465 is not based on a primary survey- cases, we need not to do any anonymization in the study as the data is already 
466 made in that fashion following all ethical protocols. Thereby, it is certified that all applicable institutional and 
467 governmental regulations concerning the ethical use of human volunteers were followed during the course of the 
468 survey. 
469
470 Consent to participate

471 Verbal as well as written informed consent was obtained from all the participants. The informed consent was 
472 taken from their parent or legal guardian who were not mature or below 18 aged. Then blood sample was taken 
473 from the finger and collected in microcuvette. The data is in the public domain- free of cost for users and funded 
474 by the government. More details on that available at 
475 https://dhsprogram.com/search/index.cfm?bydoctype=publication&bypubtype=5. 
476
477
478 Consent to publish

479 The dataset is publicly available, thus consent for publication is not applicable for the study. 
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Table 1. Sample distribution used in the analysis

Variables Sample Percentage
Preterm birth
No           2,01,657 87.45
Yes              28,933 12.55
Low birth weight
No           1,71,116 82.6
Yes              36,039 17.4
Sex of the child
Male           1,19,474 51.81
Female           1,11,116 48.19
Birth order
1              88,235 38.26
2           1,11,898 48.53
3+              30,457 13.21
Mother's age at delivery
Below 20              26,282 11.4
20-24              98,137 42.56
25-29              68,494 29.7
30&above              37,677 16.34
Place of delivery
Home              31,331 13.59
Hospital           1,99,259 86.41
Place of residence
Rural           1,84,038 79.81
Urban              46,552 20.19
Mother's body mass index
Underweight              42,112 18.73
Normal           1,42,504 63.38
Overweight/obese              40,208 17.88
Mother's education
Illiterate/primary              80,636 34.97
Secondary           1,18,602 51.43
Higher              31,352 13.6
Wealth status
Poor           1,16,744 50.63
Middle              44,700 19.39
Rich              69,146 29.99
Religion
Hindu           1,69,233 73.39
Muslim              33,194 14.4
Others              28,163 12.21
Cooking fuel
Clean fuel              97,582 42.32
Solid fuel           1,33,008 57.68
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Table 2. Adjusted and unadjusted odds ratio showing the effects of in-utero exposure to PM2.5 on low birth 

weight and preterm birth 

Low birth weight Preterm birthDeterminants
OR AOR OR AOR

PM2.5 (µg/m3)
< mean
>= mean 1.56***(1.50  1.63) 1.37***(1.29  1.45) 1.62***(1.55  1.69) 1.67***(1.57  1.77)
Temperature (°C)
< mean
>= mean 1.14***(1.01 1.04) 0.98 (0.96 1.01)
Rainfall (mm)
< mean
>= mean 1.07***(1.03 1.12) 1.04***(1.02 1.10)
Sex of the child
Male (Ref)
Female 1.18***(1.15  1.20) 0.97**(0.95  1)
Birth order
1 (Ref)
2 0.89***(0.86  0.91) 0.99 (0.96  1.02)
3+ 0.84***(0.8  0.88) 0.94***(0.89  0.98)
Mother's age at delivery
Below 20 1.09***(1.04  1.15) 1.08***(1.02  1.14)
20-24 1.03 (0.99  1.07) 1.03 (0.98  1.07)
25-29 1 (0.96  1.03) 0.97 (0.93  1.01)
30&above (Ref)
Place of delivery
Home (Ref) 1.11***(1.06  1.16) 1.00 (0.97  1.04)
Hospital
Place of residence
Rural (Ref)
Urban 1.07***(1.04  1.11) 0.96**(0.92  0.99)
Mother's body mass index
Normal (Ref)
Underweight 1.27***(1.24  1.31) 1.04***(1.01  1.08)
Overweight/obese 0.93***(0.9  0.96) 0.95***(0.92  0.99)
Mother's education
Illiterate/primary 1.40***(1.34  1.46)
Secondary 1.23***(1.18  1.28) 1.00 (0.95  1.04)
Higher (Ref) 0.95**(0.91  0.99)
Wealth status
Poor 1.09***(1.05  1.13) 0.92***(0.88  0.95)
Middle 0.98 (0.94  1.02) 0.95**(0.92  0.99)
Rich (Ref)
Religion
Hindu (Ref)
Muslim 0.87***(0.84  0.91) 0.97 (0.94  1.01)
Others 0.70***(0.67  0.73) 0.88***(0.84  0.92)
Cooking fuel
Clean fuel (Ref)
Solid fuel 1.04 ***(1.01 1.07) 0.94 (0.91  1.03)

Note: Ref: Reference category; *** p < 0.001, ** < 0.05, * p < 0.1
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Table 3. Sensitivity analysis of the effects of PM2.5 on low birth weight and preterm birth

Low birth weight Preterm birth
95% CI 95% CIAdjusted characteristic

Odds ratio P value
Lower Upper

Odds ratio P 
value Lower Upper

Unadjusted 1.56 <0.00 1.50 1.63 1.62 <0.00 1.55 1.69
Temperature (°C) 1.46 <0.00 1.40 1.52 1.69 <0.00 1.62 1.76
Climatic factors 
(temperature + rainfall) 1.39 <0.00 1.33 1.45 1.57 <0.00 1.50 1.65

Cooking fuel 1.53 <0.00 1.47 1.60 1.63 <0.00 1.57 1.71
Child characteristics 1.59 <0.00 1.51 1.68 1.76 <0.00 1.67 1.87
Mothers’ characteristics 1.52 <0.00 1.45 1.58 1.61 <0.00 1.54 1.69
Socioeconomic factors 1.48 <0.00 1.42 1.54 1.59 <0.00 1.52 1.66
Socioeconomic, child and 
mothers’ Characteristics 1.45 <0.00 1.37 1.54 1.70 <0.00 1.60 1.80

All the determinants 1.37 <0.00 1.29 1.45 1.67 <0.00 1.57 1.77
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770                  Table 4. spatial regression models showing the spatial association between PM2.5 and low birth weight adjusted confounding factors

OLS GWR MGWR SLM SEM
Variables

Coefficient SE Coefficient SE Coefficient SE Coefficient SE Coefficient SE
PM2.5 (µg/m3) 0.059 0.009 0.122 0.009 0.119 0.016 0.043 0.014 0.031 0.008
Underweighted mother 0.159 0.031 0.179 0.007 0.163 0.003 0.124 0.032 0.102 0.027
Illiterate mother 0.061 0.018 0.095 0.009 0.013 0.001 0.068 0.021 0.040 0.016
Belong to poor family -0.053 0.015 0.234 0.008 0.494 0.000 -0.011 0.019 -0.022 0.013
Hindu religion 0.010 0.009 -0.055 0.006 -0.017 0.002 0.007 0.011 -0.002 0.008
Non-institutional delivery -0.083 0.025 -0.067 0.008 -0.155 0.000 -0.060 0.027 -0.057 0.022
Using solid cooking fuel 0.062 0.014 0.126 0.009 -0.118 0.000 0.024 0.017 0.028 0.013
Belong to rural areas -0.018 0.012 -0.137 0.008 -0.114 0.005 0.002 0.012 -0.001 0.011
Female child -0.005 0.058 0.003 0.003 0.001 0.004 0.008 0.048 0.001 0.050
Teen aged mothers 0.022 0.034 0.066 0.007 0.101 0.007 0.023 0.040 0.005 0.030
Having 3& more births -0.090 0.046 -0.122 0.007 -0.03 0.005 -0.102 0.048 -0.069 0.040
Average rainfall (°C) 0.000 0.003 -0.071 0.005 -0.055 0.000 -0.003 0.003 0.001 0.003
Average temperature (mm) 0.041 0.041 0.026 0.007 0.165 0.000 0.105 0.052 0.023 0.036
R2 0.34 0.68 0.49 0.52
AIC 4192.36 1420.83 4045.78 4022.85
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781                  Table 5. spatial regression models showing the spatial association between PM2.5 and preterm birth adjusted confounding factors

OLS GWR MGWR SLM SEM
Variables

Coefficient SE Coefficient SE Coefficient SE Coefficient SE Coefficient SE
PM2.5 (µg/m3) 0.043 0.016 0.053 0.012 0.041 0.018 0.018 0.014 0.035 0.024

Underweighted mother 0.009 0.053 0.051 0.014 0.044 0.012 -0.022 0.046 -0.059 0.056

Illiterate mother 0.035 0.030 0.169 0.011 0.214 0.000 0.030 0.026 0.070 0.036

Belong to poor family -0.055 0.026 -0.121 0.018 -0.140 0.000 -0.024 0.022 -0.029 0.033

Hindu religion 0.050 0.016 0.078 0.010 0.038 0.003 0.023 0.014 0.023 0.019

Non-institutional delivery 0.050 0.043 0.047 0.019 0.071 0.006 0.022 0.037 0.008 0.046

Using solid cooking fuel -0.014 0.025 -0.096 0.015 -0.045 0.005 -0.019 0.021 -0.048 0.030

Belong to rural areas 0.044 0.021 0.054 0.005 0.062 0.000 0.027 0.018 0.042 0.021

Female child 0.032 0.100 0.031 0.009 0.045 0.004 0.030 0.086 0.038 0.084

Teen aged mothers 0.028 0.059 0.022 0.005 0.022 0.001 0.019 0.051 0.027 0.069

Having 3& more births 0.053 0.078 0.096 0.009 0.05 0.013 0.014 0.068 0.003 0.082

Average rainfall (°C) 0.000 0.005 0.030 0.008 0.030 0.003 0.000 0.004 -0.001 0.005

Average temperature (mm) -0.291 0.070 -0.143 0.013 -0.112 0.009 -0.117 0.061 -0.106 0.089

R2 0.17 0.54 0.29 0.31

AIC 4953.57 1645.21 4810.00 4796.55
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792               Figure 1. (a) Spatial distribution of in-utero exposure to PM2.5, (b) low birth weight and (c) preterm birth across in India

793               Figure 2. Weighted percentage of low birth weight and preterm birth by background characteristics

794               Figure 3. Susceptibility to (a) low birth weight, and (b) preterm birth due to the in-utero exposure to PM2.5.

795               Figure 4. Bivariate LISA map showing the spatial association between in-utero exposure to PM2.5 and low birth weight (a) and preterm birth (b).

796               Figure 5. Predicted low birth weight (LBW) and preterm birth (PTB) results from Ordinary List Square (OLS), Geographically Weighed Regression (GWR), Multiscale 

797               Geographically Weighed Regression (MGWR), Spatial Lag Model (SLM) and Spatial Error Model (SEM) after adjusting environmental, Socioeconomic maternal and child 

798               characteristics. 
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