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Co-circulating pathogens of humans: A systematic review of mechanistic transmission 16 
models 17 
 18 
Abstract 19 
Historically, most mathematical models of infectious disease dynamics have focused on a single 20 
pathogen, despite the ubiquity of co-circulating pathogens in the real world. We conducted a 21 
systematic review of 311 published papers that included a mechanistic, population-level model 22 
of co-circulating human pathogens. We identified the types of pathogens represented in this 23 
literature, techniques used, and motivations for conducting these studies. We also created a 24 
complexity index to quantify the degree to which co-circulating pathogen models diverged from 25 
single-pathogen models. We found that the emergence of new pathogens, such as HIV and 26 
SARS-CoV-2, precipitated modeling activity of the emerging pathogen with established 27 
pathogens. Pathogen characteristics also tended to drive modeling activity; for example, HIV 28 
suppresses the immune response, eliciting interesting dynamics when it is modeled with other 29 
pathogens. The motivations driving these studies were varied but could be divided into two 30 
major categories: exploration of dynamics and evaluation of interventions. Finally, we found that 31 
model complexity quickly increases as additional pathogens are added. Future potential avenues 32 
of research we identified include investigating the effects of misdiagnosis of clinically similar 33 
co-circulating pathogens and characterizing the impacts of one pathogen on public health 34 
resources available to curtail the spread of other pathogens. 35 
 36 
1. Introduction 37 
Mathematical modelling is a powerful tool in understanding and forecasting infectious diseases 38 
and shaping public health responses (Ferguson et al. 2006, Heesterbeek et al. 2015, Pagel and 39 
Yates 2022). Mathematical models allow researchers to investigate the population-level impact 40 
of different treatment regimens for infectious diseases (Abu-Raddad et al. 2009), analyze the 41 
effect of nonpharmaceutical interventions on disease spread (Cowger et al. 2022), and predict 42 
how factors such as climate change will influence transmission of vector-borne diseases 43 
(Lafferty 2009, Eikenberry and Gumel 2018, Mordecai et al. 2019). However, the majority of 44 
infectious disease models focus on a single pathogen, despite the fact that multiple pathogens are 45 
co-circulating in any given time and place (Tsai et al. 2017, Mendenhall et al. 2022).  46 
 47 
Co-circulating pathogens have the potential to impact the dynamics of one another via multiple 48 
mechanisms. People infected with HIV, for example, are more susceptible to infection by other 49 
pathogens, and this individual-level phenomenon can have population-level effects on 50 
transmission dynamics (Galvin and Cohen 2004, Mayer et al. 2007). HIV, TB, and malaria in 51 
particular co-circulate widely in under-resourced settings and can exacerbate both the clinical 52 
presentation and transmission of one another (Vitoria et al. 2009). This can lead to more 53 
interventions necessary at the individual-patient level, as well as a greater population-level 54 
burden of disease (Alemu et al. 2013, Montales et al. 2015). Furthermore, environmental factors 55 
such as climate change and land use changes likely impact multiple pathogens simultaneously 56 
and potentially synergistically, which could not be captured with a single-pathogen focus. 57 
Deforestation and the expansion of agriculture, for example, have been shown to shift the 58 
abundance, diversity, and biting rates of mosquito species that are known arbovirus vectors 59 
(Zahouli et al. 2017, Da Silva Pessoa Vieira et al. 2022). 60 
 61 
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Shifting public health priorities in response to new threats can also have unintended effects on 62 
co-circulating pathogens. For example, during the height of the COVID-19 pandemic, routine 63 
vaccination campaigns across the world against diseases such as measles and polio were 64 
disrupted, with ripple effects on vaccine coverage and transmission dynamics (Gaythorpe et al. 65 
2021, Cardoso Pinto et al. 2022, Bigouette et al. 2022). In addition, co-circulating pathogens 66 
with similar clinical presentations, such as Zika, dengue, and chikungunya, may hinder 67 
surveillance efforts to discern the true prevalence of each pathogen contributing to the observed 68 
syndromic data due to misdiagnosis and also hampering targeted public health interventions 69 
(Oliveira et al. 2020, Oidtman et al. 2021, Ribas Freitas et al. 2024).  70 
 71 
Given the many ways in which co-circulating pathogens may impact each other, mathematical 72 
models that explicitly model these interactions may provide key insights. For example, 73 
researchers may be better able to capture transmission dynamics and thereby improve forecasting 74 
accuracy by including synergistic interactions such as one pathogen increasing host susceptibility 75 
to other pathogens (Marimuthu et al. 2020), or mitigating interactions such as infection causing 76 
decreases in host mobility, thus decreasing host exposure to other co-circulating pathogens 77 
(Rohani et al. 2003). The presence of co-circulating pathogens in a population may necessitate 78 
different screening or treatment regimens to achieve public health goals, and mathematical 79 
models can aide in exploring these different scenarios (Macgregor et al. 2020, Rao et al. 2022). 80 
The myriad possibilities in these approaches motivated us to explore the current state of the 81 
literature on mathematical models of co-circulating pathogens.  82 
 83 
Despite the evidence for the impact of co-circulating pathogens on each other and the potential 84 
usefulness of mathematical models, we did not find any systematic reviews of mathematical 85 
models of co-circulating pathogens in our literature search. Therefore, we conducted this 86 
systematic review with the goal of characterizing the existing scientific literature on co-87 
circulating pathogen models, to both better understand the current state of this field and identify 88 
knowledge gaps that need to be addressed. Specifically, our objectives were: 89 

i. To determine the most common pathogens modeled together and the ecological, 90 
biological, and clinical similarities between these pathogens, 91 

ii. To analyze the authors’ motivations for creating co-circulation models and the 92 
intended purpose of their studies, 93 

iii. To characterize common features of co-circulation models and their outputs, 94 
iv. To quantify differences between single-pathogen and co-circulating pathogen models, 95 

and 96 
v. To report aspects of co-circulation models that are uncommon in the literature and 97 

potentially fruitful avenues for future research. 98 
 99 
 100 
2. Methods 101 
2.1 Literature search 102 
On October 21st, 2022 we searched Google Scholar, Pubmed, and Web of Knowledge databases 103 
using a set of keywords. Our keyword list consisted of: co-circulating pathogen; concurrent 104 
epidemic; polymicrobial infection AND mathematical model; concurrent infection AND 105 
mathematical model; syndemic AND model; co-infection AND mathematical model; 106 
heterologous reactivity AND mathematical model; polyparasitism AND mathematical model; 107 
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synergistic pathogens AND mathematical model; dual infection AND mathematical model; 108 
pathogen co-occurrence; co-epidemic; superinfection AND mathematical model. We retrieved a 109 
total of 1,908 unique bibliographic records from Google Scholar, PubMed, and Web of Science, 110 
which we reviewed in a four-stage process. In stage one, the titles and abstracts of the resulting 111 
manuscripts were briefly scanned for the inclusion criteria, which yielded a total of 343 papers 112 
published between 1985 and 2023 (1,565 excluded). In stage two, the references of each selected 113 
paper were then scanned to find additional publications, which yielded an additional 206 papers. 114 
Additionally, any newly published and relevant paper that the authors became aware of during 115 
the review process were added (five papers total). In stage three, a pair of reviewers assessed 116 
each paper (N=554) for meeting our inclusion criteria (below) and reached a consensus. In stage 117 
four, the reviewers first extracted the data separately and then later compared their questionnaire 118 
answers to reach a consensus on each question. We excluded papers not published in English 119 
(Figure 1). 120 

 121 
Figure 1. PRISMA flowchart for the literature search, screening, and inclusion process. 122 
 123 
 124 
2.2 Eligibility criteria 125 

All 554 papers were evaluated for inclusion based on six questions:  126 
(i) Is the paper an original research article?  127 
(ii) Are at least two real pathogen species (not theoretical) modeled in the same model?  128 
(iii) Does at least one of the pathogens modeled cause human disease?  129 
(iv) Does the model have at least one population-level aspect in a human population?  130 
(v) Is some part of the model structure informed by a mechanistic derivation of biological 131 

processes as opposed to purely involving phenomenological relationships?  132 

Google Scholar
Pub Med
Web of Science
(n = 1908)

Papers added by 
reference search
(n = 206)

Ad hoc 
additions of new 
publications
(n = 5)
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for eligibility
(n=554)
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(n=311)
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(n=243)
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(vi) Is there a place in the model where hosts transition from a susceptible to an exposed 133 
or infected state? 134 
 135 

We narrowed the scope of this review to real pathogen species that cause human disease (criteria 136 
ii and iii) because co-circulating pathogens have been a salient topic in the non-human literature 137 
for a longer period, and we were interested in how that has percolated into the modeling of 138 
human disease. We focused on mechanistic, population-level models that include a transmission 139 
process (criteria iv-vi) in contrast to descriptive or statistical models that fit data without any 140 
consideration of the biological mechanisms involved. We included papers for which the answer 141 
to all six questions was “yes”.  142 
 143 
2.3 Questionnaire development 144 
We used a questionnaire to screen each publication in order to standardize the data generated 145 
from each review. We developed the questionnaire through a collaborative, iterative three-stage 146 
process. In the first stage of the development process, our aim was to evaluate the ability of the 147 
questionnaire to elicit similar responses from multiple reviewers assessing the same paper. To 148 
this end, reviewers used the questionnaire to review the same paper, and we then evaluated 149 
response data for discrepancies. Through group discussion, we identified areas of improvement 150 
through group discussion, and feedback from the group was applied to the next iteration of the 151 
questionnaire. We carried out this process twice. Finally, in the third round of evaluation all 152 
papers were reviewed in pairs as described below and the data generated were used for analysis. 153 
All reviewers were in communication throughout the review stage to harmonize any 154 
discrepancies that arose. 155 
 156 
2.4 Paper review process 157 
Two reviewers were randomly assigned to each publication, which they reviewed using the 158 
standardized questionnaire. After reviewing each paper individually, the pair of reviewers 159 
assigned to each paper then met to compare and discuss answers and resolve any discrepancies 160 
between answers. Each pair then submitted a final version of their answers in the form of a third 161 
survey marked ‘consensus.’ Only consensus surveys were analyzed (N=311). 162 

 163 
2.5 Questionnaire description 164 
The questionnaire consisted of six sections: (i) bibliographic information; (ii) inclusion criteria; 165 
(iii) basic information about each parasite modeled; (iv) model details; (v) model outputs; and 166 
(vi) motivation for selecting the pathogens modeled. The final version of the questionnaire 167 
contained 47 questions. 168 
 169 
2.6 Author motivations 170 
Question 39 of our systematic survey was an open-response question: “Did the authors develop 171 
their model to answer a specific research question or to achieve a specific purpose or objective?” 172 
To analyze the responses to this question, we inserted the pooled responses to this question and 173 
into ChatGPT version 3.5 (“ChatGPT” 2024) with the prompt “The text I provided you was 174 
supposed to illustrate authors’ motivations to write the papers we analyzed. From that text, what 175 
would you say are the main motivations of authors?” Authors KS and TAP then discussed the 176 
output from ChatGPT and refined the language of the motivations ChatGPT produced to create 177 
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four categories of motivations, and KS categorized each response to question 39 according to 178 
these motivations. Each response could receive more than one categorization. 179 
 180 
2.7 Bibliometrics 181 
To explore how journal prestige and topic may be related to citation patterns, for all papers 182 
included in our review for which a DOI was available, we queried Unpaywall (Richard Orr, 183 
Heather Piwowar, Jason Priem 2024) and OpenAlex (Aria et al. 2024) to collect the times each 184 
paper has been cited as well as the h-index and i-10index for the journal in which each paper was 185 
published, as of March 11th, 2024. We then used the glmmTMB package in R (Brooks et al. 186 
2017) to create generalized linear models to assess potential associations between citation count 187 
and publication year, journal h-index, and journal i-10index. We also used the Web of Science 188 
API Lite (“Web of Science API” 2024) to collect subject categories for each paper. We then 189 
binned related categories such as “Mathematics, Applied” and “Mathematics” to create seven 190 
meta-categories. We created a second generalized linear model to test for the impact of assigned 191 
meta-category on citation counts.  192 
 193 
2.8 Complexity Index 194 
To estimate the extent to which each co-circulating pathogen model in our data set diverged from 195 
a single-pathogen model, we designed a complexity index derived from the responses to 196 
questions 23-30 in the questionnaire. The index was calculated by assigning one point to each 197 
answer that indicated a divergence from a single-pathogen model and then totaling the points. 198 
For example, question 23 (“Does the model structure include hosts that are co-infected with two 199 
or more pathogens?”) would have yielded one point for a “yes” answer and zero points for a 200 
“no.” For multi-part questions such as question 23f (“Which parameter values for the co-infected 201 
class are different from the mono-infected and uninfected classes? [select all that apply]”), we 202 
assigned one point for each parameter value selected. The maximum possible complexity index 203 
score was 18. An example of how this index was calculated can be found in Table S1. 204 
 205 
2.9 Data availability 206 
A full version of the questionnaire can be found in the supplementary materials. All data were 207 
analyzed in R version 4.3.0 (R Core Team 2021), and raw files and code used for analysis as 208 
well as a supplementary file of all tables produced from the analysis are available at 209 
https://figshare.com/s/2b268f5df8aed6acad3f. 210 
 211 
3. Results 212 
3.1 Study selection 213 
In our four-stage review process, we identified 554 papers to review for eligibility, 311 of which 214 
met our inclusion criteria (Figure 1). The most common reasons for paper exclusion were: (i) the 215 
study did not include two real pathogen species in the same model (67.1%, 163/243, question 7); 216 
(ii) there was no place in the model where hosts transitioned into an exposed or infected state 217 
(42.4%, 103/243, question 11); and (iii) the model did not have at least one population-level 218 
aspect (35.4%, 86/243, question 9). Some papers were excluded based on multiple criteria. The 219 
oldest papers that met our search criteria were from 1991, although the majority of relevant 220 
papers were published in 2008 or later (90.4%; 281/311, Figure 2). 221 
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 222 
Figure 2. Temporal trends in the publication of co-circulating pathogen models. Papers that met 223 
our inclusion criteria gradually increased over time. The year of 2023 was only partially sampled 224 
up to papers published by the month of March. 225 
 226 
3.2 Pathogen information 227 
 228 
The majority of included models considered two pathogens (88.4%, 275/311), while the 229 
maximum number of pathogens included in the same model was nine (0.32%, 1/311; Figure 3A). 230 
The most commonly modeled pathogen pairs were human immunodeficiency virus (HIV) and 231 
Mycobacterium tuberculosis (TB), representing 25% (78/311) of the models we reviewed. Other 232 
models that included more than two pathogens often were focused either on STIs (e.g., 233 
Korenromp et al. 2005, Kate K Orroth et al. 2007, Jenness et al. 2017) or vector-borne diseases 234 
such as dengue, chikungunya, and Zika that are transmitted by the same vector (e.g., Isea and 235 
Lonngren 2016, Okuneye et al. 2017). One model that included nine pathogens considered a 236 
panoply of common STIs: HIV, genital herpes, syphilis, cancroid, gonorhea chlamydia, 237 
trichomonas, bacterial vaginosis, and vaginal candidiasis (Johnson et al. 2011).  238 
 239 
 240 
To investigate which modes of transmission were included in the same models, we recorded all 241 
viable transmission modes for each pathogen; e.g., HIV would be recorded as both “sexually 242 
transmitted” and “other (vertical and bloodborne).” Therefore, when we calculated the 243 
percentage of each transmission mode in our data, the denominator was the total number of 244 
transmission modes recorded across all pathogens (988). Corresponding to the exceptionally high 245 
number of HIV-TB models, the most common transmission modes of pathogens were sexually 246 
transmitted (35.3%, 349/988), followed by a transmission mode of “other” (27%, 267/988) of 247 
which 65.5% (175/267) were recorded as vertical and bloodborne (Figure 3B). Respiratory 248 
transmission was the third most common transmission mode at 19% (188/988). We also found 249 
that the earliest papers in our data set tended to focus on sexually transmitted and respiratory 250 
pathogens, again reflecting the focus on HIV in combination with other STIs and with TB in the 251 
1990s (Figure 3C). Over time, a greater diversity of transmission modes appeared, notably with 252 
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an increase in models of vector-borne diseases starting in 2008 and an increase in models with 253 
respiratory pathogens starting in 2020, coinciding with the SARS-CoV-2 pandemic. 254 

 255 
Figure 3. Pathogen characteristics. (A) The frequency of how many pathogens were included in 256 
models. The vast majority of models included two pathogens. (B) Frequency of transmission 257 
modes represented across all models. Sexually transmitted pathogens and pathogens with “other” 258 
transmission routes such as bloodborne were common in our data set due to the large number of 259 
models focused on HIV. (C) Change in transmission modes represented in our data set over time, 260 
represented as a percentage of the total models we analyzed for that publication year. Vector-261 
borne pathogens appear more frequently in the literature after 2008, and respiratory pathogens 262 
become more common starting in 2021. (B) and (C) share a legend. 263 
 264 
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Beyond individual pathogens, we also investigated the frequency with which different pathogen 265 
taxa were modeled together. We categorized the taxonomic group and transmission mode for 266 
each pair of pathogens in our data set and counted the frequency of their co-occurrence in the 267 
same model (Figure 4). This analysis reflected all possible transmission routes for each pathogen 268 
and also all possible pairings within the same model. As such, a single paper could be 269 
represented multiple times based on the number of pathogens and transmission modes present, 270 
resulting in 957 distinct pathogen pairs. Sexually transmitted viruses with sexually transmitted 271 
bacteria (11.4%, 109/957) and sexually transmitted viruses with viruses with other transmission 272 
routes (11.3%, 108/957) occurred together most commonly, due to the high prevalence of STI-273 
focused models in our review. Other common pairings were respiratory bacteria with sexually 274 
transmitted viruses (9.1%, 87/957) and respiratory bacteria with viruses with other transmission 275 
routes (9.2%, 88/957), due to the large number of HIV-TB models. 276 

 277 
Figure 4. Frequency of co-modelling pathogens within taxonomic groups and transmission 278 
modes. The most frequent pairings were sexually transmitted viruses with sexually transmitted 279 
bacteria and viruses with other transmission routes, followed by sexually transmitted viruses 280 
with respiratory bacteria (dominated by the prevalence of HIV-TB models in our data set). 281 
 282 
We found that the majority of pathogens modeled together did not share ecological similarities, 283 
as reported by authors (87.8%, 273/311, question 40). Of those that did, 63.2% (24/38) had 284 
shared seasonality and 39.5% (15/38) had shared environmental drivers of transmission. Shared 285 
seasonality was commonly noted for respiratory pathogens such as SARS-CoV-2, influenza, and 286 
RSV. Shared environmental drivers were noted for pathogens such as malaria and cholera, which 287 
are both sensitive to environmental conditions (e.g., rainfall) but via different mechanisms 288 
(Thomson et al. 2006, Lemaitre et al. 2019). Furthermore, pathogens that shared both seasonality 289 
and environmental drivers were noted for several models (9/38, 23.7%, Figure S1A). Multiple 290 
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ecological similarities were most often recorded for models of vector-borne pathogens with a 291 
shared vector taxa, such as the dengue, chikungunya, and Zika viruses. 292 
 293 
In contrast, a majority of pathogens modeled together did share at least one biological similarity 294 
(55.6%, 173/311, question 41), with 70.5% sharing a transmission route (122/173) and 63 % 295 
(109/173) sharing host subsets as the most common responses. Shared transmission routes were 296 
common in models with sexually-transmitted pathogens, vector-borne pathogens, and respiratory 297 
pathogens. Models with shared host subsets commonly included studies of intravenous drug 298 
users (de Vos et al. 2012, Vickerman et al. 2012, Zelenev et al. 2018) and childhood diseases 299 
(Rohani et al. 2003, Huang and Rohani 2006). Clinical or epidemiological similarities were 300 
shared by 62.7% (195/311, question 42) of pathogens modeled together, with the most common 301 
similarity being that treatments existed for both pathogens (59%, 115/195), due to large number 302 
of HIV-TB and STI models for treatable pathogens. 303 
 304 
3.3 Motivations and purpose 305 
 306 
Reviewers identified two main scholarly motivators (question 45): 1) prior research suggested an 307 
effect of one pathogen on another but more research is needed (54.7%, 170/311), and 2) few or 308 
no prior modeling studies conducted of these two pathogens together (35.1%, 109/311). No clear 309 
scholarly motivation was noted in 11.6% (36/311) of papers. 310 
 311 
In addition, we used ChatGPT (version 3.5) (“ChatGPT” 2024) to summarize common themes in 312 
the reviewers’ answers to the open-ended question 39, “Did the authors develop their model to 313 
answer a specific research question or to achieve a specific purpose or objective?” (Box 1). We 314 
then refined the results from ChatGPT to better reflect the nuances we felt existed in our data set, 315 
resulting in four categories of author motivation. We then classified reviewer responses to 316 
question 39 according to the four motivation categories, allowing for more than one category to 317 
apply to each paper. The categories that resulted from this process were: 318 

(i) Understanding the dynamics of co-circulating pathogens, in particular how 319 
multiple pathogens may alter the transmission patterns and/or population outcomes of 320 
one another. This category applied to papers in which the authors’ goals included 321 
evaluating quantitative outcomes such as R0, disease burden, mortality, etc., and how 322 
outcomes differed in the presence of co-circulating pathogens. 323 

(ii) Developing mathematical models for specific pairs of pathogens of interest, often 324 
due to the perceived novelty of doing so by the authors. While all papers in this 325 
review included a mathematical model, this category was for those that had a 326 
primarily mathematical focus or in which the authors only stated motivation for 327 
developing the model was that the pathogens had not been previously modeled 328 
together.  329 

(iii) Implementing interventions or control measures for one pathogen and the resulting 330 
impact on it and/or other pathogens in the model. We placed papers in this category 331 
when the authors were investigating how interventions such as treatment, vaccination, 332 
or quarantining would impact co-circulating pathogens through either direct or 333 
indirect effects.  334 

(iv) Calculating cost-effectiveness and optimal control of different treatment and 335 
control strategies. While there was some overlap with (iii), we created this category to 336 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 16, 2024. ; https://doi.org/10.1101/2024.09.16.24313749doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.16.24313749


capture papers in which the authors were not necessarily investigating the impact of 337 
interventions on outcomes such as transmission or mortality, but in which they were 338 
primarily concerned with the best way to implement interventions given cost or labor 339 
constraints.  340 

 341 
Category (i), understanding disease dynamics, was the most common motivation for creating the 342 
models, with 52.3% (164/311) of papers falling into this category. Implementation of 343 
interventions (iii) was the second most common, at 35.4% (110/311), followed by cost-344 
effectiveness (iv, 14.9%, 46/311) and developing mathematical models (ii, 13.8%, 43/311). 345 
Overlapping categorizations were common, in particular for categories (i) and (iii); Fig S2). 346 
Some papers fell into one or more of the four categories but also contained unique motivations 347 
and thus were counted in one or more of the four main categories and additionally as “other” 348 
(10%, 31/311).  A small number, 1.6% (5/311), did not neatly fit into any of these categories and 349 
were categorized only as “other.” Examples of “other” author motivations include examining 350 
how one pathogen may exert indirect evolutionary pressures on another (Lloyd-Smith et al. 351 
2008), or what fundamentally allows for the co-existence of two co-circulating pathogens 352 
(Amaku et al. 2011). 353 
 354 

 355 
3.4 Bibliometrics  356 
We were able to source bibliometric data for 247 out of 311 of the papers in our analysis. The 357 
majority of these papers were cited fewer than 25 times (64.3%, 159/247, Figure 5). However, 358 

Box 1. Large language learning model analysis of survey question 39, “Did the 
authors develop their model to answer a specific research question or to achieve a 
specific purpose or objective?” 
 
We provided the reviewers’ answers to question 39 for all papers included in our review 
that met inclusion criteria and provided the prompt “The text I provided you was supposed 
to illustrate authors’ motivations to write the papers we analyzed. From that text, what 
would you say are the main motivations of authors?” The exact output created, prior to our 
modified version stated in the text, was as follows: 
 

1. “Understanding Disease Dynamics: Authors aim to gain a deeper understanding of 
the dynamics of infectious diseases, including their transmission patterns, 
interactions between different pathogens, and the impact of interventions on disease 
spread. 

2. Developing Mathematical Models: Many authors are motivated to develop 
mathematical models to simulate disease transmission, assess the effectiveness of 
intervention strategies, and predict the outcomes of various scenarios. These models 
allow researchers to study complex disease dynamics and inform public health 
decision-making. 

3. Evaluating Intervention Strategies: There is a strong emphasis on evaluating the 
effectiveness and cost-effectiveness of intervention strategies, such as vaccination 
programs, treatment protocols, and preventive measures. Authors seek to identify 
optimal strategies for controlling disease spread and reducing disease burden in 
populations.”  
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there were some distinct outliers, with the most highly cited paper having 231 citations (Table 1). 359 
Year of publication (z value = -7.721, p<0.001) and h-index (z value = 3.501, p=0.0005) of the 360 
journal in which a paper was published were both significantly associated with citations, but the 361 
effect sizes were minimal (central estimates of -0.0857 per year and 0.001653 per h-index unit, 362 
respectively), suggesting that outliers in citations likely reflect papers that were particularly 363 
useful or interesting to the field. 364 

 365 
Figure 5. Frequency of citations. Most papers in our data set were cited fewer than 25 times, 366 
however there were several outliers with over 100 citations. 367 
 368 
Table 1. Top 10 cited papers from our data set. 369 
Title Journal DOI Times 

cited 
Modelling the impact of global 
tuberculosis control strategies 

Proceedings of 
the National 
Academy of 
Sciences 

10.1073/pnas.95.23.13881 231 

Genital herpes has played a 
more important role than any 
other sexually transmitted 
infection in driving HIV 
prevalence in Africa 

PLOS One 10.1371/journal.pone.0002230 219 

Incidence of Gonorrhea and 
Chlamydia following Human 
Immunodeficiency Virus 
preexposure prophylaxis among 
men who have sex with med: A 
modeling study 

Clinical 
Infectious 
Diseases 

10.1093/cid/cix439 180 

Mathematical analysis of the 
transmission dynamics of 
HIV/TB coinfection in the 
presence of treatment 

Mathematical 
Biosciences and 
Engineering 

10.3934/mbe.2008.5.145 165 

Ecological interference between 
fatal diseases 

Nature 10.1038/nature01542 152 
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Determinants of the impact of 
sexually transmitted infection 
treatment on prevention of HIV 
infection: A synthesis of 
evidence from the Mwanza, 
Rakai, and Masaka Intervention 
Trials 

The Journal of 
Infectious 
Diseases 

10.1086/425274 144 

Comparing Dengue and 
Chikungunya emergence and 
endemic transmission in A. 
aegypti and A. albopictus 

Journal of 
Theoretical 
Biology 

10.1016/j.jtbi.2014.04.033 140 

Identifying the interaction 
between influenza and 
pneumococcal pneumonia using 
incidence data 

Science 
Translational 
Medicine 

10.1126/scitranslmed.3005982 126 

Can Hepatitis C Virus (HCV) 
direct-acting antiviral treatment 
as prevention reverse the HCV 
epidemic among men who have 
sex with men in the United 
Kingdom? Epidemiological and 
modeling insights 

Clinical 
Infectious 
Diseases 

10.1093/cid/ciw075 121 

Beneficial and perverse effects 
of isoniazid preventative 
therapy for latent tuberculosis 
infection in HIV-tuberculosis 
coinfected populations 

Proceedings of 
the National 
Academy of 
Sciences 

10.1073/pnas.0600349103 120 

 370 
 371 
We found additional metadata for 244 of our 311 papers on the Web of Science search engine. 372 
This metadata provided subject categories for each paper, with one to five categorizations per 373 
paper. By binning related categories (for example, “Mathematics, Applied” and “Mathematics”; 374 
Table S2), we created seven main categories related to the research subject areas for each paper. 375 
Life sciences (54.1%, 132/311) and Mathematics (52.9%, 129/311) were the most common 376 
categories, while Operations and Management was the least common (3.3%, 8/311). Overlap 377 
between categories, in particular Mathematics and Life Sciences, was also common (Figure S3). 378 
Similar to citation year and journal h-index, we found that some categories were significantly 379 
associated with citations; again though, effect sizes (relative to Operations and Management) 380 
were minimal (Life Sciences: estimate = 0.639, z value = 3.207, p=0.00134; Medicine/Public 381 
health: estimate = 0.593, z value = 2.199, p=0.028; Multidisciplinary: estimate = 0.731, z value = 382 
3.015, p = 0.00257). 383 
 384 
3.5 Model Characteristics and Outputs 385 
The majority of publications presented deterministic models (89.7%, 279/311), followed by 386 
individual-based models (8.4%, 26/311). A very small number of papers contained a within-host 387 
model in addition to the population-level model required to meet our inclusion criteria (3.9%, 388 
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12/311). Spatially explicit models and metapopulation models were rare among the papers 389 
reviewed (0.64%, 2/311 and 0.32%, 1/311, respectively). Some papers contained multiple model 390 
components with varied structures, and thus fell into multiple categories (6.4%, 20/311). 391 
 392 
85.2% of the publications included models that were informed by data (265/311). Of these 393 
papers, 56.4% (149/265) used data extracted from the literature without giving further 394 
information on the origin of those data. Surveillance data were used in 29.1% (77/265) of papers, 395 
10.2% (27/265) used survey data, and 3% (8/265) used case study data. The most common use of 396 
data was for model parameterization (97%, 257/265), including the use of data-informed 397 
parameter values taken from other modelling studies. A smaller set of papers used data for model 398 
fitting or calibration (36.2%, 96/265). 399 
 400 
The most commonly reported model output (question 35) was disease prevalence (79.4%, 401 
248/311), followed by the reproduction number (59.5%, 185/311) and stability properties of the 402 
model (57.9%, 180/311). Several model outputs were not initially captured by our survey options 403 
and were coded as “other” (49.2%, 153/311). Among these, common responses we found in the 404 
“other” category were model sensitivity analysis, cost evaluation of different interventions, and 405 
total cases of disease averted by interventions. Outputs were commonly examined as a function 406 
of different interventions (question 36, 46.6%, 145/311), time (22.5%, 70/311), and varying 407 
parameter values (22.5%, 70/311). Rarely did models evaluate outputs as a function of 408 
seasonality (0.64%, 2/311), space (0.32%, 1/311), or temperature/climate (0.32%, 1/311). 409 
 410 
3.6 Complexity Index 411 
 412 
We created a complexity index to quantify how much co-circulating pathogen models diverged 413 
from a set of independent, single-pathogen models. Scores were assigned based on questions 23-414 
30, with one point for each increase in complexity (see Methods).  The largest score on the 415 
complexity index we observed was 11, out of a maximum possible value of 18. Scores in the 416 
intermediate range of 4-7 were most common (72.7%; 226/311), with very few at the minimum 417 
score of 0 (2/311) or the maximum observed value of 11 (2/311;Figure 6A). This middle range 418 
of complexity reflected a pattern we commonly observed where most models aimed to 419 
investigate one or two dimensions of co-circulation/co-infection, but upon the incorporation of a 420 
second (or more) pathogen(s), the biology of the interplay between the pathogens often required 421 
multiple changes to the model relative to a single-pathogen model. The most commonly 422 
observed elements of the complexity index were including hosts that were co-infected (94.5%, 423 
294/311, question 23),  including external factors that affect the transmission of both pathogens 424 
(e.g., interventions) (52.7%, 164/311, question 30), and allowing mono-infected hosts to have 425 
different levels of susceptibility to other pathogen(s) in the model as compared to uninfected 426 
hosts (52.4%, 163/311, question 24). The least commonly observed elements of the complexity 427 
index were accounting for interruptions or declines in services offered due to another co-428 
circulating pathogen in the model structure (0.96%, 3/311, question 28) and the model structure 429 
including reporting or surveillance errors due to misdiagnosis between the pathogens modeled 430 
(1.3%, 4/311, question 26). Models that included within-host aspects of co-infection in the model 431 
structure were also rare (2.6%, 8/311, question 23a; Figure 6B).  432 
 433 
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Certain components of our complexity index were more likely to be included in the same model 434 
than others. Including co-infected hosts (question 23) and differing levels of susceptibility to 435 
other pathogens between uninfected and mono-infected hosts (question 24) were observed 436 
together more than any other pair of complexity score elements (51.5%, 160/311), as well as 437 
incorporating both co-infected hosts (question 23) and interventions (question 27) (48.9%, 438 
152/311) and incorporating co-infected hosts and external factors impacting transmission 439 
(question 30) (48.9%, 152/311) (Figure 6C). When looking at the correlation of different 440 
components (either jointly present or absent in a model), the most highly correlated pairs were 441 
likely due to question redundancy and dependency in our survey. For example, questions 23a, 442 
“Does the model structure explicitly include within-host pathogen-pathogen interaction?” and 443 
23b “What type of pathogen-pathogen interaction is represented?” are highly correlated (r=0.7). 444 
Other than these types of related questions, there were few very strong correlations, either 445 
positive or negative, indicating high variation in which aspects of co-circulation models in our 446 
data set elaborated on (Figure 6D). 447 
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 448 
Figure 6. Measures of model complexity. We calculated a complexity index, in which a model 449 
received one point for each aspect that increased model complexity in comparison to a single-450 
pathogen model. A) The frequency of complexity scores in our data set; black line represents the 451 
maximum possible score of 18. Mid-range scores between 4 and 7 were most common. B) The 452 
frequency of each complexity component in our data set. C) The co-occurrence of different 453 
complexity components within the same model. The inclusion of coinfected hosts and external 454 
interventions, in particular interventions, was very common in our data set. D) The correlation 455 
coefficients for each pair of complexity components. Question 23d was not answered for any 456 
models in our data set and thus was omitted from panels C and D. 457 
 458 
4. Discussion 459 
 460 
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Pathogens do not exist in a vacuum; they are part of a complex ecosystem that, among other 461 
players, contains multiple pathogens that often vie for the same pool of susceptible hosts and can 462 
be influenced by the same external factors, such as climate and vector abundance. Mathematical 463 
models that explicitly explore the dynamics of co-circulating pathogens have the potential to 464 
inform numerous open questions in disease ecology and public health. In our systematic review 465 
of co-circulating pathogen models, we found that the scope of the literature in this field has 466 
gradually expanded over the past three decades. The emergence of HIV and the clear connection 467 
between HIV infection and increased susceptibility to other pathogens was a major catalyzing 468 
event for this area of work. However, even as models of multiple pathogens have become more 469 
common, there are still extensions of these models that remain underexplored, such as tying 470 
within-host processes to population-level models, exploring the effects of misdiagnosis of 471 
clinically similar diseases, and assessing the impacts of changes in resource allocation during 472 
outbreaks. 473 
 474 
4.1 Model complexity 475 
 476 
We created a complexity index to capture the extent to which a co-circulating pathogen model 477 
diverged from a simple, single-pathogen model, and found that the majority of models in our 478 
review fell into a middle range of this index. The inclusion of a second pathogen in the model 479 
often necessitated a few key additional parameters to capture the known biological interactions 480 
between the two pathogens, but a full range of model enhancements was rarely deployed. For 481 
example, including HIV and TB in the same model necessitates that the model structure account 482 
for susceptibility to TB in HIV-infected hosts. Other interactions between the two pathogens 483 
were also commonly included including higher likelihood of TB reactivation from the latent 484 
phase in HIV-infected individuals and increased morbidity and mortality in HIV-TB co-infecteds. 485 
Far less common in our data set was the inclusion of external factors that reflect the ways in 486 
which our health systems interface with the world of co-circulating pathogens and their hosts. 487 
For example, arboviruses such as dengue, chikungunya, and Zika can present with similar 488 
clinical symptoms, which can lead to misdiagnosis of one infection for one another (Silva et al. 489 
2019). Misdiagnoses can then result in spurious surveillance data from which we build our 490 
models (Oliveira et al. 2020), and potentially mis-appropriated public health funds targeted to 491 
prevent one disease at the expense of the others. Another topic that came hurtling to the 492 
foreground with the COVID-19 pandemic is the potential of one emerging pathogen to interrupt 493 
and delay healthcare services targeted towards the treatment and prevention of other pathogens 494 
(Bigouette et al. 2022). During the COVID-19 response, routine vaccination and surveillance 495 
programs for endemic diseases were put on hold in many nations, with negative consequences, 496 
especially for children (Menendez et al. 2020, Cardoso Pinto et al. 2022). 497 
 498 
4.2 A new framework for model development 499 
 500 
Model structure complexity often appeared to be driven by the authors’ scholarly motivation(s) 501 
for creating the model. Our analysis of author’s motivations resulted in binning papers into four 502 
meta-categories: (i) understanding the dynamics of co-circulating pathogens, (ii) developing 503 
novel mathematical models, (iii) implementing intervention or control measures, and (iv) 504 
calculating cost-effectiveness and optimal control of interventions. As an overarching schema to 505 
approach the current state of the field, we propose that papers in categories (i) and (ii) be 506 
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classified under an umbrella of “exploration” and those in (iii) and (iv) as “evaluation.” This 507 
overarching classification provides a convenient framework to be used for both viewing the 508 
current state of the literature and evaluating where knowledge gaps remain. Many of the papers 509 
focused on exploration had a primarily mathematical goal to simply develop a compartmental 510 
model of two co-circulating pathogens (Lusiana et al. 2017, Jose et al. 2023), but some extended 511 
into testing more fundamental hypotheses, such as why two co-circulating pathogens can co-512 
exist in some regions and not others (Amaku et al. 2011), or how asymmetric cross-immunity 513 
between related pathogens observed in laboratory studies may impact population-level 514 
transmission and prevalence (Restif et al. 2008). Notable examples of evaluation included 515 
exploring the tradeoff between decreased population-level transmission of tuberculosis with 516 
extended drug therapy regimens vs. the selective pressure for drug-resistant strains (Kunkel et al. 517 
2016), and examining the impact that a lack of interventions due to health services disruptions 518 
from the COVID-19 pandemic had on diseases such as HIV, malaria, and tuberculosis (Hogan et 519 
al. 2020). Overall, this framework of exploration and evaluation can be useful for researchers to 520 
take stock of the current state of knowledge in their system and identify critical knowledge gaps 521 
to push the field forward. 522 
 523 
4.3 Model quality 524 
Despite the number of yet unexplored avenues in the field of co-circulating pathogens left to 525 
pursue, in our review we noted that there was a glut of papers with very similar features that 526 
perhaps represent a saturation of this corner of the field. Specifically, 40.8% (127/311) of papers 527 
included two pathogens and had near-identical results sections that calculated the disease-free 528 
equilibria in the model, the basic reproduction number, and performed one or two simple 529 
numerical simulations of host prevalence. These same models often fully lacked any data to 530 
inform the model (25.2%, 32/127), or used recycled parameters from the literature (72.4%, 531 
92/127). Although there is value in such mathematical approaches, each additional study that 532 
performs these steps on a nearly identical system makes only a very incremental contribution to 533 
the body of knowledge of co-circulating pathogen dynamics. 534 
 535 
Another quality issue we frequently noted was the misunderstanding and/or mischaracterizing of 536 
known biology in the construction of some models. Concrete examples included misalignment of 537 
stated model goals with reported model outcomes. For example, multiple papers stated in the 538 
introduction section that a goal of the model was to explore how HIV-related changes in host 539 
susceptibility to other pathogens may change population trends, but then nothing in the structure 540 
of the model reflected a change in host susceptibility. Similarly, authors would often expound on 541 
the importance of specific host cohorts in transmission, such as men who have sex with men or 542 
intravenous drug users, but then only explicitly include heterosexual sexual encounters in their 543 
contact process represented in the model. These overlooked errors in the pairing of model 544 
structure to known biology are worrisome in a peer-reviewed system. In addition to both authors 545 
and reviewers devoting more attention to detail, these errors suggest a need for greater emphasis 546 
on the correspondence between model structure and stated biological assumptions in training 547 
around mathematical modeling of infectious disease dynamics. 548 
 549 
4.4 Future directions: Multi-scale, multi-pathogen models 550 
 551 
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Much of the complexity of disease dynamics arises from interactions across scales of biological 552 
organization; from within hosts to the population level, and from the population to the greater 553 
ecological community, disease dynamics occur across orders of magnitude. As the field of 554 
modeling co-circulating pathogens continues to grow and evolve, the effects of scale in modeling 555 
studies cannot be minimized. New studies are needed that examine multi-scale interactions and 556 
impacts of multiple pathogens in a single model. Consider, for example, the known effect of 557 
influenza on respiratory immune defenses, leading to a greater likelihood of infection by 558 
bacterial pathogens such as Streptococcus pneumoniae and also potentially worse clinical 559 
outcomes (Herrera et al. 2016). While a few papers in our data set did make simple adjustments 560 
to the model to include aspects such as changes in host susceptibility due to infection, very few 561 
contained a true within-host model where the processes at play within the host had the potential 562 
to influence population-level transmission in a nuanced or mechanistic manner. Work that 563 
connects the known within-host, cellular-level impacts of pathogen-pathogen interactions 564 
(McCullers 2006) to population-level prevalence and disease burden could give insight into 565 
better surveillance tactics and treatment schemes to mitigate the negative impacts of these 566 
pathogens. Key to this pursuit are appropriate data sources at multiple scales, from the individual 567 
to the population level, to verify how pathogens are interacting within hosts and tie these data to 568 
phenomena observed with co-circulating pathogen transmission at the population level. For 569 
respiratory pathogens, the COVID-19 pandemic and the accompanying “tripledemic” of 570 
COVID-19, influenza, and RSV has, at least temporarily, heightened testing and surveillance and 571 
expanded the use of excellent tools such as wastewater data (Boehm et al. 2023, Luo et al. 2023, 572 
Petros et al. 2024). We hope for a continued focus on gathering high-quality data for these and 573 
other pathogens, which will allow researchers to build robust, data-informed models that can 574 
directly inform public health efforts. 575 
 576 
4.5 Study limitations 577 
 578 
It is important to emphasize that we restricted our review to include only models that contained a 579 
mechanistic representation of co-circulating pathogens of humans. This criterion allowed for an 580 
in-depth focus on this subset of the literature, but we recognize that there are still many insights 581 
to be found from non-mechanistic statistical and geospatial approaches, models of theoretical 582 
pathogens, and work done in animal and plant systems. Work on theoretical pathogens can 583 
explore central mechanisms that drive the patterns seen in co-circulating pathogens in human 584 
populations, such as how co-infection may (or may not) drive changes in pathogen virulence 585 
(Brown et al. 2002). Experimental manipulations in non-human systems that would not be 586 
feasible or ethical with human subjects can also yield fundamental insights into the interactions 587 
and mechanisms at play in a multi-pathogen world, such as how variability in infection risk can 588 
be more strongly influenced by co-infecting pathogens than other mechanisms such as host 589 
exposure to parasites and host body condition (Telfer et al. 2010). These examples highlight the 590 
depth of investigation that is possible in other host-pathogen systems, and we want to emphasize 591 
that despite the focus of this systematic review, the power of non-human studies to inform and 592 
inspire work on human pathogens should not be discounted. A tandem review of co-circulating 593 
pathogen models that did not meet our inclusion criteria, such as non-mechanistic models and 594 
those focused on non-human pathogens, could help further inform and advance approaches 595 
across systems. 596 
 597 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 16, 2024. ; https://doi.org/10.1101/2024.09.16.24313749doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.16.24313749


4.6 Conclusion 598 
 599 
Co-circulating pathogen models can be a highly useful tool in the public health toolkit when it 600 
comes to preventing and mitigating infectious disease. From the papers in our review, we found 601 
clear examples of concrete recommendations that arise from considering co-circulating 602 
pathogens, ranging from actionable recommendations based on a realistic public health budget 603 
(Goyal and Murray 2017) to screening recommendations to meet WHO targets for a particular 604 
disease (Macgregor et al. 2020). We believe many more insights remain to be discovered from 605 
future work on co-circulating pathogens. What level of surveillance is needed to track and 606 
forecast a pathogen of interest when it co-circulates with other pathogens that cause similar 607 
clinical symptoms, such as arboviruses? What testing and treatment regimens can minimize the 608 
population-level effects of co-circulating respiratory pathogens that are known to have within-609 
host interactions? How might antibacterial treatment for one pathogen influence the trajectory of 610 
antibiotic resistance not just in the concerned species, but other co-circulating bacteria? We hope 611 
that this systematic review serves as a launching point for others to identify and tackle the most 612 
exciting and pressing challenges presented by co-circulating pathogens, and in doing so mitigate 613 
the burden of infectious diseases.  614 
 615 
  616 
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 839 
Figure S1. The co-occurrence of different environmental similarities (A), biological similarities 840 
(B), or clinical/epidemiological similarities (C) noted between pathogens in the same model 841 
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 842 
Figure S2. Overlapping classifications of journal types for the journals represented by papers in 843 
our data set. 844 
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Table S1. An example calculation of the complexity index. This calculation was made for one 872 
paper in our data set, “On the co-infection of dengue fever and Zika virus” (Bonyah et al. 2019). 873 
Question Response Index points 
Q23. Does the model structure include 
hosts that are co-infected with two or 
more pathogens? 

Yes 1 

Q23a. Are any within-host aspects of co-
infection explicitly included in the model 
structure? 

No 0 

Q23b. Does the model structure explicitly 
include within-host pathogen-pathogen 
interaction (direct or indirect) in a co-
infected host? 

No 0 

Q23c. What type of pathogen-pathogen 
interaction is represented in the model 
structure? 

No 0 

Q23f. Which parameter values for the co-
infected class are different fromt the 
mono-infected and uninfected classes? 
Check all that apply: 

- Contact rates 
- Incubation period 
- Infectiousness 
- Infection-induced mortality 
- Infectious period 
- Recovery time 
- Other 

 

-Infectiousness 
 
- Infection-
induced mortality 

2 

Q23g. Does the model include any 
separate terms to represent changes in 
disease symptoms, disease course, or 
disease severity in co-infected 
individuals? 

Yes 1 

Q24. In the model, do mono-infected and 
uninfected hosts have different levels of 
susceptibility to the other pathogens in the 
model? 

Yes 1 

Q25. Does the model structure include 
any representation of cross-immunity 
between two or more of the pathogens 
modeled? 

No 0 

Q26. Does the model structure include 
something to account for reporting or 
surveillance errors die to misdiagnosis 
between the pathogens modeled? 

No 0 
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Q27. Does the model structure include 
anything to account for shared impacts of 
an intervention? 

Yes 1 

Q28. Does the model structure include 
anything to account for interruptions or 
declines in services offered due to another 
co-circulating pathogen in the model? 

No 0 

Q29. Does the model structure include 
changes in health seeking behavior for 
infection with one pathogen because of 
something occurring as the result of the 
other pathogen? 

No 0 

Q30. Does the model structure include 
any other external factors that directly or 
indirectly affect the transmission of both 
pathogens? 

Yes 1 

 Total 
Complexity 
Index Score 
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 877 
Table S2. We binned related Web of Science journal categories into meta categories used for 878 
analysis. 879 
Web of Science Categories Binned category 
Mathematical and Computational Biology; Mathematics, 
Applied; Mathematics, Interdisciplinary Applications; 
Mathematics; Statistics and Probability 

Mathematics 

Computer Science, Interdisciplinary Applications; Computer 
Science, Software Engineering; Computer Science, 
Information Systems; Engineering, Electrical and Electronic; 
Engineering, Chemical; Engineering, Mechanical; 
Engineering, Multidisciplinary; Automation and Control 
Systems; Mechanics 

Engineering/Computer 
Science 

Management; Operations Research and Management Science Operations and Management 
Infectious Diseases; Biology; Ecology; Microbiology; 
Immunology; Parasitology; Tropical Medicine; Virology; Cell 
Biology; Genetics and Heredity; Environmental Science; 
Evolutionary Biology; Environmental Sciences; Biophysics; 
Biotechnology and Applied Microbiology; Biochemical 
Research Methods 

Life Sciences 

Gastroenterology and Hepatology; Medicine, General and 
Internal; Medicine, Research and Experimental; 
Medicine/Public Health; Substance Abuse; Psychiatry; Public, 
Environmental and Occupational Health 

Medicine/Public Health 

Physics, Applied; Physics, Mathematical; Physics, 
Multidisciplinary 

Physics 

Multidisciplinary Sciences; Materials Science, 
Multidisciplinary 

Multidisciplinary 
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