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Individuals of African ancestry remain largely underrepresented in genetic and 18 

proteomic studies. Here, we measure the levels of 2,873 proteins using the Olink 19 

proximity extension assay in plasma samples from 163 individuals with type 2 diabetes 20 

(T2D) or prediabetes and 362 normoglycemic controls from the Ugandan population for 21 

the first time. We identify 88 differentially expressed proteins between the two groups 22 

and 208 proteins associated with cardiometabolic traits. We link genome-wide data to 23 

protein expression levels and construct the first protein quantitative trait locus (pQTL) 24 

map in this population. We identify 399 independent associations with 346 (86.7%) cis-25 

pQTLs and 53 (13.3%) trans-pQTLs. 16.7% of the cis-pQTLs and all of the trans-pQTLs 26 

have not been previously reported in African-ancestry individuals. Of these, 37 pQTLs 27 

have not been previously reported in any population. We find evidence for colocalization 28 

between a pQTL for SIRPA and T2D genetic risk. Mendelian randomization analysis 29 

identified 20 proteins causally associated with T2D. Our findings reveal proteins causally 30 

implicated in the pathogenesis of T2D, which may be leveraged for personalized medicine 31 

tailored to African-ancestry individuals.  32 
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Main 33 

Type 2 diabetes (T2D) is becoming a major public health concern in Africa, congruent with 34 

the complex interplay of genetic, environmental and socio-economic factors 1–3. The shift 35 

from traditional to urbanized and sedentary lifestyles, accompanied by dietary changes, has 36 

contributed to this increasing prevalence4–6. According to the International Diabetes Federation 37 

(IDF), it is predicted that, globally, people with T2D will rise by 51% reaching 700.2 million 38 

by 2045 from 463 million in 2019 7. A significant increase of 143% is anticipated in Africa, 39 

with numbers expected to rise from 19.4 million in 2019 to 47.1 million in 2045 7. Hemoglobin 40 

A1c (HbA1c), also known as glycated hemoglobin 8, provides an estimate of the blood sugar 41 

level over a period of two to three months by measuring the percentage of hemoglobin with 42 

attached glucose 9,10. An HbA1c level of 6.5% or higher on two separate tests typically indicates 43 

diabetes. Levels between 5.7% and 6.4% suggest prediabetes, and values below 5.7% are 44 

considered normal 11.   45 

 46 

Proteins drive many biological functions, can be used as biomarkers of disease onset and 47 

progression, and are the primary targets of drug therapies. With advancement in technologies, 48 

high-throughput quantification of circulating proteins on an epidemiological scale is now 49 

possible. Combining proteomic and genomic data for blood-based pQTLs has led to the 50 

identification of hundreds of associations between genetic variants and protein levels 12–16. A 51 

fraction of African-ancestry individuals in diaspora have been studied in proteomics studies to 52 

date 15,17, with continental Africans largely underrepresented. 53 

To address this, we have measured 2873 proteins using the Olink PEA Explore assay in plasma 54 

samples of 163 individuals with prediabetes or type 2 diabetes (cases) (defined as HbA1c > 55 

5.7%) as well as 362 normoglycemic controls (defined as HbA1c < 5.7%) (Table 1). We have 56 

performed differential protein expression analysis between the two groups, and have 57 

undertaken proteomic genetic association analysis to identify sequence variants influencing 58 

protein levels. We have subsequently examined the role of the identified pQTLs in type 2 59 

diabetes using colocalization and Mendelian randomization analysis. 60 

 61 

 62 

 63 

 64 
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Table 1: Clinical Charateristics of study participants 65 

 Cases Controls 

Number of participants (n, %) 163(31.05%) 362(68.95%) 

Age (year) (mean ± SD) 49.82 ± 18.5 50.39 ± 17.76 

Male (n, %) 47(28.83%) 139(38.40%) 

Female (n, %) 116(71.17%) 223(61.60%) 

BMI (kg/m2) 23.4 ± 4.68 22.06 ± 4.35 

HbA1c (%) 6.46 ± 1.24 5.13 ± 0.48 

First, we studied the association between protein levels and cardiometabolic traits measured in 66 

the Ugandan cohort (supplementary 1). A total of 208 proteins were associated with HbA1c, 67 

42 with HDL, and 46 with LDL at a false discovery rate (FDR) of 5% (Figure 1). Some of the 68 

associations, such as ERCC1 found to be associated with HbA1c (Padj = 6.77x10-7) and HDL 69 

(Padj = 1.91x10-2), have been shown to affect glucose intolerance in a progeroid-deficient 70 

animal model causing an autoinflammatory response that leads to fat loss and insulin resistance 71 
18. PTPN9 was also found to be associated with HbA1c (2.96x10-6); this protein belongs to a 72 

family of protein tyrosine phosphatases (PTN) that are known to be involved in cellular insulin 73 

resistance associated with T2D 19,20. Due to the role PTPN9 plays in insulin resistance, it is 74 

currently being investigated as a potential diabetes drug target 21,22. 75 

 76 

Figure 1: Association of protein levels with clinical traits. The y axis represents the FDR-77 
adjusted -log 10(p-value) of the association and the x axis of each plot represents the effect size 78 
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estimated with linear regression. [Body mass index (BMI), Systolic blood pressure (SBP), 79 
Diastolic blood pressure (DBP), High density lipoproteins (HDL), Gamma glutamate 80 
transferase (GGT), Triglycerides (TG), Low density lipoproteins (LDL)]. 81 
 82 

Next, we sought to identify differentially expressed protein (DEP) levels between cases and 83 

controls. Using a set of 2873 unique proteins, DEPs were defined based on a 2-fold change 84 

(|log2FC| > 0.5) in expression levels at a false discovery rate (FDR) of 5%. This led to the 85 

identification of 88 DEPs. Among these, 57 were found to be significantly upregulated, with 86 

log2 fold changes ranging from 0.50 to 1.18, while 31 proteins were downregulated with log2 87 

fold changes between -0.51 to -1.17 (Figure 2A), (supplementary 2).  EDIL3 ((EGF-like repeats 88 

and discoidin I-like domains 3), associated with processes such as cell adhesion, migration and 89 

vascular development, showed the most significant upregulation with an adjusted p-value of 90 

1.2x10-13.  EDIL3 has been shown to be differentially expressed in adipose tissue of insulin-91 

resistant and insulin sensitive individuals 23,24, and to be involved in angiogenesis 25–27. 92 

Impaired angiogenesis has been implicated in the progression of diabetic retinopathy and 93 

nephropathy 28,29 . Studies also indicate that EDIL3 is involved in inflammatory responses, 94 

which are known to contribute to insulin resistance, a hallmark of T2D30. LPCAT2 95 

(Lysophosphatidylcholine Acyltransferase 2) was identified as the most significantly 96 

downregulated protein with Padj = 4.41x10-14. LPCAT2 plays a critical role in lipid 97 

metabolism, specifically in the remodeling of phospholipids in cell membranes 31,32. 98 

Downregulation of LPCAT2 may lead to changes in membrane lipids that contribute to 99 

impaired insulin signaling. The DEPs were primarily enriched in GO terms such as chemokine 100 

receptor binding, and chemokine and cytokine activity (Figure 2B, supplementary 3). For the 101 

first time, EDIL3 and LPCAT2 are identified to be differentially expressed between diabetes 102 

cases and controls.  103 

 104 
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 105 
Figure 2: Volcano plot showing the differentially expressed proteins, with significantly 106 
overexpressed proteins annotated in red and downregulated proteins in teal using linear model 107 
implemented in Limma (A). Gene sets significantly associated with DEPs at 5% FDR (B). 108 
Biological process of significantly associated DEPs at 5% FDR(C). Cellular component of 109 
significantly associated DEPs at 5% FDR using a hypergeometric test (D  110 
 111 

 112 

We then undertook pQTL analysis with up to 15.8 million imputed variants for 2873 proteins, 113 

following quality control. Using approximate conditional and joint stepwise model selection, 114 

we identified 399 independent associations following multiple testing correction at P value 115 

thresholds of P < 1.46x10−6  and P < 2.2x10−10  for cis and trans pQTLs, respectively 116 

(supplementary 4). We identified 346 (86.7%) cis-pQTLs, and 53 (13.3%) trans-pQTLs. Seven 117 

proteins had both cis- and trans-pQTLs. We also identified 4 trans-pQTLs located within the 118 

following pleitropic loci: PRSS27, CDH1, EPCAM, LPO, LEG1, TSPAN8, MUC2, SELE, 119 

IL7R, ALPI, KLK1, CDH17, CDH5, PTPRM, and SERPINI2. 120 
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 121 

Figure 3: Scatterplot of pQTL variant location against the location of the gene encoding the 122 
target protein. Each dot represents an independent variant. Cis-pQTLs are colored in red, while 123 
trans-pQTLs are colored in blue (A). 3D Manhattan plot of identified pQTLs. (x axis = proteins, 124 
y axis = chromosome location, and z axis = −log10 p-values of each association) (B).  Summary 125 
of identified pQTLs showing their functional consequences (C). Proportion of variance 126 
explained (PVE) by the conditionally independent pQTLs categorized into bins (D). 127 
Replication of conditionally independent pQTLs in the UKBB-PPP African-ancestry data 128 
highlighting replication via p values and direction of effect (E). Assessment of the relationship 129 
between the pQTLs effect sizes and minor allele frequency (MAF) (F).    130 
 131 

To determine the novelty of the pQTLs identified in the Ugandan population, we compared 132 

against pQTLs of 47 genome-wide pQTL studies (supplementary 5). We identified 6  133 

independent cis-pQTLs and 31 independent trans-pQTLs that have not been previously 134 

reported in any population (supplementary 6). We compared our pQTL findings against the 135 

African-ancestry data of the UKBB-PPP and found that 16.7% (58 out of 346) of the 136 

discorvered cis-pQTLs and all trans-pQTLs have not been previously reported (supplementary 137 

7). We tested the conditionally independent Uganda population pQTLs for replication in the 138 

UKBB-PPP. Of the 399 pQTLs, we were able to test 392 in the UKBB-PPP data. Of these, 303 139 

replicated at P  ≤ 1.2 × 10−4 (Bonferroni-corrected threshold) and 270 of these also had the same 140 

effect estimate direction (supplementary 8).  141 

 142 

Next, we performed colocalization analysis to determine shared risk variants between the 143 

pQTLs and T2D using the largest multi-ancestry genome wide association study (GWAS) 144 

meta-analysis to date 33 . We found evidence for a shared T2D risk variant (posterior probability 145 
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4 (PP4) = 95.5%) with pQTLs for the signal regulatory protein alpha (SIRPA) protein (Figure 146 

4A,B). Integrating pQTLs with T2D GWAS revealed protein-disease colocalization that may 147 

suggest the involvement of SIRPA in the pathogenesis of T2D. SIRPA is a member of the SIRP 148 

family and is expressed on the surface of most T cells and some B cells. Genetic studies have 149 

implicated SIRP signaling in diabetes pathogenesis. For example, a SNP in human SIRPγ, 150 

encoding a SIRP family receptor that also binds CD47, was found to be associated with type 1 151 

diabetes (T1D) 34. Wong et al., also identified SIRPA as a causal gene that mediates diabetes 152 

susceptibility in a nonobese diabetic mouse model 35. 153 

 154 

To examine the causal relationship between the identified cis-pQTLs and T2D, we undertook 155 

a Mendelian randomization analysis. We found 20 proteins to be causally associated with T2D. 156 

Higher levels of SPINT3, SPINK6, PNLIPRP1, NAAA, HSPB1, GGACT, ENPP7, CLEC5A, 157 

and CHIT1 were associated with increased risk of T2D, while SPINK4, SHMT1, S100P, 158 

MAPKAPK2, ECHS1, CPM, CNTN2, CNDP1, CLPS, CA5A, and ADH1B showed a 159 

protective effect on T2D risk (Figure 4C, supplementary 9). Several of these proteins such as 160 

PNLIPRP1, NAAA, HSPB1, ENPP7, CLEC5A, CHIT1, SHMT1, S100P, MAPKAPK2, 161 

ECHS1, CPM, CNDP1, CLPS, CA5A, and ADH1B  have been shown to be associated with 162 

diabetes through pathways involving lipid metabolism, inflammation, protease activity, and 163 

hypermethlation etc 36–39.  PheWAS analysis also showed that some of these proteins, such as 164 

SPINT3, SHMT1, ADH1B, and CNTN2, are associated with metabolic traits (Figure 5).  165 

 166 

Lastly, we assembled a list of 1804 postulated effector genes for T2D from 9 GWAS studies.  167 

If a gene coding for any of the proteins associated with identified pQTL in our study was found 168 

in the curated list, we defined such gene/protein as reported, if not, we classified them as 169 

previously unresolved. We identified 320 proteins previously unresolved as potentially linked 170 

to effector genes for T2D based on these GWAS signals (supplementary 10).  171 
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 172 
Figure 4:  LocusZoom plots of the colocalizing SIRPA pQTL and T2D risk variant. The top 173 

panel shows the T2D GWAS p-values, while the bottom panel shows pQTL p-values for the 174 

same region (A,B). Mendelian randomization forest plot for proteins causally associated with 175 

T2D (C).  176 

 177 
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Figure 5: PheWAS plots for  SPINT3 (A), CNTN2 (B),  SHMT1 (3), and ADH1B (D). 178 

Our work takes a first step toward addressing the underrepresentation of continental African 179 

individuals in genetics and proteomics studies. As a result, we were able to delineate the 180 

molecular landscape of 2873 unique proteins in a context that might be pivotal to understanding 181 

drivers of T2D pathophysiology, identified 58 African ancestry-specific cis-pQTLs that have 182 

not been reported previously, and identified 20 proteins that are causally associated with T2D. 183 

The generalizability of these findings may be limited for the continent, since the population is 184 

drawn from a single demographic group within Africa. There is, hence, a need to include more 185 

ancestrally diverse populations in future studies.  186 

 187 

Here, we have used the Olink targeted proteomic assay, which has some limitations, for 188 

example only a subset of the full proteome is studied, and the affinity of aptamers may be 189 

affected by missense variants. While HbA1c is a highly standardized and accurate test with 190 

lower intraindividual variability compared to fasting glucose, in African ancestry individuals 191 

using HbA1c as a blood sugar level indicator may not provide the full spectrum of the metabolic 192 

conditions associated with T2D due to the prevalence of hemoglobinopathies such as glucose-193 

6-phosphate dehydrogenase (G6PD) deficiency. In individuals with G6PD deficiency, there is 194 

increased susceptibility to hemolysis, which may lead to reduced HbA1c level potentially 195 

leading to missed T2D diagnosis 40,41. 196 

 197 

In conclusion, the novel associations and causally-associated proteins identified offer 198 

promising avenues for the development of targeted therapies and personalized treatment 199 

strategies for T2D, contributing to improved management and prevention of this global health 200 

challenge. Our findings demonstrate the utility and discovery opportunities afforded by the 201 

inclusion of African ancestry individuals in large-scale proteomic studies.  202 

Methods 203 

Study population 204 

The participants were selected from the Uganda Genome Resource (UGR), which is a subset 205 

of the General Population Cohort (GPC). As previously described 42,43, the GPC is a 206 

population-based cohort made up of over 22,000 people from 25 nearby communities in the 207 

remote Southwest Ugandan sub-county of Kyamulibwa sub-county, which is a part of Kalungu 208 

district. We selected 528 samples from the UGR based on their age, sex and HbA1c. Following 209 
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hemolysis of anticoagulated whole blood, the concentrations of total haemoglobin and HbA1c 210 

were measured using turbidimetric inhibition immunoassay-quant Haemoglobin Alc Gen. 42. 211 

In addition to the genotype QC described in 42, we used Hardy Weinberg p-value (pHWE) < 212 

1x10-6 . 213 

Association with clinical characteristics 214 

We used linear regression to determine the association between the protein levels and systolic 215 

Systolic Blood Pressure (SBP), Diastolic Blood Pressure, alanine, albumin, alkaline, aspartate, 216 

bilirubin, cholesterol, gamma-glutamyl transferase, High-Density Lipoprotein, Low-Density 217 

Lipoprotein, triglycerides, and Hemoglobin A1c. All p-values were FDR corrected. 218 

Differential Expressed Proteins and Functional enrichment 219 

We determined differential expressed proteins (DEP) between the cases and control using 220 

limma 44, and  we used Benjamini–Hochberg False Discovery Rate (FDR) for  multiple testing 221 
45 . DEP are defined as  proteins with an FDR < 5% and a fold change greater than 0.5 (|log2FC| 222 

> 0.5). To better understand the functional impact of the proteins, we used enrichr tools from 223 

clusterProfiler 46 and then used Pearson's correlation analysis to investigate the association 224 

between the expression levels of the DEPs.  STRING database 47 was used to generate protein-225 

protein interaction network for the upregulated and downregulated protein categories. 226 

 227 

Proteomics Quality Control 228 

Olink’s proximity extension assay (PEA) technology 48 was used to measure the plasma level  229 

of 2978 proteins in 528 samples across eight Olink panels. The levels of protein expression 230 

were measured logarithmically as Normalized Protein eXpression (NPX) units. We adjusted 231 

all phenotypes using a linear regression for age, sex, plate number, sample collection season, 232 

followed by an inverse-normal transformation of the residuals. During the quality control (QC) 233 

process, we excluded one sample because the PCR plate well was empty, additional 2 samples 234 

were further excluded due to missingness greater than 40%. Two samples SC1 and SC2 were 235 

also excluded, these samples were initially included by O-link for internal control process. For 236 

assay QC, 40 assays were excluded as they did not have Normalized Protein eXpression (NPX) 237 

values. Additionally, we excluded 31 assays that had fraction of assay warning greater than 238 

15%. No assay was excluded because of limit of detection (LOD). In all, 525 samples and 2873 239 

assays remained after QC and were subsequently used for further analysis. 240 

 241 
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Single-point association  242 

Covariates such as sex, age, plate, and mean protein expression per sample were regressed 243 

using R's LM function. The residuals were then translated into z-scores and used 244 

for  association analysis. We used the single-point-analysis-pipeline version 0.0.2 (dev branch) 245 

[https://github.com/hmgu-itg/single-point-analysis-pipeline/tree/dev] to perform the 246 

association analysis. GCTA version 1.93.2 beta was used to conduct a mixed linear model 247 

association (MLMA) analysis, genetic relationship matrix (GRM) function within the GCTA 248 

software was used to estimate the genetic relationships among the individuals. We then used 249 

GCTA-COJO, which is designed for approximate conditional and joint stepwise model 250 

selection to identify independent associated variants at each locus.  251 

 252 

Significance threshold 253 

Cis significant threshold was determined by first multiplying the Bayes Factors (BF) by 2875, 254 

and values over 1 were capped at 1. The BF was estimated using eigenMT 49. eigenMT 255 

calculates Meff as the number of ranked eigenvalues from the adjusted genotype correlation 256 

matrix needed to account for 99% of the detected genotype variability. Subsequently, the 257 

corrected p values were adjusted for multiple testing by applying the False Discovery Rate 258 

(FDR) method. Q-values were then calculated using the qvalue package, allowing for the 259 

identification of a subset of significant associations based on a q-value threshold of <0.05. 260 

Finally, the cis threshold for significance in pQTL analysis was determined by averaging the 261 

smallest non-significant p-value and the largest significant p-value. This method resulted in a 262 

cis P-value threshold of 1.462E-06. Trans threshold was calculated based on the effective 263 

number of variants (Neff) and number of protein traits (Meff). The Neff was derived by performing  264 

LD-pruning with the following parameters indep 500 5 0.2 in Plink 1.9 50. This resulted in  265 

an Neff of 452593 unique variants. The  Meff was calculated using the Meff function and Gao 266 

method in poolr R pckage 51. The trans P-value threshold is 2.227E-10. Variants within 1 267 

megabase (Mb) upstream or downstream of the encoding genes are referred to as cis-pQTLs 268 

while trans-pQTLs are those found beyond 1mb relative to the encoding gene. Ensembl’s 269 

Variant Effect Predictor (VEP) was used to determine the functional impact of the variants.   270 

 271 

 272 

Comparison of pQTLs to prior published data 273 

To determine the novelty of our pQTL, we used an in house-built database of previously 274 

identified signals of 46 genome-wide pQTL studies including the UKB-PPP 15.  We evaluated 275 
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novelty by identifying  novel loci and novel variants. Novel loci were defined as those with no 276 

published variants within ±1Mb of our variants. For variants at known loci, we checked their 277 

rsIDs against those previously reported. Variants with no prior matches were further 278 

conditioned in the context of other known variants at that locus. These were classified as novel 279 

if the significance of their association p-value persisted even after adjusting for other known 280 

variants. 281 

 282 

Colocalisation analysis 283 

We perform Bayesian-based colocalisation analysis using the Coloc.fast function 284 

(https://github.com/tobyjohnson/gtx) between our pQTL signals and multi-ancestry T2D 285 

GWAS summary statistics 33 from DIAGRAM database. To assume shared genetics, we used 286 

default priors and posterior probability of (PP.H4) ≥ 0.8 52. 287 

 288 
Mendelian Randomization 289 

We used the TwoSampleMR package 53 to undertake an MR analysis between the proteins and 290 

African ancestry T2D to further determine causality and the direction of effect. Wald ratio test 291 

was conducted for proteins with a single cis-pQTL variant and IVW was used as the main 292 

analysis in instances with more than 1 variants.  293 

Identification of Effector Genes 294 

To find putative effector genes for T2D, we compiled effector genes associated with T2D 295 

GWAS. This dataset was curated from nine papers published in the Type 2 Diabetes 296 

Knowledge Portal (T2DKP), resulting in a collection of 1,804 distinct effector genes. For 297 

classification purposes, proteins that were documented in our curated list were labelled 298 

"reported." Those not found on the list were classified as "unresolved." 299 

 300 

Ethics 301 

The study was approved by the Uganda Virus Research Institute Research and Ethics 302 

Committee (UVRI REC #GC/127/907) and the Uganda National Council for Science and 303 

Technology (UNCST HS2527ES). 304 

 305 

Code Availability 306 

Analyses were performed using publicly available software  307 
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