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Abstract

Mosquito ecology and behavior and malaria parasite development display marked sensitivity to weather, in

particular to temperature and precipitation. Therefore, climate change is expected to profoundly affect malaria

epidemiology in its transmission, spatiotemporal distribution and consequent disease burden. However, malaria

transmission is also complicated by other factors (e.g. urbanisation, socio-economic development, genetics, drug

resistance) which together constitute a highly complex, dynamical system, where the influence of any single

factor can be masked by other factors so its contribution to the whole pattern is highly uncertain.

In this study, we therefore aim to re-evaluate the evidence underlying the widespread belief that climate

change will increase worldwide malaria transmission. We review two broad types of study that have contributed

to this evidence-base: i) studies that project changes in transmission due to inferred relationships between

environmental and mosquito entomology, and ii) regression-based studies that look for associations between

environmental variables and malaria prevalence. We then employ a simple statistical model to show that

environmental variables alone do not account for the observed spatiotemporal variation in malaria prevalence.

Our review raises several concerns about the robustness of the analyses used for advocacy around climate

change and malaria. We find that, while climate change’s effect on malaria is highly plausible, empirical evidence

is much less certain. Future research on climate change and malaria must become integrated into malaria

control programs, and understood in context as one factor among many affecting malaria. Our work outlines

gaps in modelling that we believe are priorities for future research.
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Introduction 1

Malaria epidemiology, transmission, ecology and control are complex. The distribution of malaria, and its 2

transmission intensity and seasonality have been shaped by a range of factors: climate [1–3], mosquito ecology 3

and biogeography [4], malaria control [5], economic development [6], human genetics [7, 8], and history [9]. 4

Since the start of the 20th century, malaria incidence has declined over time, albeit unevenly [10, 11]. The 5

geographical range of malaria has substantially contracted in recent times, and prevalence has dropped in 6

places where it remains endemic [3]. While malaria has declined due to economic development and improved 7

control strategies (e.g. elimination programs, improved healthcare, medical interventions), other factors push 8

in the opposite direction. Malaria incidence has seen large changes caused by: drug resistance; changes in 9

first-line therapies; healthcare system strengthening and degradation; economic development; efforts to scale up 10

intervention coverage; resurgent outbreaks associated with the evolution of insecticide resistance; and pauses in 11

malaria control [12–14]. These changes are often abetted further by weather or land use changes. Therefore, 12

how these factors collectively drive malaria incidence is far from straightforward. 13

Despite advances in control, malaria remains a major cause of death and disease, especially in sub-Saharan 14

Africa. Since malaria parasites are transmitted by mosquitoes, and mosquito ecology and behavior are affected by 15

the environment, the interactions between weather, mosquito ecology, climate change, and malaria transmission 16

have been of longstanding interest [1, 15, 16]. Here, we review and evaluate the evidence that has shaped 17

science and advocacy concerning climate change and malaria, with a focus on the broad sources of uncertainty 18

underlying this evidence. We explain why statistical studies tend to find that environmental variables alone do not 19

explain the total variation in malaria prevalence over space and time. Environmental variables primarily define a 20

population at risk rather than actual current transmission intensity. Taken together, we explain how the influence 21

of climate change on future malaria transmission is far less certain than previously stated. 22

We consider two kinds of studies that have examined the relationship between climate change and malaria. 23

First, we consider studies of potential malaria transmission, which project changes in malaria transmission 24

based on the link between environmental variables and mosquito behavior or ecology. In such studies, effects 25

on malaria transmission have been modelled using a formula for the basic reproductive number, R0, or vector 26

capacity [17,18] or using a mathematical model of malaria transmission dynamics. Further, the data used to 27

make projections under various climate change scenarios are based on observations of mosquitoes raised under 28

controlled conditions in a laboratory, in a semi-field environment, or in carefully controlled settings. 29

Second, we consider regression-based studies that look for associations between environmental variables 30

and malaria prevalence. These studies have generally relied on large data sets curated by the Malaria Atlas 31

Project [5]. We then use a simple regression to investigate the extent to which environmental variables can 32

explain observed variation in malaria incidence by location over time. 33

While each type of analysis are valuable, they also suffer from limitations that render them incomplete. For 34

example, a major limitation of any study of malaria and temperature over time is the lack of covariates describing 35

treatment failure associated with anti-malarial drug resistance. The evolution of anti-malarial drug resistance 36

in Africa in the 1990s is a well-documented phenomenon [19] that has proven difficult to measure in terms of 37

overall efficacy. In this piece, we describe how these limitations dramatically weaken the evidence supporting a 38

dominant link between climate change and malaria in Africa. Critically, highlighting the risks of increased malaria 39

due to climate change can be misleading, in that downstream consequences of climate change are important, 40
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but also multifaceted and nuanced. 41

Malaria is now a heavily managed disease, and if climate change is relevant for management, then methods 42

to attribute the effects of climate change, distinct from the effects of other factors affecting malaria, must 43

be considered for future strategies. In this piece we argue that it is overall weather changes, rather than 44

rising temperatures, that most influence vector density, and that pose a challenge to malaria control programs. 45

Furthermore, malaria transmission has a changing baseline that varies with malaria control. Despite this complex 46

interplay of factors, the task of coping with climate change ultimately falls on malaria control programs. Therefore 47

funding is needed to help develop surveillance, information systems, early warning systems, and capacity for 48

effective outbreak responses. Regardless of the impact that climate change may have on malaria, it should not 49

distract from the central task of reducing malaria burden, such that research on climate change and malaria 50

should serve those goals [20]. Future research on climate change and malaria must become integrated into 51

malaria control programs and understood in context as one factor among many affecting malaria. 52

Potential Transmission 53

Many studies of climate change and malaria are based on basic theory for malaria transmission dynamics 54

and control. These include simulation studies that use mathematical models of transmission, and analyses of 55

potential transmission based on Macdonald’s formula for the basic reproductive number for malaria, R0. Within 56

malaria, R0 describes the number of human malaria cases per human malaria case [17,18,21,22]. Other studies 57

of potential transmission use a formula for vectorial capacity, which was derived from the formula for R0 shortly 58

thereafter [23]. Macdonald’s formula was first developed in the 1950s in a set of papers that synthesized the first 59

few decades of work in malaria epidemiology and medical entomology [17,24–31]. A central question addressed 60

by this mathematical model was the critical density of mosquitoes required to sustain transmission. Macdonald 61

used the formula to understand endemic malaria, and he used the formula to weigh the relative importance of 62

various parameters describing transmission [17]. The formula would serve as a threshold criterion in simple 63

models of transmission: transmission would be sustained if R0 > 1. Therefore, to eliminate malaria, mosquito 64

population density would have to be reduced by factor that exceeds R0. In Macdonald’s papers, the formula 65

was derived from standard metrics (e.g., the human biting rate, sporozoite rate, and thus the entomological 66

inoculation rate [EIR], to malaria prevalence and incidence) that had been developed to measure transmission. 67

Macdonald’s analysis reframed the question of mosquito-borne transmission around a few specific parameters, 68

and drew attention to the important role played by mosquito survival [26]. 69

To develop theory for vector control, Garrett-Jones isolated the purely entomological parameters in the formula 70

for R0 and called the new formula “vectorial capacity” (VC, see Box 1) [23]. The formula, separated from the 71

rest of the formula for R0, computes transmission potential as if humans were perfectly infectious, avoiding the 72

difficult issue of human infectiousness. In doing so, Garrett-Jones ignored differences among vector species in 73

their ability to host the parasites (now referred to as “vector competence”). VC describes a daily reproductive 74

number, the number of infective bites that would eventually arise from all mosquitoes that would blood-feed 75

on a single, perfectly infectious human on a single day [23]. Macdonald had originally derived the formula 76

for R0 from mathematical formulas for the sporozoite rate, the human biting rate, and their product the daily 77

entomological inoculation rate (dEIR) – the number of infective bites received per person per day [17,32]. The 78
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concepts and mathematical formulas suggested a basis for estimating VC from dEIR: the two main differences 79

are the net infectiousness of humans (which could be extended to include vector competence), and mosquito 80

superinfection [18,33]. 81

In mathematical models, the concepts of EIR and VC (or some version of the equations from which they 82

were derived) play a key role in understanding transmission intensity. The consequences of transmission are 83

then explored in models that couple mosquito ecology, mosquito infection dynamics, and models of human 84

malaria epidemiology, including infection and immunity. These mathematical models have evolved substantially 85

since Macdonald. Mathematical models of malaria gain credibility through rigorous testing, and while the 86

Ross-Macdonald model remains useful as a way of understanding the basic process of transmission, early 87

attempts to use it during field trials exposed its limitations [34]. After Macdonald, mathematical models were 88

extended to look at immunity [35,36], treatment with antimalarial drugs and chemoprotection [37], heterogeneous 89

transmission [38–40], mosquito ecology [36] and dozens of other issues. Models for malaria infection and 90

immunity have grown in complexity, and they have become embedded in comprehensive individual-based 91

simulation models [41,42]. Mathematical models have been used to guide malaria policies, including integrated 92

malaria control. 93

Some of the first publications on climate change and malaria employed computer simulation models based on 94

either simple extensions of the Ross-Macdonald model, or based on the vectorial capacity formula [22,43–46]. 95

In the following, we examine the use of these models and concepts to study climate and malaria. 96

Climate and Vectorial Capacity 97

The formula for vectorial capacity can be understood as a concise quantitative summary of the potential for

malaria transmission (Fig 1, Box 1). Parameters in the formula mosquito blood feeding on humans, survival,

and ecology. Parasite transmission occurs during mosquito blood feeding, and a mosquito must take at least

one blood meal to get infected, and then one or more bites to transmit parasites between humans: parasites

consumed in human blood during a blood meal infect a mosquito; the parasites develop and mature; and later,

human malaria parasites are transmitted from mosquitoes to humans in the bite via saliva. After rewriting the

formula for vectorial capacity, this interpretation is clear: upon emerging, one human blood meal is required to

infect a mosquito, and after surviving long enough for the parasites to mature, one (or more) additional bites

could infect humans (Box 1). We can think of vectorial capacity as having two parts – one for adult behaviors and

demography, and another for mosquito population dynamics. Mosquito population dynamics are affected by the

same adult behaviors as transmission – blood feeding and demography – since adult mosquitoes provision eggs

after blood feeding. All these factors affect the number of times mosquitoes will bite or blood-feed on a human

during its lifespan. The formula makes simple assumptions that can help to contextualize mosquito behaviors

and ecology and study their effects on transmission. Our discussion will break VC into two parts: the capacity of

an adult mosquito to transmit, starting after emergence:

A =
f2q2

g2
e−gn

and processes affecting mosquito population dynamics through a population dynamic feedback involving egg

laying. Egg laying can also be understood through the capacity of an individual adult mosquito to lay eggs, which
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Fig 1. A diagram of 1) vectorial capacity as a summary of transmission potential (see Box #1) involving two
parts: the emergence rate of mosquitoes, per human (λ); and the capacity of each individual mosquito to
transmit parasites (f2q2e−gn/g2.) 2) Some of the likely effects of weather; and 3) a ranking of parameters by the
number of ways they affect transmission. The box around mosquito aquatic ecology (L), including egg laying by
adults and emergence, indicates an important source of variability in malaria transmission that is also affected by
weather in ways that often depend on the local context.

we assume is proportional to the total number of blood meals taken (γ ∝ f/g). All the factors affecting mosquito

population dynamics are reduced to a simple formula

M = λ

(
γ

(
f

g

))
This formula is deliberately vague because, unlike the formula for adults, it is not clear that it is possible to write 98

down any formula that would work across all settings. This relationship is a great source of uncertainty [47]. 99

Potential Transmission by Adults 100

Many studies have examined the role of climate on malaria by computing an effect size, a quantitative measure

of the increase in the potential for malaria transmission. If a given parameter is related to temperature over

time, T (t). Then we could write down R0(T (t)), and compute an effect size Z. Alternatively, many studies have

modified models for malaria transmission dynamics to simulate forcing by temperature (or other variables). For

example, if mosquito survival is a function of temperature, g(T (t)), then a change in temperature would result in

a change in R0 by a factor Zg, given by

Zg =
e−g(T (t))

g(T (t))2
× g(T (0))2

e−g(T (0))
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We call Zg the effect size on potential transmission associated with temperature-driven changes in mosquito 101

survival. Using the formula for vectorial capacity, it is possible to compute additional changes in potential 102

transmission associated with feeding rates, or the extrinsic incubation period (EIP, i.e. the mean time taken for 103

malaria parasites to undergo development within the mosquito before they are infectious to humans), n(T (t)). 104

The total effect size on potential transmission by adult mosquitoes would be a product of changes in each one 105

of the bionomic parameters. Ideally, a total effect size would consider the effects of all changes caused by any 106

relevant environmental variables. An advantage of these studies is that it is easy to communicate the results: an 107

effect size of 1.5 can be reported as a 50% projected increase in potential transmission. 108

The estimated effects of environmental variables on parameters are based on field studies or controlled 109

experiments that have measured the effect of changes in bionomic parameters on adult mosquito behavior 110

or demography, and parasite development rates while in the mosquito [48]. Temperature and humidity have 111

been consistently identified as factors affecting malaria transmission by adult mosquito populations. By the time 112

Macdonald wrote his synthesis in 1952, dozens of studies had already measured the EIP for malaria parasites in 113

relation to temperature [26,49]. More recent data have looked in closer detail at the relationship between the EIP 114

and temperature in An. gambiae and in An. stephensi [50]. Lab studies have examined effects of temperature 115

and humidity on lab reared mosquitoes [51]. 116

It is also useful to consider temperature through its interaction with humidity, and in particular relative 117

humidity [51]. Relative humidity describes how much moisture the air holds relative to its maximum. The hotter 118

the temperature, the more humidity the air can hold. There are strong associations between relative humidity and 119

malaria transmission and relative humidity also affects parasite and pathogen development within mosquitoes. 120

Furthermore, relative humidity affects thermal performance curves of both mosquitoes and pathogens, leading to 121

complex variation in the thermal optimum, limits, and operative range. 122

Despite disagreements on specific details, the studies agree on a set of core messages [52]: mosquito daily 123

survival and blood feeding rates, and the EIP all reach an optimum somewhere between 25 and 30 degrees. The 124

optimum depends largely on relative humidity. Unlike temperature, mosquito survival and blood feeding rates 125

tend to increase consistently with relative humidity. 126

Since climate would mainly affect transmission by mosquitoes (rather than the behavior of humans or human 127

infections), the information in Ross-Macdonald simulation models is, in essence, all conveyed by the formula for 128

vectorial capacity. The effects on potential survival propagate measures of change through formulas derived 129

from vectorial capacity. However, these formulas typically overlook alterations in describing vectorial capacity, 130

or, depending on which factors are neglected, consider only partial versions of it, in order to assess changes in 131

potential transmission. The question that these studies addressed was how environmental variables would affect 132

vectorial capacity [53]. 133

Climate and Mosquito Populations 134

The effect of rainfall on malaria transmission is a major concern for understanding malaria transmission, with 135

potentially important feedbacks to weather and its effects on adult mosquito ecology. Since rainfall creates 136

standing water that serves as mosquito habitat, rainfall can create new habitats and an opportunity for mosquito 137

populations to grow exponentially. The effects of changing rainfall patterns may be large, but they are also 138

highly unpredictable. Short term rainfall itself is unpredictable, and longer term climate projections for rainfall 139
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are also highly uncertain. Further, the effects of rainfall on mosquito ecology are locally idiosyncratic, mediated 140

by hydrology, terrestrial ecology, and many other factors. This context dependence means that, in effect, the 141

relationship between rainfall and transmission may be specific to each locality. Within a locality, rainfall can drive 142

different patterns for each one of the local vector species populations. 143

The degree to which rainfall affects malaria transmission dynamics is related to the all the factors that 144

regulate mosquito populations, including the availability and quality of mosquito habitats. Mosquito habitats could 145

include any concavity that could be filled by rainfall or subterranean water flows to become habitats for immature 146

mosquitoes. However, it is not necessarily the case that more rain will lead to more habitat and subsequently 147

more mosquitoes. First, the effects of rainfall are mediated by hydrology. Second, the effects of rainfall are 148

affected by the temporal distribution, i.e., the times between successive rainfall events and their magnitude. Third, 149

the aquatic mosquito populations are affected by a large number of biotic interactions, including competition with 150

other mosquitoes for resources. The effects of climate change are thus likely to be highly context dependent and 151

localized in both time and space. In contrast to temperature, which varies smoothly between nearby locations, 152

rainfall is also likely to have high spatial variation with differing magnitudes, even in nearby localities [54]. 153

The relationship between rainfall and malaria transmission may not be monotonic, i.e., more rainfall does 154

not always equate to more malaria. Increased egg laying in a crowded habitat could increase crowding, delay 155

development, and lower the number of adults emerging, for example. While rainfall can increase the number 156

and size of breeding sites, an excess of rainfall can wash out breeding sites [55]. The non-monotonicity of this 157

relationship is further compounded by the observation that rainfall is a nonequilibrium relaxation process, in 158

contrast to temperature. 159

Rainfall itself is highly unpredictable. Non-equilibrium processes like rainfall are scale free and best described 160

by simple power laws that characterize the density and occurrence of rain events as well as drought periods. The 161

consequence of this dynamic is that rainfall events can be of enormous size in a very short period, followed by a 162

prolonged drought, exhibiting complex and often unpredictable fluctuations over time. In this context, the average 163

amount of rainfall in a period is a misleading indicator of the true dynamics. (Earthquakes are another example of 164

a non-equilibrium relaxation process [56].) In the context of climate change, warmer oceans increase evaporation. 165

When moisture-laden air moves over land or converges into a storm system, it intensifies precipitation. Rainfall is 166

therefore expected to increase with climate change, but because precipitation dynamics are scale free (power-law 167

distributed), increased rainfall is expected to result in a larger incidence of both floods and droughts - each of 168

which will have a reductive effect on malaria transmission. Furthermore, at a macroscopic scale, rainfall affects 169

the availability of resources that mosquitoes need in order to complete their life cycle, making predictions based 170

on climate change even more challenging. 171

Sensitivity, Variability, and Uncertainty 172

An important question is how much we should be concerned with climate change and malaria through its effects 173

on adult mosquitoes, through mosquito ecology, or through both. One approach to this has been mathematical – 174

to examine the sensitivity or elasticity to parameters [57]. While many studies have emphasized the importance of 175

adult mosquito survival and blood feeding, a cursory examination of the data suggests that most of the variability 176

in malaria transmission intensity is related to mosquito ecology [58]. The primary data come from studies that 177

have estimated the EIR. Notably, the EIR is computed as the product of two metrics: the human biting rate (HR), 178
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and the sporozoite rate (SR). The annual EIR ranges from very close to zero up to more than a thousand bites 179

by infectious mosquitoes, per person, per year [59]. Most of the variability in the aEIR is attributed to differences 180

in the HBR, not the SR. 181

The mathematical approach, one that emphasizes sensitivity to parameters, had suggested that transmission 182

should scale only linearly with adult mosquito population density, but this ignores the fact that mosquito ecology 183

is itself a highly non-linear system. A single adult female mosquito could produce thousands of offspring over a 184

few days, leading to highly explosive bouts of malaria transmission. 185

Complexity, Scaling, and Malaria Metrics 186

To understand the effects of any change in potential transmission, some soft of mathematical construct is 187

needed to understand how malaria in humans responds to changes in malaria transmission intensity. These 188

models emphasize non-linearities and complexities in the relationship between exposure to the bites of infectious 189

mosquitoes, the metrics used to measure parasite infections in populations, and malaria. What would it mean if 190

potential malaria transmission doubled? 191

Rigorous studies have used models to compare patterns observed in studies of malaria, particularly those 192

that have measured malaria in two or more ways at the same place and time. The relationship between the 193

EIR and the average PR is strongly non-linear [60, 61]; the PR varies by age, sex, season, travel, and drug 194

taking. While the EIR has been used as a measure of exposure, the association with the estimated force of 195

infection (FoI), malaria incidence is also strongly non-linear and it also varies by age [62,63]. Malaria immunity 196

develops with age and exposure, and disease is concentrated in young children. Changing transmission intensity 197

is expected to shift the burden to older ages, but the expected overall changes in burden are not simple linear 198

responses to changing mosquito densities or to overall transmission intensity. 199

An important consequence of these non-linearities is that despite the mathematical possibility of doing so, 200

there is enormous uncertainty about the how a change in one parameter or metric would lead to changes in 201

another [63]. To put it another way, there is no reason to believe that doubling the VC / EIR would lead to a 202

doubling in mortality, or that a second doubling in VC / EIR would have the same effect as the first. These 203

non-linearities also make it difficult to make credible projections about the changing burden of malaria even if 204

there were complete certainty around expected changes in transmission. 205

Thresholds, Importations and Heterogeneity 206

Models and Macdonald’s threshold condition have focused some attention on concerns that a change in potential 207

transmission would bring about a qualitative change in malaria transmission if R0 < 1 before climate change, 208

but R0 > 1 afterwards. While Macdonald’s formula for R0 was meant to describe a threshold condition for the 209

establishment of endemic transmission, the predicted effect of crossing a threshold required for local transmission 210

are substantially dulled by malaria connectivity. Malaria transmission can be sustained by malaria importation 211

in mobile human populations. In realistic models with spatial dynamics, threshold conditions are modified by 212

heterogeneity, and transmission is dispersed widely by movement of humans and mosquitoes [64]. In most 213

places where R0 < 1, the presence of malaria is sustained by malaria importation, so crossing a threshold would 214

not lead to a qualitative change. 215
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Three important factors modifying threshold conditions are: the heterogeneous spatial distribution of 216

mosquitoes; the heterogeneous spatial distribution of humans; and the heterogeneous temporal distribution of 217

mosquito transmission potential. Consider a simple conceptual model for a time-varying reproduction number 218

R0(t) that is piecewise constant (i.e. a step function), where seasonal endemic transmission is characterised 219

by periods where R0(t) > 1, and other periods where R0(t) ≤ 1. However, empirical malaria data is highly 220

heterogeneous [58], and estimates of reproduction numbers exhibit roughness in their functional form over 221

time [65] and space [3,66]. 222

Mosquito populations and malaria transmission are highly heterogeneous on landscapes, and parasite 223

populations are connected by movement of infected humans and mosquitoes [64]. So while Macdonald’s formula 224

R0 > 1 is an important threshold concept for local malaria transmission in an isolated population, it is best 225

regarded as an informative pseudo-threshold condition [64]. This is modified by heterogeneity since it will persist 226

through malaria importation and onwards transmission in chains that habitually fade out [67–70]. 227

On islands, the non-linearity associated with variability in transmission potential around a threshold is dulled 228

substantially in places with malaria importation [66]. In other settings, malaria is found in places that could not 229

sustain transmission [71] if they were disconnected from surrounding populations. Because of these source-sink 230

dynamics, too much attention has focused on the possibility that changes in potential transmission would cross 231

some particular threshold. The high temporal variation in R0(t) suggests that the factors that contribute to R0(t) 232

are themselves highly heterogeneous. As noted above, climate change is expected to yield extreme events that 233

increase variation in R0(t). However this is likely to be highly unpredictable and the effects could both increase 234

and lower R0(t). Therefore a simple relationship between climate change and the incidence of malaria is unlikely. 235

Predictions 236

An important question is how much global warming is likely to change malaria in sub-Saharan Africa, which 237

carries most of the burden of malaria. Despite uncertainty about the shape of R0(T ), the effects of global 238

warming on malaria in Africa are likely to be small, at least given that temperatures in Africa are already high 239

enough to maximise spread. Indeed, the temperatures across much of sub-Saharan Africa are near the optimum, 240

where a change in temperature (T ) has very little effect on potential transmission, insofar as we are able to make 241

rational guesses based on such extrapolations. In fact, a large fraction of Africa is above the optimum, such that 242

an increase in temperature would see potential declines in malaria transmission by adult mosquitoes. 243

Most studies of potential transmission have come to similar conclusions about climate and malaria, particularly 244

in Africa where the burden of malaria is greatest. First, since large fractions of Africa are already at or near 245

optimal temperatures required for transmission, global warming is likely to reduce transmission in large areas that 246

are above the optimum; cause almost no change in areas that are near the optimum; and increase transmission in 247

areas Second, the predicted effect sizes on potential transmission are small compared with the natural variability 248

in malaria transmission. Third, the predicted effect sizes of climate on potential transmission are much smaller 249

than the potential reductions in transmission that can be achieved through vector control. Fourth, the greatest 250

changes in malaria transmission are likely to come through changes in rainfall [2]. 251
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Regression 252

A common approach to climate change and malaria has come through regression analyses [3,5,72,73]. Previous 253

studies have used such regression analyses to interpolate data across space and time to understand change, 254

as well as the drivers of change [5]. In this section, we perform a simple regression analysis. Using detailed 255

satellite imagery from a range of different satellites, data can be collected on temperature and precipitation etc. 256

and crucially, these can be matched to the location and time (month) of the malaria observations, which we 257

denote as y. Note these malaria observations were adjusted for age (2-10 years of age) and diagnostic type [74]. 258

Let the resulting basis matrix of covariates be given by X. A model-based statistical approach is the current 259

state-of-the-art when modelling this type of data, and represents a suitable data generating process. Loosely, a 260

statistical model can be expressed using the following linear equation 261

y ∼ βXT + Z(x, y, t) (1)

where β is a vector of coefficients and Z is a zero mean Gaussian process with a space-time covariance function 262

that denotes the residuals. 263

Intuitively, this model attempts to explain PfPR (Plasmodium falciparum parasite rate) as a function of a set 264

of environmental covariates (X). A question of interest is how much of the data can be explained as a linear 265

function of the environment? If the predictive power of this linear function is high, then an argument can be 266

made that a simple relationship between temperature and rainfall and malaria prevalence exists. The Z term 267

attempts to explain any residual pattern that cannot be explained by the covariates but is structured and not 268

simply random noise. Z does not tell us what causes this unobserved structure; it could be a wide range of 269

factors, including nutrition, culture, mosquito ecology and dispersal, or human mobility and travel. We fit this 270

model using Approximate Bayesian inference (the Laplace approximation [75]) such that the resultant model 271

balances over and under fitting. 272

For a simple illustration, we consider two major climate factors: temperature suitability and average rainfall. 273

Temperature suitability [76, 77] is a dynamic biological mathematical model that incorporates temperature 274

dependency in the malaria transmission cycle, and then uses satellite data on temperature to estimate a 275

suitability index. Rainfall is measured using CHIRPS (Climate Hazards Group InfraRed Precipitation with Station 276

data), which estimates the average rainfall in a month from rain gauge and satellite observations. It is possible to 277

match temperature suitability index to the month and year of malaria observations, and to match rainfall to the 278

month (averaged over years) to account for minor aspects of seasonality. 279

Outliers such as heatwaves, droughts and floods will not be adequately captured using these data, but major 280

variations in the spatial and temporal distribution of the environment factors relevant to the mosquito should be 281

captured. Using the large Malaria Atlas Project dataset on malaria parasite rate surveys, where each data point 282

is a sample of the number of parasite positive individuals out of the total, it is possible to match temperature 283

suitability to the specific latitude, longitude, rainfall, month and year (2001-2022) to the specific latitude, longitude, 284

month, with the years averaged due to data paucity. To facilitate consistency, the data on parasite rates are 285

adjusted for age [78] and diagnostic time [74]. 286

Malaria parasite rate data are proportions, thus bounded between zero to one. To simplify regression, we 287

transformed these data via the empirical logit into a Gaussian scale. Once again, we call these observations 288
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y. Consider three simple models, explaining parasite rate observations by (i) a constant model yx,y,t ∼ I, 289

(ii) a linear model with temperature suitability and rainfall y ∼ I + βTXx,y,t, where Xx,y,t is the temperature 290

suitability index and rainfall at the matched locations and times of the malaria parasite rate observations, and (iii) 291

y ∼ I + βTXx,y,t + Z(x, y, t), where again Z is a space-time random field that captures structure in the data. 292

We evaluate model performance by computing the mean absolute percentage error and the correlation on the 293

original untransformed parasite rate scale. 294

The mean absolute error of simply fitting a constant intercept to the data is 17% with a correlation of zero. The 295

model with temperature suitability does explain variation with a mean absolute error of 16.5% and a correlation 296

of 0.2. The Gaussian process model with temperature suitability yields a mean absolute error of 9% and a 297

correlation of 0.8. This difference is substantial, and while this example is simplistic, and by no means rigorous, it 298

reveals that the overwhelming bulk of the spatial distribution of malaria and its change in time over the past 2 299

decades is negligibly explained by temperature and its biological effect on the mosquito. Figure 2 shows the 300

predictions for the linear and Gaussian process model along side the raw data. We see that the model with 301

just temperature suitability and rainfall is unable to capture the large variations in parasite rate, and creates 302

predictions within a narrow band (Figure 2 top right) and the fine grained spatial variation only predicts a limited 303

variation in PfPr (Figure 2 bottom left). In contrast, the Gaussian process (Figure 2 bottom right) is an excellent 304

fit to the data, both in terms of spatial pattern but also in predicting the full range of variation in PfPr. These 305

results reinforce that while climate plays a pivotal role in defining the population at risk, simple relationships are 306

not the primary driver in the dynamic changes of infection. 307

Gaps in modelling 308

While substantial efforts have been made to model malaria dynamics over time [41], some important gaps 309

remain. In most places, malaria transmission must be understood as a changing baseline that has been 310

modified by malaria control. While many studies have looked at climate and its affects on baseline malaria, 311

and many studies have examined vector control and malaria, few have examined both climate and vector 312

control and their interactions. In developing a research agenda for climate and malaria, it is thus critical to 313

develop an understanding of climate and malaria that does not ignore the role of malaria control and other 314

exogeneous variables affecting the baseline and confound efforts to understand malaria in context. While many 315

of these factors are easy to list, such as demography, changing housing quality, evolution of drug and insecticide 316

resistance, economics, politics and logistics, any analysis including these from the past is hampered by a lack of 317

consistently available data. 318

Since 2000, malaria has been profoundly changed by mass distribution of long-lasting insecticide treated nets, 319

widespread access to artemisinin combination therapies (ACTs), and local indoor residual spraying [5]. While 320

the effects of malaria have been considered in some analyses of malaria over the past 25 years, there is no 321

epoch when effects of malaria control and its changing patterns over time can be ignored. Efforts to understand 322

the effects of vector control now are hampered by a lack of knowledge about local vector species mixes, vector 323

ecology, and insecticide resistance. Efforts to understand the effects of malaria control exerted by health systems 324

must consider effects of antimalarial drugs, the evolution of drug resistance, and changing drug policies. From 325

the late 1940s, when chloroquine was introduced as an affordable drug for malaria, malaria parasites and malaria 326
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Fig 2. (top left) PfPR, the P. falciparum prevalence or parasite rate, from the Malaria Atlas Project Database.
(top right) Linear model with temperature and rainfall with the colour scale ranging from 0-1 (bottom left) Linear
model with temperature and rainfall with a restricted colour scale to show variation (bottom right) Gaussian
process process with linear mean function of temperature and rainfall

transmission have been modified by case management with anti-malarial drugs. The effects of case management 327

on malaria transmission, malaria cases, and malaria prevalence depend on malaria transmission intensity, but 328

there are some strong indications that chloroquine use profoundly changed the epidemiology of malaria. The 329

evolution of chloroquine resistance contributed health crisis in Africa from around 1987, the year chloroquine 330

resistant parasites were first detected in Africa. Evolution of chloroquine resistance became a public health crisis 331

that persisted until countries changed drug policies. There is some evidence that malaria cases and prevalence 332

increased throughout the 1990s, so any analysis of malaria patterns spanning that period would need to account 333

for the evolution of drug resistance. 334

Data on socio-economic factors, climate, local environmental conditions are needed to understand the effects 335

of landscape and topography on malaria transmission within any given region. Human mobility patterns, land 336

use changes, migration effects as well exposure to malaria vectors are usually used as in malaria modelling; 337

however, data for all these can prove difficult to acquire. For example, if there is ongoing military conflict in a 338

particular region, population numbers can change drastically in a short period of time, and this needs to be 339

modelled. However, acquiring exact estimates is almost impossible, and only approximations can be made. Even 340

in periods of relative stability, if there is limited infrastructure present in a region, population numbers will still be 341

difficult to extrapolate. For example, the last census in the Democratic Republic of Congo was held in 1984. So, 342

official numbers are not available over the last 40 years. Methods for estimating census data are used to a great 343

extent and will continue to improve and contribute greatly in this field in the coming years. 344
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While there has been an enormous effort to assemble time-series data describing weather over time at 345

a fine spatial grain, data describing malaria and other exogenous variables must be developed and critically 346

examined before associations between malaria and climate can be deemed causal. The research agenda for 347

climate and malaria can not proceed in any meaningful way if it is not integrated into studies that are focused on 348

understanding malaria transmission caused by many factors in its local context. In Africa, expectations about 349

the effects of changing climate must acknowledge that any effects attributed to weather could be caused by 350

something else. These effects will play out in their local context, and these must be learned from data describing 351

malaria. Long time series describing malaria cases is available from sites where malaria research centers were 352

established and from some private health facilities, but most data describing malaria in context comes from 353

national malaria surveillance programs. At the same time, any response to climate and malaria will be managed 354

by malaria control programs. To make progress, the study of malaria and climate must become a part of malaria 355

analytics to support malaria policies, either done by or in collaboration with malaria programs. 356

Malaria Seasonality 357

Climate has been one determinant of the seasonal patterns of malaria transmission, and changing climate (e.g. 358

drought) has been associated with long-term changes in malaria. Recent satellite data show large-scale changes 359

in the geographical patterns of seasons [79]. Multiple studies have highlighted the impact and association of 360

seasonality in rainfall and weather driving waves of malaria transmission [80]. These studies demonstrate that 361

ordinary fluctuations in temperature and rainfall play some role in setting the seasonal pattern, and so these 362

seasonal patterns are likely to be disrupted by climate change. The study of weather and its effect on seasonality 363

in context provide a good basis for understanding how these play out in the local context, after being modified by 364

hydrology, habitat dynamics, mosquito ecology, and other factors. This disruption caused by climate change is 365

not expected to be geographically homogeneous, with some regions benefiting over others. Climatic changes 366

can be studied as a kind of natural experiment making it possible to learn about the local baseline and factors 367

affecting it. 368

One seasonal factor that may be overlooked is seasonality in malaria that is caused by human-related factors, 369

which is not expected to change as abruptly as environmental factors. Human-related seasonality includes 370

seasonal labor migrations, cultural events and gatherings, and seasonal travel (both business and recreational), 371

which play a substantial role in propagating waves of malaria transmission, particularly in lower transmission and 372

elimination settings. 373

Malaria control programs study the relationship between environmental variables and malaria for several 374

reasons, including monitoring and evaluation, and development of early warning systems for malaria outbreaks. 375

There is thus a sound basis for integrating weather data and the study of malaria seasonality into malaria 376

analytics for malaria programs. 377

Drug resistance 378

The evolution of drug resistance is a critical factor influencing malaria transmission and prevalence. The low 379

cost, high demand, and widespread use or antimalarial drugs have in combination led to strong selection on 380

the parasite for drug resistant strains. Meanwhile, drug resistance is possible with relatively modest molecular 381
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change. One example is the small amount of change needed for chloroquine resistance; four amino acid 382

substitutions, in a single gene called pfcrt (P. falciparum chloroquine resistance transporter) confer resistance to 383

chloroquine-based antimalarial drugs [81]. While pfcrt is a genetic marker making it possible to track chloroquine 384

resistance now, prevalence of pfcrt is not widely available from the 1990s, when chloroquine resistance was 385

causing a public health crisis. There are now some markers for resistance to artemisinins, but markers are 386

lacking to track evolution of resistance to some of the partner drugs in ACTS. 387

Importantly for modeling malaria prevalence, it is the severe selective constrains that control strategies place 388

on the pathogen that dominate the emergence of drug resistance. Perhaps surprisingly to non-geneticists, strains 389

that are drug resistant are actually inferior in their natural environment, given that they involve relatively rare 390

combinations of molecular changes [82]. This inferiority of drug resistant strains means that reduced use of 391

antimalarial drugs leads to the loss of drug resistance after selection for resistance by drug use declines. Since 392

drug resistance is such a crucial factor in driving malaria prevalence, strategies that limit the use of antimalarial 393

drugs to symptomatic cases will maximise their efficacy [83]. The misuse of low-cost antimalarial drugs will 394

conversely increase the risk that drug resistance emerges, and on the contrary the development of new types 395

of drugs can dramatically drop prevalence in the medium term. The major impact of drug development and 396

resistance on prevalence has been evident for both chloroquine in the second half of the 20th century and 397

artemisinin-based combination therapies in the last two decades [84]. 398

There is a hypothetical link between antimalarial drug use, evolution of resistance, and climate change, where 399

the climate mediates the logistics and accessibility for drug administration. Yet ultimately, it is drug use that 400

selects for drug resistance, as opposed to climate directly [85]. Alternatively, novel climatic conditions might 401

tend to disproportionately benefit the emergence of drug resistant strains, although the biological mechanism of 402

this has not been described. Extensive genetic surveillance is likely to shed light onto the immunological and 403

environmental conditions that benefit drug resistant strains, and climate could be involved in this mix of factors. 404

More immediately, genomic surveillance can play an important role for optimising drug administration, by helping 405

map the emergence and spread of drug resistant strains [83]. 406

Conclusion 407

Our work raises several concerns about the robustness of the analyses used for advocacy around climate change 408

and malaria. Accuracy, weak evidence, and complexity have been challenges for studies of global warming and 409

malaria, because effect sizes of temperature are easily mimed or masked by other environmental factors, vector 410

control, anti-malarial drug use, healthcare systems, land use changes, economic development, and evolution of 411

drug and insecticide resistance. Given the complexity of malaria epidemiology and transmission, concerns about 412

global warming and climate change must be evaluated in context, as part of multi-factorial studies that provide 413

accurate assessments of causation and estimates of effect sizes. Decades after concerns were first raised about 414

the effects of climate and malaria, there is a need to reexamine the evidence and priorities. The questions to be 415

addressed today are: how much should research on climate change and malaria be prioritized, and to what end? 416

What is the marginal value of learning more about climate and malaria? 417

First, our analysis suggests that the risks posed by climate change on malaria incidence have been overstated 418

[3]. While there are compelling analyses demonstrating that temperature affects several aspects of transmission, 419
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a focus on sensitivity to parameters has diverted attention away from effect sizes and other factors affecting 420

malaria. If, instead, effect sizes are computed by propagating the expected changes in temperature, they are 421

much smaller compared the observed variability in transmission intensity across Africa. Given the ambient 422

temperatures in Africa now, increasing temperatures, per se, are as likely to reduce transmission in areas 423

where ambient temperatures are above the optimum for transmission as increase it in areas that are below that 424

optimum. 425

Empirical data also emphasize the importance of rainfall on malaria, and on interactions between temperature 426

and humidity, and not merely temperature alone. Analyses of the long-term longitudinal studies from Africa have 427

not so far found strong evidence for any large effect of temperature on malaria. While analysis of long time 428

series describing malaria and climate in some setting could help shed some light, the few studies that have been 429

done came to different conclusions, and were ultimately undermined by the failure to consider the evolution of 430

chloroquine resistance in sub-Saharan Africa during the 1990s and resulting changes in drug policies. 431

Advocacy around climate and malaria has motivated studies that attribute changing malaria mortality to 432

changing climate. The basis for making projections about climate and malaria, and thus likely changes in malaria 433

mortality, has largely focused on climate without considering other potential causes. This basic methodological 434

flaw undermines the validity of the studies. The robustness of the conclusion that climate change will increase 435

malaria transmission is challenged by the dramatic differences between the projections given differing scenarios, 436

as well as the vastly different effect sizes reported between studies. While there are good reasons to expect 437

small increases in transmission in some places due to changing temperatures, the changes attributable to climate 438

change are highly spatially heterogeneous: malaria likely to increase in some locations and decline in others. 439

The evidence suggests that studies of climate change and malaria must be understood through its effects on 440

mosquito ecology in context. While climate has clearly played some role in shaping the current distribution of 441

malaria, the effects of climate on transmission are locally idiosyncratic, highly dynamical and therefore difficult to 442

predict. 443

In sub-Saharan Africa, malaria remains a leading cause of death and suffering, and it stifles economic 444

development. Given the enormous burden of malaria on health and economies, there are many reasons to 445

prioritize malaria control as a solution to climate change. On the one hand, malaria control should be part of a 446

broader efforts to improve health in Africa and to eradicate malaria globally. On the other, ending malaria would 447

be good for African economies. Concerns about climate and malaria, which have so far been driven largely by 448

climate advocacy, should not undermine advocacy for malaria. Indeed, there are good reasons to re-examine the 449

basis for advocacy around climate and malaria. While it is tempting to focus on climate, mosquitoes and malaria, 450

it might be more useful to consider climate, poverty, and malaria. 451

Malaria is often called a disease of poverty because is highly prevalent in poor, rural African populations. 452

Wealthy individuals, who tend to also be better educated, can afford to protect themselves against malaria, but 453

those same interventions are not affordable or accessible to the poor. Meanwhile, the same populations who are 454

at greatest risk of malaria are also most likely to be affected by climate change in other ways. Climate change, 455

the result of burning fossil fuels that stimulated economies and created enormous wealth, puts the worlds poorest 456

populations at the greatest risk. Enhanced malaria control would stimulate economic growth in Africa and make 457

the most vulnerable populations resilient to the effects of climate change. 458

After heavy investments in research and innovation over the past two decades, new therapeutics to protect 459
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individuals from malaria infection – malaria vaccines and monoclonal antibodies for malaria – are showing great 460

promise. High coverage with these new therapeutics, if combined with existing interventions, could be enough 461

to eradicate malaria. This is highly unlikely to happen unless malaria budgets increase. With existing budget 462

constraints, scaling up coverage with new therapeutics comes at the cost of reducing vector control coverage, 463

so a net reduction in the burden of malaria is unlikely. If, on the other hand, malaria control budgets increased, 464

making it possible to scale up therapeutics without reducing vector control, it could lead to dramatic reductions 465

in malaria, setting the stage for malaria elimination and global malaria eradication. The end of malaria would 466

benefit the populations at highest risk of suffering from climate change. 467

While climate advocates remind us that climate could make malaria worse, malaria advocates remind us 468

that, when it comes to malaria, we are not hapless victims of a changing climate. Effective ways of managing 469

the effects of climate change on malaria are already available, and effective malaria control could be the most 470

effective way of protecting poor populations from other effects of climate change. 471
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472

Box 1: Vectorial Capacity 473

Macdonald’s formula for R0 was based the product of formulas for the sporozoite rate and the the human biting

rate [17,32], which is now called the EIR. A formula for vectorial capacity includes three parameters describing

adult mosquitoes: the blood feeding rate (f ); the human fraction, or the number of human blood meals among all

blood meals (q); and daily survival (g). Together, these terms describe the expected number of human bloodmeals

a mosquito would take over its lifetime (S = fq/g). A single parameter describes parasites in mosquitoes, called

the extrinsic incubation period (EIP, n days), defined as the number of days required for malaria parasites to

develop. To transmit, a mosquito must also survive through the EIP (with probability P = e−gn). The formula

for VC includes one parameter describing mosquito ecology: the emergence rate of mosquitoes from aquatic

habitats, per human (λ). These parameters are combined into a formula for vectorial capacity that contextualizes

transmission.

V = λ
f2q2

g2
e−gn = λS2P

The formula on the right hand side tells the story of parasite transmission by mosquitoes: after emerging (λ), a 474

mosquito must blood feed on a human to become infected (S), then survive through the EIP (with probability 475

P ); and then bite other humans to transmit (S). This is equivalent to Macdonald’s formula, after a change in 476

notation [58]. 477

The formula has been used to understand parameters that could have the greatest influence on transmission. 478

The longer a mosquito survives, the more human bites it will give, and the more likely it will survive through the 479

EIP, so survival affects transmission in three ways. Blood feeding rates and the human fraction affect VC in two 480

ways; the EIP and the density of mosquitoes once [32]. Since mosquitoes turn blood into eggs, and since egg 481

laying affects mosquito ecology, it might make sense to count one more effect of mosquito survival and blood 482

feeding rates [47]. 483

484
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Fig 3. The mosquito life cycle includes immature aquatic stages and a volant adult. Female mosquitoes lay eggs
in water bodies. Eggs hatch within a few days to months. Larvae live in water and develop into pupae in as few
as 5 days. Pupae continue to live in water and develop into flying mosquito adults that leave the water in 2-3
days. Adult mosquitoes, are meanwhile flying in search of resources, including vertebrate hosts to blood feed,
sugar sources for sugar, and aquatic habitats to lay eggs.

485

Box 2: Mosquito Ecology 486

Mosquitoes have seven distinct life stages: eggs, four larval instars, pupae, and adults (Figure 3). Adults lay 487

eggs in aquatic habitats. After hatching and developing in water through pupation, adults emerge as adults that 488

mate and sugar feed. Female mosquitoes (but not males) also blood feed; the protein and nutrients in blood 489

are used to make eggs. It is the cycle of blood feeding, egg laying, and sugar feeding by adult females that is 490

of greatest interest sets the stage for mosquito ecology and malaria parasite transmission. Mosquitoes, like 491

most insects, are poikilothermic – their internal temperature depends on the surrounding environment. Mosquito 492

activities and many of the resources they require to complete their life cycle are also affected by weather and 493

climate, including vertebrate animals for blood, sugar, vegetation and resting habitats, and aquatic habitats. 494

495
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