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ABSTRACT 19 

The Nugent score is a commonly used tool for diagnosing bacterial vaginosis; however, its accuracy 20 

depends on the skills of laboratory technicians. We aimed to evaluate the performance of deep 21 

learning models in predicting the Nugent score, with the goal of improving diagnostic consistency 22 

and accuracy. A total of 1,510 vaginal images collected from a hospital in Japan between 2021 and 23 

2023 were assessed. Each image was annotated by laboratory technicians into one of four 24 

categories based on the Nugent score—normal vaginal flora, absence of vaginal flora, altered 25 

vaginal flora, or bacterial vaginosis. Deep learning models were developed to predict these 26 

categories, and their performance was evaluated by comparing the predicted scores with technician 27 

annotations. A high magnification model was further optimized and evaluated using an independent 28 

test set of 106 images to assess its performance relative to that of the technicians. The deep learning 29 

models demonstrated an accuracy of 84% at low magnification and 89% at high magnification in 30 

predicting the Nugent score categories. After optimization, the high magnification model achieved 31 

94% accuracy, surpassing the average 92% accuracy of the technicians. The agreement between 32 

deep learning model predictions and technician annotations was 92% for normal vaginal flora, 33 

100% for absence of vaginal flora, 91% for altered vaginal flora, and 100% for bacterial vaginosis. 34 

The deep learning models demonstrated accuracy comparable to that of laboratory technicians, 35 

which indicates their potential utility in improving the diagnostic accuracy of bacterial vaginosis. 36 
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IMPORTANCE 37 

Bacterial vaginosis is a global health issue affecting women, causing symptoms such as abnormal 38 

vaginal discharge and discomfort. The Nugent score is the standard method for diagnosing bacterial 39 

vaginosis and is based on manual interpretation of Gram-stained vaginal smears. However, this 40 

method relies on the skill and experience of trained professionals, leading to variability in results 41 

and challenges in facilities with limited access to such experts. This poses significant challenges 42 

for settings with limited access to experienced technicians. The deep learning models developed in 43 

this study predict the Nugent score with high accuracy; thus, they can be used to standardize the 44 

diagnosis of bacterial vaginosis, reduce observer variability, and enable reliable diagnosis even in 45 

settings without experienced personnel. Although larger scale validation is needed, our results 46 

suggest that deep learning models may represent a new approach for the diagnosis of bacterial 47 

vaginosis. 48 

INTRODUCTION 49 

Bacterial vaginosis (BV) is a prevalent vaginal condition characterized by a shift from the normal 50 

Lactobacillus species to Gardnerella vaginalis and other BV-associated bacteria (1). It affects 23–51 

29% of women worldwide, with regional variations (2). BV is associated with the risk of sexually 52 
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transmitted infections, including Chlamydia trachomatis, Trichomonas vaginalis (3), Mycoplasma 53 

genitalium (4), human papillomavirus (5), and herpes simplex virus type 2 (6). BV is also 54 

associated with preterm birth (7) and neonatal complications (8) in pregnant women. 55 

BV is typically diagnosed using the Amsel's diagnostic criteria (9) and the Nugent score, which 56 

is determined by vaginal Gram staining (10). The Amsel criteria evaluate clinical symptoms and 57 

signs (9), whereas the Nugent score, ranging from 0 to 10, reflects the bacterial patterns in vaginal 58 

specimens (10). The Nugent score is valued for its low cost, quick turnaround time, and minimal 59 

equipment requirements. However, its accuracy varies depending on the skill and experience of the 60 

clinician. 61 

Recent advances in deep learning, particularly convolutional neural networks (CNNs) (11), 62 

have shown promise for pattern recognition in images and speech, with potential applications in 63 

medical image classification. In infectious disease research, CNNs have been used for the 64 

automated interpretation of blood culture Gram staining (12) and BV classification (13). Wang et 65 

al. developed a CNN model to classify Nugent scores into three categories using high-66 

magnification microscopic images, achieving 82% sensitivity and 97% specificity (13). Despite 67 

the potential of CNNs for diagnosing BV, improving their accuracy and automation capabilities 68 

remains challenging. 69 

In this study, a CNN model was developed to classify vaginal images into four groups based 70 
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on the Nugent scoring system. Traditionally, the Nugent score uses three categories, with scores 71 

ranging from 4 to 6, typically indicating altered vaginal flora. However, a score of 4 may indicate 72 

the absence of vaginal flora rather than their alteration. Given the different microscopic patterns of 73 

the altered and absent vaginal flora, we refined our model to accurately differentiate between these 74 

conditions. We evaluated the proposed BV models using both low- and high-magnification images. 75 

Low-magnification images that do not require oil immersion simplify the process and facilitate 76 

automation. 77 

RESULTS 78 

Prediction performance of the BV model 79 

Table 1 shows the agreement between the predicted classifications of the BV model and true label 80 

groups. The high-magnification model accurately predicted 277 of 310 samples based on the 81 

Nugent score, whereas the low-magnification model identified the correct category in 260 of the 82 

310 samples. Table 2 presents the agreement and accuracy rates for both high- and low-83 

magnification models. In the four-group classification, the high-magnification model demonstrated 84 

better agreement rates across all categories. The lowest agreement rate was observed for identifying 85 

altered vaginal flora, with the high-magnification model at 57% and the low-magnification model 86 
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at 50%. In this classification, the high-magnification model achieved an accuracy of 89%, 87 

surpassing that of the low-magnification model (84%). 88 

Of the 310 samples, 130 were classified as non-BV and the remaining 180 were classified as 89 

BV. In the two-group classification, the low-magnification model had an accuracy of 94% 90 

(292/310), which was slightly lower than that of the high-magnification model (95%, 294/310). 91 

For the BV group, the agreement rate with the 400× model reached 100%, which was higher than 92 

that of the high-magnification model (92%). In the non-BV group, the agreement rate was lower 93 

(88%) for the low-magnification model than that of the high-magnification model (99%). 94 

Development and provisional performance of the advanced BV model 95 

The high-magnification model, which initially exhibited greater accuracy, was further improved 96 

through additional learning. For this purpose, 430 new images were included for a total of 1,510 97 

images used to develop the advanced BV model. The revised image distribution across the Nugent 98 

score categories included 450 images of normal vaginal flora, 490 images of no vaginal flora, 300 99 

images of altered vaginal flora, and 700 images of bacterial vaginosis. In the interim evaluation, 100 

the advanced BV model achieved an accuracy rate of 92% in the four-group classification, 101 

representing a 3% improvement over an earlier version of the model. 102 
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Comparison of the advanced BV model and human experts in predicting BV 103 

To assess the performance of the advanced BV model in differentiating between bacterial vaginosis 104 

and non-BV cases, an image was obtained from each of the 106 vaginal discharge specimens. The 105 

composition of these samples was as follows: 61 (58%) had normal vaginal flora, 10 (9%) had no 106 

vaginal flora, 14 (13%) had altered vaginal flora, and 21 (20%) had BV. These were classified into 107 

71 non-BV (67%) and 35 BV (33%) samples. Table 3 shows the agreement between the predicted 108 

classifications of the advanced BV model and true label groups. For four-group classification, the 109 

advanced BV model achieved an accuracy of 94% (Table 4). The accuracies observed for the two 110 

laboratory technicians were 87% and 96%, respectively, and the collective average accuracy for 111 

the laboratory technicians was 92%. Altered vaginal flora had the lowest prediction accuracy, 112 

whereas the advanced BV model showed a 91% agreement rate. 113 

In the two-group classification, both the advanced BV model and technicians demonstrated 114 

sensitivities greater than 80%, specificities greater than 96%, and accuracies greater than 93%. The 115 

sensitivity of the advanced BV model was 86% (95% CI: 70–95%), which was 4% lower than the 116 

average sensitivity of 90% achieved by the technicians. Conversely, the specificity of the advanced 117 

BV model was 100% (95% CI: 93–100%), which was 2% higher than that of the technicians. The 118 

overall accuracy of the advanced BV model was 95% (95% CI: 89–99%), which was comparable 119 

to the average accuracy reported by the technicians. Among the BV predictions, 14% (5/35) of the 120 
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samples identified as BV were incorrectly classified as non-BV by the advanced model, of which 121 

four were classified as altered vaginal flora and one was classified as BV. 122 

Agreement level between the advanced BV model and laboratory technicians 123 

The advanced BV model achieved an overall agreement rate of 92% (98 out of 106) with both 124 

laboratory technicians. The kappa coefficient indicated an almost perfect agreement of 0.81 (range 125 

0.68–0.94) between the advanced BV model and technician 1, and an almost perfect agreement of 126 

0.83 (range 0.71–0.94) with technician 2. The inter-technician agreement rate was 91% (96 out of 127 

106), with a kappa coefficient of 0.78 (range 0.65–0.91), indicating substantial agreement between 128 

technician 1 and technician 2. 129 

DISCUSSION 130 

We developed a CNN model to predict Nugent scores from vaginal Gram stains and achieved 94% 131 

accuracy across a four-group classification. This result surpassed the performance reported by 132 

Wang et al. (13), who achieved 80% accuracy for three Nugent score groups in a test set created 133 

from images at a single facility. Our CNN model differs from that proposed by Wang et al. with 134 

respect to the underlying base model, which includes an additional Nugent score group. Our 135 
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approach used ConvNeXt (14), which differed from the EfficientNet (15) used by Wang et al. (13). 136 

Further, their model categorized scores into three groups, whereas our study expands these to four 137 

groups. These changes likely contributed to the improved model accuracy. 138 

Our model effectively matched the laboratory technicians in classifying BV and non-BV with 139 

an accuracy of 95%, sensitivity of 86%, and specificity of 100% in the two-group classification. 140 

Wang et al. reported a sensitivity of 89% and a specificity of 85% (13). Although our model showed 141 

sensitivities <90%, similar to the model by Wang et al., it primarily misclassified samples with 142 

altered vaginal flora as normal flora. Moreover, both the CNN models and human technicians found 143 

it difficult to accurately identify altered vaginal flora, as evidenced by the low average agreement 144 

rate of 73%. Therefore, the accuracy of the CNN model must be improved, particularly for samples 145 

with altered vaginal flora. 146 

A significant advantage of low-magnification images is their compatibility with automated 147 

microscopy platforms, which simplifies image acquisition. Smith et al. used an automated 148 

microscopy platform for collecting Gram-stained images at 400× magnification to develop a CNN 149 

model (12). In our study, although the low-magnification model achieved 94% accuracy in the two-150 

group classification, it only achieved 84% accuracy in the four-group classification, highlighting 151 

the limitations of using low-magnification images in automated BV scoring. Future improvements, 152 

including refining the model by integrating more accurately classified samples, are thus crucial to 153 
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improve the reliability of automated BV scoring. 154 

BV is a common condition in women, typically diagnosed using conventional methods and 155 

nucleic acid amplification tests (NAATs) (16–18). Conventional diagnostic tools include the 156 

Nugent score (10), Amsel's diagnostic criteria (9), OSOM BV Blue assay (19, 20), and FemExam 157 

card (21). NAATs, such as the BD Max vaginal panel (22) and Hologic Aptima BV (23) are also 158 

used. The Nugent score, which is often used as a reference method, demonstrates substantial inter-159 

observer agreement with kappa coefficients ranging from 0.70 to 0.77 (24) and inter-center 160 

agreement ranging from 0.60 to 0.72 (25). However, interpretation of the Nugent score requires 161 

expertise, which affects its reproducibility. Our CNN model shows high BV prediction performance 162 

and provides results independent of technician skill and subjectivity, with excellent agreement rates 163 

(kappa coefficients of 0.81–0.83 with technicians). Implementing this CNN model in a clinical 164 

setting could facilitate objective and reproducible interpretation of vaginal Gram staining; hence, 165 

aiding in BV diagnosis. 166 

This study has some limitations, particularly in terms of generalizability and sample size. The 167 

evaluation was limited to a single institution, which may have limited the broader applicability of 168 

the results. Factors such as sample diversity, variations in image hue, and technician skills, which 169 

may vary among institutions, could affect the model accuracy. Furthermore, the CNN model was 170 

developed using a relatively modest dataset of less than 2,000 samples, which may result in 171 
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undertraining and affect predictive ability. Despite these limitations, our CNN model demonstrated 172 

sensitivity, specificity, and accuracy comparable to those of technicians in the two-group 173 

classification. With an expanded dataset, we anticipate significant improvements in the predictive 174 

performance of the model, further refining its effectiveness for BV diagnosis when tested on a 175 

broader range of samples and settings. 176 

In conclusion, we developed a CNN model to automatically predict BV scores, achieving an 177 

accuracy rate of 94% in the four-group classification using high magnification images. These 178 

results highlight the potential of CNN models for future applications in the automated classification 179 

of BV scores. Currently, there are limited data on the use of CNN models to predict BV scores. To 180 

establish its efficacy, this CNN model requires further validation using different vaginal specimens 181 

and clinical settings. 182 

MATERIALS AND METHODS 183 

This study was conducted at the Kameda Medical Center in Japan from November 2021 to 184 

February 2024. Figure 1 shows the flowchart of this study. After data collection and preprocessing, 185 

two magnification versions of the CNN model were developed for comparative evaluation. The 186 

more effective model of these was subsequently selected, improved, and subjected to final 187 

evaluation. Ethical approval was obtained from the Kameda Medical Center Ethics Committee 188 
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(approval number 22-128). The requirement for written informed consent from the participants was 189 

waived by the Research Ethics Committee because of the exclusive use of anonymized data in this 190 

study. 191 

Data collection 192 

From November 2021 to May 2023, we collected 151 Gram-stained slides from 151 vaginal 193 

discharge specimens. Gram staining was performed using Neo-B & M Wako crystal violet solution, 194 

iodine solution, decolorizing solution, and Pfeifel solution (FUJIFILM Wako Chemicals, Osaka, 195 

Japan). A Nikon ECLIPSE Ci-S microscope equipped with a DS-Fi3 digital camera was used for 196 

image acquisition. The images, focused on areas where bacteria or cells were visible, were captured 197 

at 400× (low) and 1,000× (high) magnification, each with a resolution of 2,880 × 2,048 pixels. 198 

Images were categorized into four groups according to the Nugent score: normal vaginal flora 199 

(score 0–3); no vaginal flora (score 4), altered vaginal flora (scores 5–6); or BV (score 7–10). 200 

Figure 2 shows the representative slide images for each group. Nugent scores were assessed by two 201 

laboratory technicians, including at least one certified clinical microbiology specialist. In cases of 202 

disagreement, a third technician was consulted for the final decision. In total, 1,510 images at both 203 

low and high magnifications were collected from each slide. Initially, images of BV were collected 204 

and based on the Nugent scores, the distribution was as follows: 320 images for normal vaginal 205 
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flora, 300 for no vaginal flora, 190 for altered vaginal flora, and 700 for BV. These images were 206 

randomly allocated to the training, validation, and testing sets with 960, 240, and 310 images, 207 

respectively. 208 

Pre-processing of images and data augmentation 209 

We applied four preprocessing steps to the collected images: center cropping, resizing, scaling pixel 210 

values, and normalizing pixel values. Microscopic images were cropped from their original size of 211 

2,880 × 2,048 pixels to a central area of 2,048 × 2,048 pixels. The cropped images were resized to 212 

1,024 × 1,024 pixels. The pixel values were scaled from (0, 255) to (0, 1) and normalized to RGB 213 

means of (0.485, 0.456, and 0.406) and RGB standard deviations of (0.229, 0.224, and 0.225). 214 

To improve the model performance, data augmentation techniques were implemented during 215 

the learning process. These techniques included random rotation, random cropping, random 216 

horizontal and vertical flipping, random affine transformations, and color jittering. Random 217 

rotation and cropping involved arbitrary rotations and adjustments of image dimensions. Random 218 

horizontal and vertical flipping altered images by flipping them left/right and up/down, respectively. 219 

Random affine transformations and color jittering variably adjusted the affine parameters of 220 

brightness, contrast, saturation, and hue. 221 
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Development of the BV model using a CNN 222 

Neural networks are mathematical models that emulate the functions of nerve cells in the human 223 

brain. Specifically, in image classification, these networks learn to recognize image content by 224 

iteratively processing the training data, thereby updating the connections between neurons. Among 225 

the various types of neural networks, CNNs are tailored to process image data. In our study, we 226 

used a model based on ConvNeXt, a variant of a CNN known for its state-of-the-art performance 227 

in image classification, including its high accuracy and scalability (14). We used a linear activation 228 

function in the final layer of the BV model to compute the probabilities representing the likelihood 229 

of each Nugent score group. This step is essential for effectively predicting Nugent scores based 230 

on the analyzed images. 231 

Evaluation of the prediction performance of the BV model 232 

The predictive performance of the BV model was evaluated for both the four- and two-group 233 

classifications derived from the BV categories. For the two-group classification, the four Nugent 234 

scores were divided into two categories: BV and non-BV, with normal and no vaginal flora being 235 

categorized as non-BV whereas altered vaginal flora and bacterial vaginosis were categorized as 236 

BV. 237 
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We used agreement rate and accuracy as the evaluation metrics. The agreement rate measures 238 

the consistency between the CNN model predictions and the actual labels and is expressed as a 239 

percentage. Accuracy is the proportion of correct predictions made by the CNN model compared 240 

with the actual labels over the entire dataset. For the two-group classifications, sensitivity and 241 

specificity were calculated as follows: sensitivity was the ratio of correctly predicted BV cases to 242 

the total number of actual BV cases; and specificity was the ratio of correctly predicted non-BV 243 

cases to the total number of actual non-BV cases. 244 

Development of an advanced BV model 245 

Among the models developed using low- and high-magnification images, the model with superior 246 

accuracy in the four-group classification was selected for further refinement. This refinement 247 

process included the integration of additional images collected between August and October 2023, 248 

using the same methodology as in the initial development phase. We applied RandAugment (26), 249 

a method used to simplify and improve data augmentation techniques. The performance of this 250 

advanced BV model was assessed on an interim basis using the same test set of 310 images used 251 

in the initial evaluation. 252 

Accuracy comparison between the advanced BV model and human assessment in BV 253 
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diagnosis 254 

An independent test set was used to compare the accuracy of the advanced BV model with that of 255 

human experts. An image was acquired for each vaginal discharge specimen collected in December 256 

2023. These images were labeled based on the criteria established during BV model development. 257 

These data were used to evaluate and compare the agreement rate, accuracy, and kappa coefficients 258 

between the advanced BV model and the laboratory technicians. Kappa coefficients were 259 

calculated to evaluate agreement between the advanced BV model and the laboratory technician. 260 

Statistical analyses were conducted using EZR version 1.64 (27). 261 
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Figure 1. Flowchart of the bacterial vaginosis model development and evaluation.  359 

 360 
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Figure 2. Microscopic images of vaginal discharge specimens and the Nugent Score categories. 361 

 362 

Description: Representative high-magnification images of vaginal discharge specimens, each categorized by the Nugent score. The 363 

images are labeled as follows: Image A representing a Nugent score of 0–3 for normal vaginal flora; Image B with score 4 indicating 364 

no vaginal flora; Image C with score 4–6 signifying altered vaginal flora; and Image D with score 7–10 representing bacterial 365 

vaginosis. 366 
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TABLE 1. Estimated group of BV models for true label 367 

 368 

True label 
No. of samples, low-magnification model  No. of samples, high-magnification model  

Normal No flora Altered BV  Normal No flora Altered BV 

Normal (n = 70) 70 0 0 0  56 0 14 0 

No flora (n = 60) 0 60 0 0  0 59 0 1 

Altered (n = 40) 8 0 12 20  0 0 38 2 

BV (n = 140) 0 10 12 118  0 1 15 124 

 369 

Footnotes: Normal, normal vaginal flora; No flora, no vaginal flora; Altered, altered vaginal flora; BV, bacterial vaginosis. 370 

 371 
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TABLE 2. BV prediction comparison of low and high-magnification models 373 

 374 

Evaluation index 

Performance of CNN model 

low-magnification 
model 

high-magnification 
model 

Agreement rates in four-group classifications (%)   

Normal vaginal flora (n = 70) 90 100 

No vaginal flora (n = 60) 86 98 

Altered vaginal flora (n = 40) 50 57 

Bacterial vaginosis (n = 140) 86 98 

Agreement rates in two-group classifications (%)   

Bacterial vaginosis (n = 180) 100 92 

No bacterial vaginosis (n = 130) 88 99 

Accuracy, (%)   

Four-group classifications 84 89 

Two-group classifications 94 95 

 375 

Description: The agreement rate is defined as the percentage of results from the CNN model that matches the true label. 376 

 377 
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TABLE 3. Prediction performance of the advanced BV model 378 

 379 

Model or technician Group 

True label 

Normal 
(n = 61) 

No flora 
(n = 10) 

Altered 
(n = 14) 

BV 
(n = 21) 

Advanced BV model Normal 61  0  4  1 

 No flora 0  10  0  0  

 Altered 0  0  10  1  

 BV 0  0  0  19  

Technician 1 Normal 61  0  2  5  

 No flora 0  10  0  0  

 Altered 0  0  11  6  

 BV 0  0  1  10  

Technician 2 Normal 58  0  0  0  

 No flora 0  10  0  0  

 Altered 3  0  13  0  

 BV 0  0  1  21  

 380 

Footnotes: Normal, normal vaginal flora; No flora, no vaginal flora; Altered, altered vaginal flora; BV, bacterial vaginosis. 381 
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TABLE 4. Prediction comparison between the advanced BV model and human experts 383 

 384 

Group and evaluation index 
Advanced 
BV model 

Technician 
average 

Technician 1 Technician 2 

Agreement rates in four groups (%)     

Normal vaginal flora (n = 61) 92 95 90 100 

No vaginal flora (n = 10) 100 100 100 100 

Altered vaginal flora (n = 14) 91 73 65 81 

Bacterial vaginosis (n = 21) 100 93 91 95 

Agreement rates in two groups (%)     

Bacterial vaginosis (n = 35) 100 96 100 92 

No bacterial vaginosis (n = 71) 93 96 91 100 

Accuracy     

Four group (%) 94 92 87 96 

Two group (%, 95% CI) 95 (89–99) 95 (NA) 93 (87–97) 97 (92–99) 

Sensitivity (%, 95% CI) 86 (70–95) 90 (NA) 80 (63–92) 100 (86–100) 

Specificity (%, 95% CI) 100 (93–100) 98 (NA) 100 (93–100) 96 (88–99) 

 385 

Footnotes: NA, not applicable; Technician, laboratory technician. 386 
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