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Abstract4

The COVID-19 pandemic highlighted shortcomings in forecasting models, such as unreliable inputs/outputs and5

poor performance at critical points. As COVID-19 remains a threat, it is imperative to improve current forecasting6

approaches by incorporating reliable data and alternative forecasting targets to better inform decision-makers.7

Wastewater-based epidemiology (WBE) has emerged as a viable method to track COVID-19 transmission,8

offering a more reliable metric than reported cases for forecasting critical outcomes like hospitalizations. Recog-9

nizing the natural alignment of wastewater systems with city structures, ideal for leveraging WBE data, this study10

introduces a multi-city, wastewater-based forecasting model to categorically predict COVID-19 hospitalizations.11

Using hospitalization and COVID-19 wastewater data for six US cities, accompanied by other epidemiological12

variables, we develop a Generalized Additive Model (GAM) to generate two categorization types. The Hospital-13

ization Capacity Risk Categorization (HCR) predicts the burden on the healthcare system based on the number of14

available hospital beds in a city. The Hospitalization Rate Trend (HRT) Categorization predicts the trajectory of15

this burden based on the growth rate of COVID-19 hospitalizations. Using these categorical thresholds, we create16

probabilistic forecasts to retrospectively predict the risk and trend category of six cities over a 20-month period17

for 1, 2, and 3 week forecasting windows.18

We also propose a new methodology to measure forecasting model performance at change points, or time19

periods where sudden changes in outbreak dynamics occurred. We also explore the influence of wastewater as20

a predictor for hospitalizations, showing its inclusion positively impacts the model’s performance. With this21

categorical forecasting study, we are able to predict hospital capacity risk and disease trends in a novel and useful22

way, giving city decision-makers a new tool to predict COVID-19 hospitalizations.23
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1. Introduction25

The COVID-19 pandemic had an unprecedented impact on public health and healthcare systems in the United26

States, resulting in more than 6.7 million hospitalizations and 1.1 million deaths as of February 3, 2024 (Centers27

for Disease Control and Prevention, 2024a). Various surveillance methods have been used to track the spread28

of the disease, including individual testing and surveys. However, these traditional approaches face challenges29

such as inconsistent sample sizes, which fluctuate over time, biases in individuals’ willingness to get tested or30

participate in surveys, and the underreporting of at-home test results (Nixon et al., 2022; Li et al., 2023; Reese31

et al., 2021; Rubin, 2021). In order to address these challenges, wastewater-based epidemiology (WBE) has32

emerged as a viable method to track virus spread in a community by measuring SARS-CoV-2 concentration trends33

in wastewater (Feng et al., 2021). WBE offers a non-invasive, aggregated, low-cost approach for monitoring34

COVID-19 infection trends and potential incidence in a given catchment area (Shah et al., 2022; Bibby et al.,35

2021). Several studies have found correlations between SARS-CoV-2 levels in wastewater and lagged COVID-1936

cases, hospitalizations, and deaths (Shah et al., 2022; Galani et al., 2022; Kanchan et al., 2024). These findings37

suggest that WBE is a viable representation of community disease prevalence and has the potential to serve as a38

valuable input for COVID-19 forecasting models.39

Recent studies have incorporated SARS-CoV-2 load in wastewater as a key variable to help forecast COVID-40

19 hospitalizations. A recent study forecasted weekly COVID-19 hospitalizations for 159 counties in the U.S.41
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using wastewater data, demonstrating that forecasting models that incorporate WBE can be effective at predicting42

county-level COVID-19 hospital admissions 1 to 4 weeks in advance (Li et al., 2023). Hill et al., incorporated43

WBE into a generalized linear mixed model to predict COVID-19 hospitalizations at 4 different geographic scales44

(sewershed level, county level, regional level, and state level) for 56 counties in New York State to demonstrate the45

higher predictive power provided by incorporating wastewater into forecasting models (Hill et al., 2023). Many46

studies have also incorporated WBE into different modeling frameworks to predict COVID-19 hospitalizations47

outside of the United States. For example, Schenk et al., incorporated WBE in multivariate regression models48

to infer national hospitalization bed occupancy in Austria by aggregating SARS-CoV-2 load from local wastew-49

ater treatment plants to a national level. The study determined that, at a national level, increasing the number50

of monitored wastewater plants provides more accurate forecasts. (Schenk et al., 2023). Zamarreño et al., de-51

veloped a dynamic artificial neural network to predict the number of hospitalized patients in Valladolid, Spain,52

utilizing wastewater-based epidemiology. The accuracy of the model was improved by forecasting a categorical53

risk level which aligns with warning levels established by the Regional Health Administration in Castile and León54

(Zamarreño et al., 2024). Finally, Vaughan et al. incorporated WBE into a random forest algorithm to forecast55

COVID-19 hospitalizations in Scotland, Catalonia, Ohio, the Netherlands, and Switzerland. To improve model56

performance, the authors advocate for inputting data with a high sample frequency to ensure adequate training set57

size (Vaughan et al., 2023).58

While these studies demonstrate the promise of WBE for forecasting COVID-19 hospitalizations, certain59

areas offer potential for further exploration and improvement. Firstly, most existing studies forecast continuous60

COVID-19 health outcomes as targets, such as the raw number of COVID-19 cases and hospitalizations. However,61

these continuous forecasts struggle to effectively communicate uncertainty to decision-makers, which can result62

in misinterpretation of model results and can be challenging to translate into actionable outcomes (Nixon et al.,63

2022). There is also a need to compare the efficacy of various non-continuous forecasts, such as those based on64

resource availability or previous week trends, to ensure that the result is accurate and clear. Secondly, few models65

are built at the city level, which aligns with wastewater testing catchment areas due to the presence of centralized66

wastewater treatment facilities that offer the best support for local-level decision making (Sen et al., 2023; Hillary67

et al., 2020). Thirdly, the potential of wastewater data to enhance model performance during critical periods,68

particularly those characterized by rapid or sudden trends, remains uncertain. Therefore, model evaluations should69

focus specifically on these periods to better understand and evaluate the model’s utility.70

In this paper, we expand on the current literature by presenting an interpretable categorical short-term forecast-71

ing model using Generalized Additive Models (GAMs) that incorporates WBE data to predict weekly COVID-1972

hospitalizations for 6 cities in the United States from January 2021 to November 2022. Our multi-city model gen-73

erates two actionable categorical outputs for city-level decision-makers: Hospitalization Capacity Risk (HCR),74

which predicts the strain on hospital resources based on available beds, and Hospitalization Rate Trend (HRT),75

which forecasts the future trajectory of disease transmission based on hospitalization trends. This model generates76

1-week, 2-week, and 3-week ahead forecasts by incorporating SARS-CoV-2 wastewater load, recent hospitaliza-77

tion rates, vaccination rates, prior infection data, and static variables like the COVID-19 Community Vulnerability78

Index. We assessed model performance for both categorical outputs across six cities for over 80 weeks, utiliz-79

ing five distinct error metrics. To enhance our understanding of the model’s accuracy and utility, we examined80

performance at change points, which are defined as any week where the true hospitalization category is different81

than the previous week. The GAM framework allows for the evaluation of variable contribution, highlighting82

the value of using WBE data for forecasting COVID-19 health outcomes at the city level. The proposed model83

offers a valuable tool for decision-making support due to its simple design, reliance on readily available data, and84

production of easily interpretable and reliable forecasts.85

2. Material and Methods86

In this section, we present the design of our study, beginning with an overview of the data collection and87

preprocessing procedures in Section 2.1, as well as the design of the target variables in Section 2.2. A summary88

table of all variables is provided in Table 3. We then introduce the GAMs utilized in this study in Section 2.3 and89

discuss the error metrics used to evaluate the model’s performance in Section 2.4.1. Furthermore, we propose a90

novel approach for measuring forecasting capabilities at critical points in Section 2.4.2.91

2.1. Input Variables92

This study utilizes SARS-CoV-2 wastewater surveillance data alongside other epidemiological metrics such as93

hospitalizations, previous infections, vaccination coverage, and local vulnerability indicators to forecast weekly94
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COVID-19 hospitalizations for six U.S. cities. City boundaries were delineated using USPS ZIP codes identified95

through the USPS ZIP code lookup tool (United States Postal Service, 2024). Detailed descriptions of each input96

variable are provided below.97

Hospitalizations (H): In this study, we utilize COVID-19 hospitalization data as both an input to our model98

and to define our categorical targets, the latter of which is presented in Section 2.2. We obtained raw hospitalization99

data from the U.S. Department of Health and Human Services (HHS) COVID-19 Reported Patient Impact and100

Hospital Capacity by Facility dataset (United States Government Department of Health & Human Services, 2024).101

For each city i, the weekly reported hospitalizations at week t (Ht
i ) were summed across all facilities f within the102

zip codes belonging to the city as follows:103

Ht
i =
∑
f∈F

Ht
f , (1)

where f is a healthcare facility within the set of all facilities F in the zip codes of a the city at week t. The104

Ht
i were then logged to generate the input variable for the model to normalize for city-specific hospitalization105

scales. The detailed data cleaning procedures of the Ht
i are described in Supplementary A. Previous COVID-19106

hospitalizations are considered indicators of future trends, (Hill et al., 2023) thus at each week t, we include the107

hospitalization data from the previous three weeks as separate input variables (Ht−1
i ,H

t−2
i ,H

t−3
i ). This approach108

enhances the model’s predictive capabilities by incorporating recent hospitalization dynamics.109

SARS-CoV-2 Wastewater Viral Load (WW): Given that SARS-CoV-2 concentrations in wastewater are110

leading indicators of COVID-19 hospitalizations, we included city-level SARS-CoV-2 wastewater viral loads as111

an input variable to forecast city-level hospitalizations. The SARS-CoV-2 load in wastewater was obtained from112

state and city dashboards (see detailed reference in Table 1). For each city, we include SARS-CoV-2 concentrations113

for all sewersheds partially or completely within the city boundaries.114

Table 1: Cities of interest in the study and their wastewater collection systems and dates.

City Population Number of Treatment Plants Sampling Frequency Source

Charlotte, NC 942,437 3 Every 3 days (North Carolina Department of Health and Human Services, 2024)

Denver, CO 1,399,707 1 Daily (Colorado Department of Public Health and Environment, 2024)

Houston, TX 3,206,416 39 Daily (Kinder Institute Urban Data Platform, 2024)

New York, NY 8,570,761 14 Thrice Weekly (New York City Department of Health and Mental Hygiene, 2024)

San Diego, CA 1,387,376 1 Every 2 days (Lab, 2024)

San Francisco, CA 865,933 2 Daily (California State Water Resources Control Board, 2024)

The SARS-CoV-2 wastewater viral loads were reported as viral gene copies/L at varying frequencies across115

cities. All viral load data was aggregated to a one-week reporting frequency and logged to normalize the input116

variable across cities. We evaluated the preceding relationship between wastewater viral loads and COVID-19117

hospitalization rates by identifying the leading weeks where there was a Pearson correlation coefficient of at least118

0.75 between the two. A detailed description of these correlations can be found in Figure S2 in Supplementary119

A. Accordingly, each week, we utilize the wastewater viral loads from the previous three weeks as separate input120

variables.121

Past Infections (PI): Natural immunity has been shown to confer significant protection against COVID-19122

reinfection and severe outcomes (Pooley et al., 2023). To capture the impact of natural immunity, we adapted the123

past infection metric (PI) from a prior study as a proxy for population natural immunity (Du et al., 2024a). This124

variable quantifies the number of reported COVID-19 infections within the past three months, using daily reported125

county level case data from the Johns Hopkins COVID-19 Dashboard (Dong et al., 2020) aggregated to a weekly126

level. Due to the lack of consolidated reported case data at the city level, we use the data from the county that127

encompasses the majority of the city as a proxy for city-level case counts. The PI formulation is as follows:128

PIt
i =

∑t−4
j=t−16 C j

i

pi
, (2)

where PIt
i denotes the total reported infections in county i during the previous 12 weeks, C j

i is the number of129

reported cases for city i at week j, and pi is the population for city i.130

Full Vaccination Coverage (VC): In addition to the incorporation of PI as a proxy for natural immunity,131

we included the cumulative percentage of the population that is fully vaccinated to account for the impact of132

vaccine-induced immunity on COVID-19 hospitalizations. We obtained weekly COVID-19 vaccination data from133
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the Immunization Information System at the Centers for Disease Control and Prevention (Centers for Disease134

Control and Prevention, 2023). Similar to the reported case data, this national vaccination dataset tracks vaccine135

uptake at the county level. Therefore, we mapped city vaccination coverage data from the most representative136

county. Fully vaccinated is defined as the total number of individuals who have completed a primary vaccine137

series, either recieving the second dose of a two-dose series or one dose of a single-dose series. The percentage of138

fully vaccinated is calculated by dividing the fully vaccinated population by the total county population.139

COVID-19 Community Vulnerability Index (CCVI): In order to account for population-level susceptibility140

to adverse disease outcomes, we utilize the COVID-19 Community Vulnerability Index (CCVI), which was de-141

veloped by the Surgo Foundation (Ventures, 2021). This index is an adaptation of the CDC Social Vulnerability142

Index with a focus on the specific risk factors of COVID-19 for all zip codes in the United States. The CCVI143

covers seven themes (Socioeconomic Status, Minority Status and Language, Housing Type, and Transport, Epi-144

demiological Factors, Healthcare System, High Risk Environments, and Population Density), giving each zip code145

a numerical value on a scale from 0 to 1, where a 1 indicates a community has a high vulnerability in that theme.146

For each of the cities in the study, we quantify the vulnerability themes by aggregating the zip-code level CCVI147

values as follows:148

CCVIk
i =

∑N
z=1 CCVIk

z × pz

pi
, (3)

where N is the set of all zip codes z within a city i, and p is the population. The zip code-level CCVI values were149

aggregated to the city level by weighting each by its zip code population and then normalizing by the total city150

population to ensure the variable ranges between 0 and 1. We repeat this aggregation for each of the seven themes151

k and use them as static inputs for our model to represent local vulnerability to adverse outcomes of COVID-19152

throughout the study period.153

2.2. Target Design: Hospitalization Categorization154

This study aims to provide city-level decision-makers with interpretable and actionable forecasts for COVID-155

19 hospitalizations by enhancing robustness against reporting issues. Rather than relying on traditional numerical156

predictions of hospitalization counts, we forecast risk categories that are derived from the rate of COVID-19157

hospitalizations per 100,000 people. We propose two distinct categorization models, each emphasizing different158

aspects of the future impact of COVID-19 on a city healthcare system: the Hospitalization Capacity Risk (HCR)159

Categorization, which predicts the burden on the healthcare system and the Hospitalization Rate Trend (HRT)160

Categorization, which predicts the trajectory of COVID-19 hospitalization trends.161

Hospitalization Capacity Risk (HCR) Categorization: Hospital demand can be used to measure times of162

overburdened healthcare systems, indicating when personal risk of infection is at its highest. We develop the163

HCR as a 5-tier categorization model based on hospital demand, defined as the static ratio between observed164

hospital admission rate and average number of available hospital beds for COVID-19 forecasted in a city. The165

HCR categorization is defined as follows:166

HCRt
i =



Very High Risk if HRt
i > 10% of Bi

High Risk if 10% of Bi > HRt
i > 7.5% of Bt

i

Moderate Risk if 7.4% of Bi > HRt
i > 5% of Bt

i

Low Risk if 4.9% of Bi > HRt
i > 2% of Bt

i

Very Low Risk if 2% of Bi < HRt
i

(4)

Where HCRt
i is the Hospitalization Capacity Risk category for city i at week t, HRt

i is the forecasted COVID-19167

hospitalization rate per 100,000 people for city i at week t, and Bi is the average number of available hospital168

beds per 100,000 people for city i across the study period. The thresholds of this categorization reflect the static169

capacities of each specific city’s healthcare system.170

The thresholds are designed after the City of Austin stage alert system (Yang et al., 2021). They created a static171

4-tier alert system based on the percent of filled ICU beds and the 7-day average of COVID-19 hospitalizations172

at a city level from March 2020 to September 2021. We calculate the percentage of utilized COVID-19 beds for173

Austin equivalent to the threshold number of hospitalizations determining each stage threshold. Additionally, we174

introduce a fifth category of highest risk to further specify the intensity of burden during times of peak hospitaliza-175

tions. This categorization provides a more detailed and city-specific understanding of risk than the CDC 3-tier risk176

metric that identifies high, medium, and low hospital admission rates per 100,000 population based on a single177

threshold for all US locations (Centers for Disease Control and Prevention, 2024b). By increasing the number of178
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high-risk categories, we expand on the CDC 3-tier community risk system and the Austin 4-tier system while still179

maintaining thresholds that reflect predetermined foundations for risk levels.180

Figure 1 illustrates the five risk categories of the HCR for the six cities, where the black line indicates the181

observed hospitalization rate per 100,000 population, and the colored bars indicate the risk category. Across182

cities, there are common times of higher risk, such as January 2022 during the peak of the Omicron wave, but the183

city-specific dynamics vary by risk level at other times. Table 2 presents the distribution of categories for the HCR184

across the study period and all locations. The majority of weeks are assigned as Low and Very Low risk, indicating185

that times of very high community risk are less prevalent across multiple locations over the study period.186

Figure 1: Hospitalization Capacity Risk Categorization Visualization. HCR category thresholds by color in Charlotte, NC; Denver, CO;
Houston, TX; New York, NY; San Diego, CA; and San Francisco, CA. The background color indicates the risk category. The dotted white
lines indicate the thresholds, and the black line is the true hospitalization rate.

Hospitalization Rate Trend (HRT) Categorization: Observing trends in the rate of change of COVID-19187

hospitalizations provides public health decision makers with a dynamic understanding of the change in burden on188

a city’s healthcare system. We develop the HRT categorization to capture city-level COVID-19 hospitalization189

trends to support broader city-level decision-making to describe how quickly the number of hospitalizations is190

changing between weeks, providing a complementary metric to the static categorization of the HCR. This catego-191

rization is also derived from the weekly average COVID-19 hospitalization rate per 100,000 people (HRt
i). This192

metric is useful to forecast periods of large changes for public planning purposes and is inspired by the FluSight193

forecasting target (FluSight-forecast-hub, 2024). We define the rate trend RT t
i as the change in COVID-19 hospi-194

talizations for a city i in a given week t relative to the average change of the prior three weeks. The rate change is195

calculated as:196

RT t
i = 100% ×

HRt
i −

1
3
∑3

j=1 HRt− j
i

1
3
∑3

j=1 HRt− j
i

, (5)

where HRt
i is the hospitalizations per 100,00 at week t for city i, and the summation is the mean hospitalization197

rate for the previous 3 weeks in the same city. Using this growth rate, we define the HRT categorization as:198

HRT t
i =



Large Increase if RT t
i > 20%

Increase if 19.9% > RT t
i > 10%

Stable if 10% > RT t
i > −10%

Decrease if − 10% > RT t
i > −19.9%

Large Decrease if − 20% > RT t
i %

, (6)

The thresholds of this categorization reflect the changing dynamics of the COVID-19 hospitalization trends.199

Figure 2 illustrates the rate trend categorical assignment for all six cities. The black line indicates the change200

in hospitalizations compared to previous weeks. The rate trend differs between cities based on their individual201

dynamics, not an aggregated national trend, providing more specific and actionable information. Table 2 presents202

the distribution of categories for the HRT across the study period for all locations. Over our study period, most203
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Figure 2: Hospitalization Rate Trend Categorization Visualization. HRT category thresholds by color in Charlotte, NC; Denver, CO;
Houston, TX; New York, NY; San Diego, CA; and San Francisco, CA. The dotted white lines indicate the thresholds, the black line represents
the observed rate change, and the background color indicates the category.

Category Threshold Percent of Study Period
Very High Risk >10% 14.2%

High Risk 7.5 to 10% 8.8%
HCR Moderate Risk 5 to 7.4% 16.6%

Low Risk 2 to 4.9% 31.9%
Very Low Risk <2% 28.5%
Large Increase >20% 22.5%

Increase 10 to 19.9% 12.1%
HRT Stable -10 to 10% 19.8%

Decrease -10 to -19.9% 17.1%
Large Decrease <-20% 28.5%

Table 2: Thresholds for Hospitalization Rate Trend Categorization and distribution of categories

cities for most weeks are in the Large Increase or Large Decrease category, indicating the volatile trends of204

COVID-19 that have been historically difficult to predict.205

2.3. Model206

We develop 1, 2, and 3-week out forecasts of weekly COVID-19 hospitalizations for the 82-week period207

from January 2021 to September 2022 using wastewater viral load, past infections, the full vaccination coverage,208

previous hospitalizations, and 7 social vulnerability indices, summarized in Table 3. These forecasts are created209

via Generalized Additive Models (GAMs), an additive model that can learn non-linear predictor variables by210

modeling the outcome as a sum of spline functions of each predictor. We fit a distinct GAM for each forecasting211

window (1-week, 2-week, and 3-week), each utilizing the same model formulation:212

Ht+l
i ∼ Gaussian(µl)213

log(µl) = α + f1(WW t−1
i ) + f2(WW t−2

i ) + f3(WW t−3
i )+214

f3(HRt−1
i ) + f4(HRt−2

i ) + f5(HRt−3
i ) + f6(PIt

i )+215

f7(VCt
i) + s1(CCVI1) + s2(CCVI2) + s3(CCVI3) + s4(CCVI4)+216

s5(CCVI5) + s6(CCVI6) + s7(CCVI7).217

Where l is the forecasting window, taking values of 1, 2, or 3. Each fi coefficient indicates the spline smooth218

function of the dynamic variables, α indicates the intercept and µl is the mean of the hospitalization distribution219

l weeks ahead. Each si represents the parametric coefficient of the static variables. In order to mimic real-time220

forecasting practices, we used an expanding training window. This method involves initially training the model221

on a small set of data and then gradually expanding the training set as new data becomes available. In this study,222

the model is first trained on data before February 26, 2021. As each new week of data is collected, it is added to223

the training set, thereby expanding the window of historical data used for model training. This analysis was done224

using the pyGAM package in Python 3.9.13.225
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Variable Calculation/Collection Units Type Usage
SARS-CoV-2 Load in

Wastewater
State/City Dashboards
(3 preceding weeks)

log(N gene copies/L) Dynamic Input

Past Infections HHS Percent Dynamic Input
Percentage Vaccinated IIS Percent Dynamic Input

CCVI Surgo Ventures Ratio Static Input
Log Hospitalization

Rate
HHS (3 preceding

weeks)
log(hospitalizations/100k

people)
Dynamic Input

Hospitalization Capacity
Risk Categorization

HCR Methodology Risk Categories from 1
to 5

Static Target

Hospitalization Rate
Trend Categorization

HRT Methodology Trend Categories from
-2 to 2

Dynamic Target

Table 3: Inputs and Targets of the model

The continuous predictions are then converted into discrete categories to generate categorical predictions for226

each forecasting window. To create a probabilistic distribution over these categories, we performed prediction227

interval sampling to generate multiple continuous outcomes. We then compute the frequency with which these228

interval sample falls into each category. Specifically, for each week and city, we utilize 100 Ht
i values representing229

the upper and lower bounds of 1% to 99% prediction intervals. Each interval value is then converted to a cate-230

gorical label based on the procedure described in Section 2.2. The final forecast for each week and city is the231

most frequent label among 100 probabilistic samples, selecting the categorical prediction with the greatest overall232

agreement.233

2.4. Evaluation234

This section details the various ways in which we measure forecasting performance. We define and justify235

the error metrics used to determine categorical forecast performance, as well as describe a novel procedure to236

determine model accuracy at the critical points where the disease burden is increasing or decreasing.237

2.4.1. Error Metrics238

We evaluate our model using five error metrics: 1) Accuracy, 2) Mean Square Error (MSE), 3) Weighted Mean239

Square Error (WMSE), 4) Brier Score, and 5) Brier Skill Score, each of which is established metrics for measuring240

categorical forecasting error (Bradley et al., 2008; Du et al., 2024b).241

Accuracy measures the percentage of predicted labels that match the true labels. Although widely used as242

a baseline for evaluating model performance, accuracy alone does not convey how far off the predictions are243

from the true values. To address this, we use the MSE, which reflects the magnitude of error, with smaller244

values indicating better performance. However, MSE does not account for the uncertainty in the predictions. To245

incorporate uncertainty, we also use the WMSE, where the weights are the probabilities of each category. This246

metric penalizes the confidence in inaccurate forecasts, where a smaller value indicates a better performance. We247

also measure our inaccuracies with the Brier Score, an error metric designed specifically to measure the accuracy248

of probabilistic forecasts. It is calculated as the mean square difference between the predicted probability of each249

category to the actual probability of each category. A BS value lies between 0 and 1, where a 0 reflects perfect250

accuracy. From the Brier Score, we derive the Brier Skill Score, which compares our model performance to a251

baseline of random guessing with uniform probabilities for each category. A BSS less than 0 indicates that our252

predictions perform worse than the baseline, equal to 0 indicates that the prediction is equivalent to the baseline,253

and greater than 0 indicates that our predictions perform better than the baseline. The equations for each of these254

error metrics can be found in Supplementary A. Employing all five of these error metrics enables a comprehensive255

evaluation of our model performance for both precision and confidence, specific to categorical predictions.256

2.4.2. Model Performance at Change Points257

A significant issue with hospitalization forecasting models during the peak of the COVID-19 pandemic was258

the failure to accurately predict time periods where sudden changes in outbreak dynamics occurred (Lopez et al.,259

2024). The ability to forecast such periods of rapid fluctuation sudden increases or decreases in reported hospi-260

talization rates is critical for effective decision-making. To address this, we developed a novel method to evaluate261

model performance during these periods of rapid change, referred to as “change points”. We define a change point262

for both the HCR and HRT categorization as any week (t) where the true hospitalization category is different than263

the category of the previous week (t−1). We further classify change points into two categories: ”upward shift”,264
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where the category is higher than that of the previous week, such as going from a Low Risk to a Moderate Risk265

for the HCR, or a ”downward shift”, where the category is lower than the previous week, such as going from a266

Large Increase to Stable for HRT.267

We then evaluate each model’s performance during periods of rapid changes by assessing how accurately each268

model captures the correct category over all change points, as well as at upward and downward shifts specifically.269

We evaluated performance using MSE, WMSE, Brier Score, and Brier Skill Score for all change points in the270

model, the detailed definitions of which are in Section 2.4.1.271

3. Results272

In this section, we describe the model performance using the error metrics described in Section 2.4.1. We then273

provide an in-depth analysis of the HCR and HRT categorization model performances for the 2-week forecasting274

window in Section 3.1. The equivalent results for the 1 and 3-week forecasting windows are provided in Figures275

S1-S4 in Supplementary B. In Section 3.2, we present results for the change point evaluation. Finally, in Section276

3.3, we present the results regarding variable importance.277

3.1. Model Performance278

Using the error metrics described in Section 2.4.1, we demonstrate the performance of the HCR and HRT279

categorization models for the 1, 2, and 3-week forecasting windows in Table 4. The Accuracy and BSS are error280

metrics where higher values indicate better model performance, whereas lower MSE, WMSE, and BS values281

indicate better model performance. The model performance reveals several key findings:282

Accuracy ↑ MSE ↓ WMSE ↓ BS ↓ BSS ↑
1-week 88.8% 0.114 0.106 0.157 0.885

HCR 2-week 82.3% 0.205 0.181 0.262 0.822
3-week 74.8% 0.382 0.269 0.341 0.748
1-week 69.6% 0.494 0.458 0.406 0.493

HRT 2-week 56.4% 1.24 1.044 0.566 0.292
3-week 45.2% 2.610 1.704 0.715 0.107

Table 4: A summary of model performance across various error metrics. ↑ / ↓ denotes if a higher/lower metric value signifies better
performance.

Both categorization models significantly outperform random guesses. A random guess model would yield an283

accuracy of 20% and a BSS of 0, whereas the HCR accuracy spans from 75 to 89% and the HRT accuracy spans284

from 46 to 70% across all forecasting windows. Notably, all BSS values remain above 0, further underscoring the285

predictive power of the models.286

For both the HRT and HCR categorization models, performance worsens as the forecasting window increases,287

demonstrated by the decrease in accuracy and BSS and the increase in MSE, BS, and WMSE. The decrease in288

model performance over increasing forecasting windows mirrors the decrease in correlations between wastewater289

and future hospitalizations over time. This diminishing relationship reflects rapidly changing COVID-19 dynamics290

in a community which makes the further future more difficult to predict.291

Across all error metrics, model performance when predicting capacity (HCR) is consistently better than when292

predicting trends (HRT). The fluctuating shifts in COVID-19 hospitalization trends tend to be more volatile than293

changes in capacity, making the HRT more difficult to accurately predict. We detail these specific categorization294

model performances in the following sections.295

3.1.1. Hospitalization Capacity Risk Categorization Results296

In this section, we provide a detailed description of the performance of the HCR categorization model for the 2-297

week forecasting window. The 1 and 3-week forecast results are provided in Figures S1 and S2 of Supplementary298

B. In Figure 3, we demonstrate the overall categorical assignment accuracy, as well as the city specific categorical299

assignments over the study period.300

The HCR model performance can be described with a confusion matrix, which visualizes the accuracy of301

the HCR model across all cities and the entire study period for the 2-week forecast. In the matrix, each row302

represents the true categorical label of a week, and each column is the predicted label of that week. Each matrix303

entry contains the number of weeks where the true label is categorized as that predicted label, with incorrect304

categorical assignments are indicated by dissimilar row and column labels. In the confusion matrix in Figure305
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(a) (b)

Figure 3: Summary of Model performance of Hospitalization Capacity Risk (HCR) Categorization, January 2021-September 2022. (a)
Confusion Matrix detailing the accuracy of categorization for the HCR. Darker colors indicate that more assigned labels match the true labels
for that category. (b) Hospital Capacity Risk true and predicted label for 2-week forecasts by city for January 2021 to September 2022. The
color indicates the predicted category. Grey squares indicate that a prediction was not made for that week due to a lack of available data.

3a, the concentration of values along the diagonal indicates that the model accurately labels most forecasts. Off-306

diagonal values are primarily adjacent to the correct category, indicating that even when the model is incorrect,307

the magnitude of inaccuracy is relatively small.308

Figure 3b compares the weekly HCR predictions to the true HCR categorizations for each city at a 2-week309

forecasting window, where the first row of the city illustrates the true weekly category and the second row illus-310

trates the predicted category. The color indicates the categorical assignment, with grey indicating that predictions311

were not made due to a lack of available data over the study period from January 2021 to September 2022. Al-312

though the HCR is dependent on specific city dynamics, there are similar trends across all cities. There is a313

similarly high risk for all cities in January 2022, during the Omicron wave. San Francisco maintains a relatively314

low risk throughout the study period due to the low rate of hospitalizations per 100,000 people, but the subsequent315

increase at this time is still present. When the model predictions do not match the true category, it tends to predict316

the correct category with a minor time lag.317

3.1.2. Hospitalization Rate Trend Categorization Results318

In this section, we focus on the performance of the HRT categorization model at the 2-week forecasting319

window. The 1 and 3-week forecast results are provided in Figures S3 and S4 in Supplementary B. In Figure 4,320

we demonstrate the overall categorical assignment accuracy with a confusion matrix, as well as the city specific321

categorical assignments with a time series plot equivalent to those shown in Figure 3.322

The performance of the HRT categorization model for the 2-week forecasting window is illustrated in the323

confusion matrix in Figure 4a. The concentration of values at the top left and bottom right corners indicate that324

most COVID-19 hospitalization rate changes are large changes, and that the model can accurately predict Large325

Increase and Large Decrease growth rates. The concentration of values in the center of the confusion matrix326

indicates that weeks categorized as Stable, of which there are many, are also accurately predicted. The HRT327

model performance is worst during weeks categorized as Decrease and Increase, illustrated in their respective328

rows in the confusion matrix. In these rows, we can see that errors are nearly evenly split between overestimations329

and underestimations.330

Figure 4b compares the weekly HRT predictions to the true HRT categorizations for each city at a 2-week331

forecasting window from January 2021 to September 2022 equivalently to Figure 3b. The top rows for each city332

illustrate the true HRT trends, revealing that periods of large increases are quickly followed by periods of large333

decreases, indicating the turbulent changes in COVID-19 hospitalizations over the study period. In the bottom334

row of each city we present the HRT predictions. Although the exact category is not always perfectly predicted,335

true increases generally yield forecasted increases and true decreases typically yield forecasted decreases. This336

phenomenon is expanded upon in Section 3.2.337

3.2. Change Points Performance338

In addition to building and evaluating interpretable city-level forecasting models, we also aim to develop a339

novel method to evaluate categorical forecasting model performance during periods of increases or decreases340
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(a) (b)

Figure 4: Summary of Model performance of Hospitalization Rate Trend (HRT) Categorization, January 2021-September 2022. (a)
Confusion matrix detailing the accuracy of the categorization of the HRT. Darker colors indicate that more assigned labels match the true labels
for that category. (b) City-specific Rate Trend target and 2-week prediction over time from January 2021 to September 2022. Grey squares
indicate that a prediction was not made for that week due to a lack of available data.

Upward Shift Downward Shift All Change Points Overall Model
1 Week 0.224 0.262 0.244 0.106

HCR 2 Week 0.288 0.359 0.325 0.181
3 Week 0.446 0.462 0.454 0.269
1 Week 0.651 0.607 0.628 0.458

HRT 2 Week 1.183 1.335 1.262 1.044
3 Week 1.864 1.741 1.801 1.704

Table 5: A summary of model performance using WMSE for change points for 1. all change points in the model, 2. from a lower to higher
category (upward shift), 3. from a higher to lower category (downward shift). The final column 4. is model WMSE over all predictions (same
as the WMSE column in Table 4). ↓ denotes that a lower error demonstrates better performance.

in reported hospitalization rates, denoted as change points. As outlined in the section 2.4.2, we measured model341

performance by determining model accuracy at all change points, as well as at upward and downward shifts specif-342

ically. We present the resulting WMSE scores in Table 5, and provide the MSE, Brier Score, and Brier Skill Score343

error metrics in Table T1 and T2 in Supplementary B. These results indicate that the HCR model consistently344

outperforms the HRT model, with the HCR predictions usually within a one category margin. Additionally, the345

error metrics generally worsen for farther ahead forecasts. Finally, we observe that both models perform worse at346

change points than in their overall evaluations.347

3.3. Variable Importance Analysis348

This work aims to demonstrate the value of wastewater based epidemiology for improving disease surveillance349

capabilities. The following analysis illustrates the importance of each variable in improving forecast performance.350

We measure variable importance as the difference in mean average percent error (MAPE) of the continuous hospi-351

talization forecasts when each variable is removed. This variable importance is measured for the 1, 2, and 3-week352

forecasts. This approach allows us to evaluate variable contribution independently of any categorical threshold353

selection biases. In Figure 5, we demonstrate the changes in MAPE after the removal of each variable, namely354

wastewater viral load, full vaccination coverage, past infections, and CCVI. For the 1 and 2-week forecasting355

window, the removal of wastewater leads to the highest increase in MAPE, indicating its critical role in improv-356

ing forecasting performance. For the 3-week forecast, the removal of the CCVI leads to the largest increase in357

MAPE, indicating that in addition to wastewater, the community vulnerability indices serve an important role in358

understanding community risk and creating useful predictions. Removing the full vaccination rate from the model359

does not generate significant differences in model performance. Additionally, the importance of past infections360

diminishes as the forecasting window extends.361

4. Discussion362

Integrating Wastewater Surveillance Data Enhances COVID-19 Hospitalization Forecasting363

10



Figure 5: Variable contribution in model performance for 1, 2, and 3 week out continuous hospitalization forecasts. The black dotted
line indicates the full model performance, and the colored bars indicate the MAPE with that variable removed. A larger increase in MAPE
indicates a worse performance and a higher importance in model performance.

As traditional epidemiological datasets, such as reported cases, become less available and more subject to364

reporting issues over time, alternative data streams must be considered to inform short-term forecasting models.365

In this study, we built a comprehensive forecasting model to predict near term COVID-19 hospitalization risks in366

six US cities. This model incorporates novel data streams, including wastewater surveillance data and community367

vulnerability indices, alongside traditional epidemiological inputs such as previous infections and vaccinations.368

Our model performance confirms the effectiveness of this approach, particularly emphasizing the importance of369

wastewater surveillance data, as explored in Section 3.3.370

Our variable importance analysis identified wastewater surveillance data as a critical factor in our models,371

particularly for forecasting city-level COVID-19 hospitalizations 1 and 2 weeks into the future (see Figure 5).372

Therefore, publicly available, reliable wastewater data is crucial for improving our capabilities to predict future373

hospitalization risks and inform both the public and public health practitioners. Wastewater disease surveillance374

systems, such as the CDC National Wastewater Surveillance System (NWSS), represent a centralized database375

that has the potential to inform disease risk assessment and bolster modeling capabilities. Thus, we encourage376

continued investment in and expansion of this critical surveillance tool, along with the centralized sharing of data377

in standardized formats.378

Beyond the immediate utility of wastewater surveillance, our findings underscore the importance of local379

vulnerability indices on model performance. We determined that the CCVI is the most influential variable for our380

3-week continuous forecasting model. This finding aligns with previous studies demonstrating the critical role381

of vulnerability data in predicting weekly COVID-19 hospital admissions at less-immediate forecasting windows,382

such as 3 and 4 weeks in the future (Li et al., 2023). The importance of CCVI in our analysis suggests that more383

severe health outcomes from COVID-19 infection may be amplified in vulnerable communities. As the sole static384

variable in the model, the community vulnerability index avoids any information decay that may arise with the385

temporally dependent variables, such as wastewater surveillance data. This enduring relevance underscores the386

need to incorporate data on both current disease dynamics, such as wastewater surveillance data, and persistent387

vulnerabilities, such as the CCVI, when forecasting near future infectious disease risk.388

Categorical Forecasts Support Public Health Decision Making389

The well-documented challenges of forecasting traditional continuous disease outcomes during the COVID-19390

pandemic (Nixon et al., 2022) motivated this study’s focus on categorical targets for hospitalization forecasting.391

This approach, exemplified by the Hospitalization Capacity Risk (HCR) and Hospitalization Rate Trend (HRT)392

categorizations defined in this study, enhances model interpretability, actionability, and robustness.393

The HCR model, derived from hospitalization rates, provides hospital administrators with an intuitive under-394

11



standing of capacity risk, enabling proactive resource allocation during times of high risk. Our models achieve395

a 75% accuracy in predicting HCR three weeks in advance, proving consistently reliable prediction across cities396

and forecasting windows. Exceptionally, HCR forecasts for San Francisco resulted in a uniquely high accuracy397

due to the city’s uniquely low hospitalization rates. While the HRT model, based on the trends of hospitalization398

growth rates, is a less predictable outcome, the model successfully captures 64% of weeks classified as Large399

Increases and 67% of weeks classified as Large Decreases for the 2-week forecasting window (Figure 4a). The400

focus of the HRT on directional trends, when considered in conjunction with HCR, offers decision-makers a more401

comprehensive understanding of potential outbreak scenarios, facilitating timely and targeted interventions.402

The inherent stability of the two categorical target variables defined in this study, which are less sensitive to403

minor data fluctuations than continuous outputs, further reinforces the reliability of our approach and provides a404

robust foundation for data-driven decision-making in the face of evolving public health challenges.405

Evaluating Forecasting Performance at Change Points Illuminates Model Capabilities406

A notable issue with COVID-19 forecasting during the pandemic was the inability to accurately predict inflec-407

tion points in case and hospitalization trends (Lopez et al., 2024; Cramer et al., 2021). To assess the effectiveness408

of our categorical models in addressing this challenge, we evaluated performance at change points, examining the409

models’ ability to accurately account for shifts in the COVID-19 hospitalization category. As outlined in section410

3.2, we evaluated model performance by determining accuracy at all change points, as well as at upward and411

downward shifts specifically.412

The results outlined in section 3.2 presented several important insights that merit further discussion. First, we413

note that our HCR model generally outperforms the HRT model for all change point evaluation methods. This414

aligns with the overall model performance in section 3.1, where the HRT model’s weaker performance could be415

attributed to its prediction of highly variable hospitalization growth rates. Second, we highlight that error metrics at416

change points generally worsen as forecasting window increases. This is also consistent with the results in section417

3.1, which suggests that this decline is likely due to the decreased correlations between wastewater and future418

hospitalizations over time. Third, we recognize that the performance at change points is weaker for both models419

compared to overall model accuracy, as per Table 5 the difference in WMSE is less than 0.3 across all models and420

forecast horizons. While there is still room for improvement, this indicates that the model is reasonably effective421

at predicting the correct category at change points. Nevertheless, this discrepancy in model performance at change422

points further highlights the need for a greater focus on improving forecasting accuracy during periods of rapid423

changes.424

Our change point analysis methodology evaluates the utility of categorical forecasting models at critical points.425

Sudden shifts in population level disease dynamics are some of the most crucial trends to understand in order to426

better inform decision makers at times of great uncertainty. Our change point analysis enhances model utility by427

evaluating how well each categorization captures hospitalization dynamics during periods of rapid change. We428

believe that this straightforward yet comprehensive approach to assessing categorical model accuracy at change429

points is an effective and transferable method for evaluating model performance and developing timely policies to430

mitigate the effects of a virus.431

City-Level COVID-19 Hospitalization Forecasting is Effective and Useful432

We propose that achieving a balance between forecast accuracy and actionable spatial scales, such as cities,433

is crucial for providing key insights that can be translated into effective mitigation strategies for COVID-19 and434

other infectious diseases. COVID-19 forecasting using wastewater surveillance has been implemented at several435

different granularities, such as country, state, county, city, and sewershed level. (Schenk et al., 2023; Hill et al.,436

2023; Li et al., 2023; Galani et al., 2022). We contend that forecasting at a city-level, which has received the437

least attention by modelers and is well-aligned with the spatial boundaries of wastewater data, is particularly438

advantageous for decision-makers. Densely populated urban areas are often the epicenter of COVID-19 infections439

and have government structures that allow for more targeted public health interventions. Thus, accurate city-440

level forecasts can more effectively help inform local government policies to prevent harm to the population441

and minimize economic burden at these disease epicenters (Lopez et al., 2024). Despite this potential, city-442

level forecasting is an under-utilized tool, with most forecasts targeting larger, aggregated populations such as443

county-level, state-level, and national-level (Sen et al., 2023). This is often due to the lack of reliable city-444

level disease surveillance, a challenge addressed by the natural alignment between wastewater treatment plants445

and city boundaries as demonstrated in Figure S1 in Supplementary A. Additionally, many cities have multiple446

wastewater treatment facilities which can be aggregated to provide a smoother prediction (Medina et al., 2022).447

Multiple wastewater treatment facilities also enable higher modeling granularities within cities. Overall, WBE448

provides an opportunity to advance higher resolution infectious disease forecasting and permits local governments449

to implement mitigation strategies that best suits their communities.450

We note that the quality of wastewater data significantly impacts model performance across cities. Houston451
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and New York City consistently demonstrate superior performance due to their high-quality wastewater data,452

characterized by consistent reporting and a large number of sewersheds. Conversely, as shown in Figures 3b and453

4b, Charlotte and Denver exhibit poorer model performance for both HCR and HRT due to lesser data quality,454

stemming from recorded lapses in reporting or changes in reporting styles (Keshaviah et al., 2023; Ghanbari et al.,455

2024). This finding underscores the importance of consistent and transparent WBE data for both understanding456

local trends and enhancing forecasting capabilities.457

Limitations and Future Work.458

Wastewater disease surveillance for COVID-19 is a rapidly evolving field. Different cities and wastewater treat-459

ment plants have varying timelines for reporting and normalization techniques that make retrospective data dif-460

ficult to compare to currently reported information. Despite the expansion of the NWSS to expand wastewater461

disease surveillance systems, a lack of data accessibility and inconsistencies in data collection, standardization462

and preprocessing can still impact data quality across locations. Consequently, the observed variation in model463

performance across cities can be attributed to these inherent data quality differences.464

The models in this study are better equipped to capture downward shifts, which may be reflective of limited465

input data streams. Therefore, we propose including alternative disease prevalence information, such as circu-466

lating variants, which may improve model performance, as demonstrated in (Du et al., 2023). Wastewater-based467

epidemiology is a vehicle to understand community disease prevalence, and variant information can be easily468

recovered from it to strengthen model performance, something considered for future extensions of this work.469

In this study, we focus on aggregating epidemiological data to a city level to create a more granular forecasting470

scale than the traditional state or county-level forecasts. By utilizing wastewater disease surveillance, we are able471

to provide an even more specific geographical scale at which to understand disease dynamics. In future work,472

we aim to expand our modeling capabilities to understand wastewater signals at the sewershed level as an early473

warning signal for smaller spatial scales.474

5. Conclusions475

In this study, we explored the use of wastewater disease surveillance data for categorical COVID-19 fore-476

casting at the city level with two models: the Hospitalization Capacity Risk (HCR) categorization and the Hos-477

pitalization Rate Trend (HRT) categorization. The HCR model provides an understanding of general risk based478

on bed availability to inform resource allocation strategies. The HRT Categorization forecasts the growth rate479

of hospitalizations to understand the predicted trajectory of burden on a healthcare system. We also proposed480

a methodology to determine the circumstances under which models are useful with our change point analysis.481

Utilizing these models, we demonstrate that wastewater disease surveillance data is a crucial input for COVID-482

19 hospitalization forecasting. Due to the natural alignment of city borders and sewersheds, and the ability to483

generate reliable forecasts, city-level forecasting utilizing wastewater disease surveillance data is an advantageous484

approach. As the community dynamics of COVID-19 change and data availability shifts, we must update our485

forecasting capabilities to use more impactful inputs and design more beneficial and interpretable targets.486
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Zamarreño, J.M., Torres-Franco, A.F., Gonçalves, J., Muñoz, R., Rodrı́guez, E., Eiros, J.M., Garcı́a-Encina, P., 2024. Wastewater-based582

epidemiology for covid-19 using dynamic artificial neural networks. Science of The Total Environment 917, 170367.583

15



1. Supplementary A: Methods

1.1. Data Collection

Sewersheds and City Boundaries The sewershed maps are provided by city services for each location, the
references for which can be found in the image caption. The city boundary and ZIP code maps were created
using the Python package GEOPANDAS. The city boundaries are generated using data obtained from the U.S.
Department of Health and Human Services (US HHS, 2023). We delineated these maps with the USPS ZIP codes,
as identified by the USPS ZIP code lookup tool (United States Postal Service, 2024). To properly represent the
USPS ZIP codes on the map, we overlaid the USPS ZIP codes with the ZIP Code Census Tract Areas, obtained
from the United States Census Bureau (Census , 2020). Therefore, any ZIP code that did not correspond with a
physical polygon (i.e., ZIP code that referred to a single building) was removed from these maps.

(a) (b)

Figure 1: A side by side comparison of A) Charlotte city boundaries delineated by USPS Zip Code and B) the sewershed map of Charlotte.
The sewersheds included in the study are highlighted in blue. (North Carolina Department of Health and Human Services, 2024)

(a) (b)

Figure 2: A side by side comparison of A) Denver city boundaries delineated by USPS Zip Code and B) the sewershed map of Colorado. The
included sewershed is highlighted in blue. (Colorado Department of Public Health and Environment, 2024)

Cross Correlations Between Wastewater and Hospitalizations In order to determine the temporal relation-
ship between wastewater SARS-CoV-2 rates and COVID-19 hospitalizations, we examine the cross correlation
between these two time series. As shown in Figure 7, the weeks when the lag is greater than 0.75 indicate
that wastewater SARS-CoV-2 rates are highly correlated with hospitalizations that many weeks in advance. For
example, in Houston, TX , the wastewater SARS-CoV-2 rates are highly correlated for the observed week of
hospitalizations, as well as the preceding 35 weeks. We included the SARS-CoV-2 rates from the previous three
weeks in the model as predictor variables to align with the most common correlations observed across all cities.
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(a) (b)

Figure 3: A side by side comparison of A) Houston city boundaries delineated by USPS Zip Code and B) the sewershed map of Houston
(Hopkins et al., 2022)

(a) (b)

Figure 4: A side by side comparison of A) New York City boundaries delineated by USPS Zip Code and B) the sewershed map of New York
City CITATION

(a) (b)

Figure 5: A side by side comparison of A) San Diego city boundaries delineated by USPS Zip Code and B) the sewershed map of San Diego:
(Lab, 2024)
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(a) (b)

Figure 6: A side by side comparison of A) San Francisco city boundaries delineated by USPS Zip Code and B) the sewershed map of San
Francisco: (Ravuri et al., 2024)

1.2. Input Variables
1.3. Target Design

The HRt
i is obtained from the U.S. Department of Health and Human Services (HHS) COVID-19 Reported

Patient Impact and Hospital Capacity by Facility dataset at HealthData.gov (United States Government Depart-
ment of Health & Human Services, 2024). This dataset has weekly aggregated facility-level data for hospital
utilization, derived from reports from HHS TeleTracking and reports made directly to HHS Protect from state and
territorial health departments. The number of hospitalizations for each facility can be derived from the reported
7-day sum of confirmed and suspected adult COVID-19 cases, which details the total number of patients counted
at that facility that week, and the 7-day coverage, which details the number of days that the number of patients
were recorded at each facility that week. In the dataset, if the reported 7-day sum was less than 4, the cell was
replaced with a -999999 to protect patient confidentiality. For the indicated low values, we interpolate the number
of hospitalizations that week as the mean value of the surrounding weeks. If there were multiple missing values
in a row, we replace the missing sum with a 2, as the average value between the 1 and 3 patients that the missing
value represents. Using these reported and interpolated values, we calculate the average number of patients seen
that week as the 7−day−sum

7−day−coverage for all facilities.

1.4. Error Metrics
In this section we provide the equations that define our five error metrics: 1) Accuracy, 2) Mean Square Error

(MSE) , 3) Weighted Mean Square Error (WMSE), 4) Brier Score, and 5) Brier Skill Score. To calculate the error
metrics, we convert our forecasted categories to numerical values; For the HRT, the labels of [Large Decrease,
Decrease, Stable, Increase, and Large Increase] map to [-2, -1, 0, 1, 2]. For the HCR, the labels of [Very Low,
Low, Moderate, High, Very High] map to [1, 2, 3, 4, 5].

Accuracy measures the percent of predicted labels that match the true labels, and is defined as

Accuracy =
ηT P + ηT N

ηT P + ηFP + ηT N + ηFN
, (1)

where ηT P, ηFP, ηT N , ηFN indicate true positives, false positives, true negatives and false negatives respectively.
MSE demonstrates the magnitude of error and is defined as

MS E =
1
N

N∑
i=1

(yi − ŷi)2, (2)

where N is the size of the test set, yi indicates the actual category label, and ŷi is the predicted category.
The WMSE weight the magnitude of the error, where the weights are the probabilities of each category.

WMS E =
1
N

N∑
i=1

K∑
k=1

f (i)
k (k − ŷi)2, (3)

3



Figure 7: Figure S2: Cross correlations between wastewater SARS-CoV-2 rates and hospitalizations per 100,000 people in each city included
in the study from January 2021 to September 2022. The red line indicates the critical threshold of 0.75 we consider for inclusion as a predictor
variable.
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where K denotes the set of categories, f (i)
k indicates the probability of k-th category being forecasted for the i-th

item in the test set.
The Brier Score measures the accuracy of probabilistic forecasts. It is calculated as the mean square difference

between the predicted probability of each category to the actual probability of each category. The Brier Score is
defined as

BS =
1
N

N∑
i=1

K∑
k=1

( f (i)
k − o(i)

k )2, (4)

where f (i)
k indicates the probability of k-th category being forecasted for the i-th item in the test set and o(i)

k is a
binary variable which is equal to 1 for the true category ki and a 0 for all other categories for the i-th item in the
test set.

The Brier Skill Score, compares model performance that of a random guess, where there is a uniform proba-
bility for each category, defined as

BS S =
BS re f − BS

BS re f
(5)

Where BS is the calculated Brier Score from our test set, and BS re f is the Brier Score from of a random guess on
the test set. A BSS less than 0 indicates that our predictions perform worse than the baseline, equal to 0 indicates
that the score is equivalent to the baseline, and greater than one indicates that the our predictions perform better
than the baseline.
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1 Supplementary B: Results

1.1 Model Performance

This section describes the model performance for both the HCR and HRT
over the 1- and 3-week forecasting window.

1.1.1 HCR

HCR 1-week forecast

(a) (b)

Figure 1: Figure S1: Model performance of Hospitalization Capacity
Risk (HCR) Categorization for the 1 Week forecast. (a) Confusion
Matrix detailing the accuracy of categorization for the HCR at a 1 week fore-
casting window. Darker colors indicate more assignment-true label combos
lie in that category. (b) Hospital Capacity Risk true and predicted label for
1-week forecasts by city for January 2021 to September 2022. Color indicates
predicted category. Grey squares indicate that a prediction was not made
for that week due to a lack of available data.
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HCR 3-week forecast

(a) (b)

Figure 2: Figure S2: Model performance of Hospitalization Capacity
Risk (HCR) Categorization for the 3-week forecast. (a) Confusion
Matrix detailing the accuracy of categorization for the HCR over a 3 week
forecasting window. Darker colors indicate more assignment-true label com-
bos lie in that category. (b) Hospital Capacity Risk true and predicted label
for 3-week forecasts by city for January 2021 to September 2022. Color in-
dicates predicted category. Grey squares indicate that a prediction was not
made for that week due to a lack of available data.
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1.1.2 HRT

HRT 1-week forecast

(a) (b)

Figure 3: Figure S3: Model performance of Hospitalization Rate
Trend (HRT) Categorization for the 1 week forecast (a) Confusion
matrix detailing the accuracy of the categorization of the HRT at a 1 week
forecasting window. Darker colors indicate more assignment-true label com-
bos lie in that category. (b) City-specific Rate Trend target and 1-week
prediction over time from January 2021 to September 2022. Grey squares in-
dicate that a prediction was not made for that week due to a lack of available
data.
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HRT 3-week forecast

(a) (b)

Figure 4: Figure S4: Model performance of Hospitalization Rate
Trend (HRT) Categorization. (a) Confusion matrix detailing the accu-
racy of the categorization of the HRT at a 3 week forecasting window. Darker
colors indicate more assignment-true label combos lie in that category. (b)
City-specific Rate Trend target and 1-week prediction over time from Jan-
uary 2021 to September 2022. Grey squares indicate that a prediction was
not made for that week due to a lack of available data.
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1.2 Change Point Performance

All Change Points
MSE ↓ WMSE ↓ BS ↓ BSS

1 Week 0.345 0.244 0.464 0.420
HCR 2 Week 0.614 0.325 0.703 0.121

3 Week 1.034 0.454 0.821 -0.027
1 Week 0.944 0.628 0.707 0.117

HRT 2 Week 2.304 1.262 0.881 -0.101
3 Week 2.076 1.100 0.909 -0.136

Table 1: A summary of model performance for all change points. ↑ / ↓
denotes if an upward or downward shift change point demonstrates better
performance.

Upward Shift Downward Shift
MSE ↓ WMSE ↓ BS ↓ BSS ↑ MSE ↓ WMSE ↓ BS ↓ BSS ↑

1 Week 0.405 0.224 0.554 0.308 0.289 0.262 0.380 0.525
HCR 2 Week 0.786 0.288 0.845 -0.056 0.457 0.359 0.574 0.282

3 Week 1.419 0.446 0.903 -0.128 0.674 0.462 0.746 0.068
1 Week 1.195 0.651 0.694 0.133 0.711 0.607 0.719 0.102

HRT 2 Week 2.571 1.183 0.907 -0.134 2.060 1.335 0.857 -0.071
3 Week 2.181 1.131 0.846 -0.057 1.973 1.069 0.971 -0.213

Table 2: A summary of model performance for forecasting change points
from a lower to higher category (upward shift) and a higher to lower category
(downward shift). ↑ / ↓ denotes if an upward or downward shift change point
demonstrates better performance.
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