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Abstract 

 

This paper demonstrates that simplified Convolutional Neural Network (CNN) models can 

outperform traditional complex architectures, such as VGG-16, in the analysis of 

radiological images, particularly in datasets with fewer samples. We introduce two 

adopted CNN architectures, LightCnnRad and DepthNet, designed to optimize 

computational efficiency while maintaining high performance. These models were applied 

to nine radiological image datasets, both public and in-house, including MRI, CT, X-ray, 

and Ultrasound, to evaluate their robustness and generalizability. Our results show that 

these models achieve competitive accuracy with lower computational costs and resource 

requirements. This finding underscores the potential of streamlined models in clinical 

settings, offering an effective and efficient alternative for radiological image analysis. The 

implications for medical diagnostics are significant, suggesting that simpler, more efficient 

algorithms can deliver better performance, challenging the prevailing reliance on transfer 

learning and complex models. The complete codebase and detailed architecture of the 

LightCnnRad and DepthNet, along with step-by-step instructions, are accessible in our 

GitHub repository at https://github.com/PKhosravi-CityTech/LightCNNRad-DepthNet. 

 

Introduction 

 

Recent advancements in deep learning have significantly impacted medical image 

analysis, with Convolutional Neural Networks (CNNs) playing a pivotal role in improving 

the accuracy and efficiency of radiological interpretations. CNNs are widely recognized 

for their ability to automatically extract relevant features from various medical images, 

including those acquired through Ultrasound (US) [1], Magnetic Resonance Imaging 

(MRI) [2], Computed Tomography (CT) [3], and Positron Emission Tomography (PET) [4]. 

 

CNNs, a type of deep neural network (DNN) architecture, are particularly adept at 

processing structured data, such as medical images. They effectively capture both low- 

and high-level features within radiological images, offering improved efficiency over 

conventional methods. Typically, CNNs consist of three fundamental building blocks: 

convolution, pooling, and fully connected layers. The convolution and pooling layers are 

crucial for extracting hierarchical features, allowing the network to progressively refine its 

understanding of the input data. Through a combination of convolution and pooling 

operations, CNNs can adaptively learn representations of medical images and enhance 

the model's receptive field within the deeper layers. The feature maps generated by the 

convolution and pooling layers are then fed into fully connected layers, which are 

responsible for performing classification tasks [5]. 

 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2024. ; https://doi.org/10.1101/2024.09.15.24313585doi: medRxiv preprint 

https://github.com/PKhosravi-CityTech/LightCNNRad-DepthNet
https://paperpile.com/c/IcKjQ6/BK8H
https://paperpile.com/c/IcKjQ6/YaJB
https://paperpile.com/c/IcKjQ6/r5tu
https://paperpile.com/c/IcKjQ6/QX2B
https://paperpile.com/c/IcKjQ6/p4cX
https://doi.org/10.1101/2024.09.15.24313585
http://creativecommons.org/licenses/by/4.0/


 

CNNs have emerged as versatile tools in radiology research, serving multiple purposes 

such as anomaly detection [6], classification [7,8], segmentation [9], and image 

reconstruction [10,11]. For instance, Khosravi et al. [8] demonstrated the efficacy of their 

deep learning CNN (DLCNN) model in classifying benign versus malignant tumors and 

high-risk versus low-risk cases in prostate cancer using MRI scans, achieving remarkable 

performance (AUC=0.86) [8]. Similarly, Salama et al. [7] utilized various pre-trained 

DLCNN models for breast cancer classification in mammogram images, achieving an 

outstanding accuracy and AUC of nearly 90% [7]. The remarkable performance of CNNs, 

sometimes surpassing that of human experts, underscores their potential in medical 

image analysis and diagnosis [12]. However, developing and training deep CNN models 

capable of achieving high accuracy and generalizability in classifying medical images 

presents a significant challenge. The complexity of very deep CNNs, while advantageous 

for image classification, increases the risk of overfitting [13]. Additionally, the training 

process for deep CNNs can be time-consuming, especially when computational 

resources are limited [13]. 

 

This paper introduces two novel CNN architectures—LightCnnRad and DepthNet—

specifically designed for radiological applications. These architectures are distinguished 

by their reduced parameter counts, which facilitate more efficient training compared to 

more complex models. Additionally, their versatility allows them to be applied across a 

range of medical imaging modalities, from MRI to CT scans, demonstrating their 

adaptability to diverse diagnostic needs. The first aim of this study is to address the 

challenge of high computational costs by proposing efficient models suitable for various 

clinical environments. The second aim is to emphasize the importance of a holistic 

approach in radiological image analysis. Despite the high performance of many existing 

algorithms, optimal results are often compromised by inadequate preprocessing and 

external factors. This study advocates for a comprehensive approach that goes beyond 

algorithmic sophistication to include these critical elements. By addressing these two key 

goals, our research provides essential insights into the multifaceted nature of medical 

image analysis, guiding future research in this vital domain. 

 

Materials and Methods 

 

Datasets 

 

To evaluate the performance of LightCnnRad and DepthNet, we used a combination of 

eight public datasets and one in-house dataset. The public datasets, sourced from 

repositories such as Kaggle and The Cancer Imaging Archive (TCIA), encompass various 

imaging modalities, including MRI, CT, X-ray, and Ultrasound (US). Each dataset is 

focused on different diseases and imaging techniques, providing a diverse and 
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comprehensive foundation for our analysis. The datasets include MRI scans for 

Alzheimer’s Disease, CT scans for COVID-19 and lung cancer, ultrasound images for 

breast cancer, and X-ray images for pneumonia, tuberculosis, and a combined COVID-

19/pneumonia dataset. These datasets vary in size and class distribution, with 

Alzheimer’s Disease (4,540 images) divided between non-demented and very mild 

demented classes, COVID-19 (8,001 images) split evenly between positive and negative 

cases, and lung cancer (560 images) distinguishing between adenocarcinoma and 

squamous cell carcinoma. The breast cancer dataset (460 images) is categorized into 

benign and malignant classes, while the pneumonia dataset (3,179 images) and 

tuberculosis dataset (1,394 images) separate cases with and without the disease. The 

combined COVID-19/pneumonia dataset (3,173 images) differentiates between these 

two conditions. Each dataset was sourced from Kaggle, ensuring a diverse and 

comprehensive foundation for our analysis (Figure 1 and Table 1). 

 

To evaluate the model's effectiveness in addressing clinically relevant questions, 

particularly its capability to classify patients based on their therapeutic response, we 

utilized breast cancer axial MRI images from the Duke-Breast Cancer-MRI dataset, 

available through The Cancer Imaging Archive (TCIA). This dataset includes axial breast 

MRI images acquired using 1.5T or 3T scanners from 922 biopsy-confirmed invasive 

breast cancer patients in the prone position. For this study, we selected pre- and post-

contrast images from 278 patients, specifically those with documented complete or near-

complete response to neoadjuvant chemotherapy (NAC) and those with no response, to 

develop a binary classification model (Figure 1 and Table 1). Patients with a complete or 

near-complete response to NAC were classified as 1 or 2, while those with no response 

were classified as 0. The analysis was conducted using T1-weighted (T1W) MRI 

sequences in DICOM format to ensure consistency in image quality and diagnostic 

relevance. To address the issue of class imbalance, we excluded images from 90 patients 

in the majority class (non-responsive), resulting in a balanced dataset comprising 188 

patients (Train: 131, Test: 29, Validation: 28). 

 

Table 1. Number of images and corresponding classes in each dataset. 

 

Dataset Imagin
g 

Techni
que 

Classes  Total 
No. of 

Images 

No. of images 
according to 

classes 

Reference (Link) 

Alzheimer’s 
Disease 

MRI Non Demented Vs. 
Very mild demented 

4,540 Nondemented: 
(n=2,300) 

Alzheimer MRI 
Preprocessed 
Dataset [16] 

Very mild 
demented: 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2024. ; https://doi.org/10.1101/2024.09.15.24313585doi: medRxiv preprint 

https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-dataset/data
https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-dataset/data
https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-dataset/data
https://paperpile.com/c/IcKjQ6/JSem
https://doi.org/10.1101/2024.09.15.24313585
http://creativecommons.org/licenses/by/4.0/


 

(n=2,240) 

COVID-19 CT negative vs. positive 8,001 Negative: 
(n=4,000) 

CT Scans for 
COVID-19 
Classification [17] 

Positive: (n=4,001) 

Lung Cancer CT adenocarcinoma vs. 
squamous cell 
carcinoma  

560 Adenocarcinoma: 
(n=300) 

Chest CT-Scan 
images Dataset 
[18] 

Squamous Cell 
Carcinoma: 
(n=260) 

Breast 
Cancer 

Ultrasou
nd 

benign vs. malignant 460 Benign: (n=250) Breast Ultrasound 
Images Dataset 
[19]  

Malignant: (n=210) 

Pneumonia X-ray No pneumonia vs. 
Pneumonia 

3,179 No pneumonia: 
(n=1,579) 

Chest X-Ray 
Images 
(Pneumonia) [20] 

Pneumonia: 
(n=1,600) 

Tuberculosis X-ray No tuberculosis vs. 
Tuberculosis 

1,394 No tuberculosis: 
(n=700) 

Tuberculosis (TB) 
Chest X-ray 
Database [21] 

Tuberculosis: 
(n=694) 

COVID-
19/PNA 

X-ray COVID-19 vs. 
Pneumonia 

3,173 COVID-19: 
(n=1,537) 

COVID19/PNEUM
ONIA/Normal 
Chest X-Ray 
Image Dataset [22] Pneumonia: 

(n=16,00) 

Breast 
Cancer 

MRI Not responsive vs. 
Responsive 

20,917 Not responsive: 
(n=10,959) 

 
Duke Breast 
Cancer MRI 
Dataset [23] Responsive: 

(9,958) 

Prostate 
Cancer 

MRI High-grade vs. Low-
grade (ISUP = 4 and 5 
vs. ISUP =1, 
respectively) 

2,569 High-grade: 
(n=1,370) 

In-house Dataset 

Low-grade: 
(n=1,199) 

 

To further assess the performance of our models, we included an in-house dataset of 

prostate cancer MRI images. The ISUP (International Society of Urological Pathology) 

grading system for prostate cancer, often referred to as the ISUP 2014/2015 grading 
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system, classifies the aggressiveness of prostate cancer based on histopathological 

findings. The grades range from 1 to 5 and guide treatment decisions.  

 

 
Figure 1. A) The distribution of images across all included datasets. B) Representative 

sample images from each class within the datasets. 
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For this study, MRI images corresponding to patients with ISUP grade 1 were selected 

as the low-grade class, while those with grades 4 and 5 were selected as the high-grade 

class. Our in-house dataset used in this study was specifically curated from preoperative 

MRI scans of patients with prostate cancer (PCa). The data collection involved a detailed 

curation and annotation process by fellowship-trained urologists. It includes a 

comprehensive set of 2,569 T2-weighted (T2W) MR images from 394 patients (Train: 

275, Test: 60, Validation: 59), acquired from various vendors between 2018 and 2023. 

The images, which originated from multiple centers, were standardized to uniform 

dimensions to ensure consistency and were stored in the hospital PACS system before 

retrieval for analysis. The dataset is balanced, comprising 1,370 high-grade and 1,199 

low-grade images, providing a robust basis for model training (Figure 1 and Table 1). This 

study was conducted with approval from the AdventHealth Institutional Review Board 

(IRB) in Orlando, FL, under protocol number 3009855250. The MR images analyzed in 

this study are not publicly available due to the need for data usage agreements and 

compliance with privacy and security protocols, given the sensitivity of the medical data. 

The details of the included datasets are summarized in Table 1.  

 

All datasets were partitioned into training, validation, and test sets following a 70:15:15 

ratio. Figure 1A illustrates the distribution of images within each dataset, detailing the 

proportions assigned to each subset. Additionally, Figure 1B provides representative 

examples from each class within the datasets. 

 

Preprocessing 

 

In this study, we applied the same comprehensive preprocessing pipeline to all images, 

regardless of the specific algorithm used, including LightCnnRad, DepthNet, and VGG-

16. VGG-16 [24] was selected for comparison due to its well-established performance in 

image classification tasks and its ability to serve as a benchmark against newer models 

like LightCnnRad and DepthNet. 

 

Our preprocessing began with the removal of duplicate images to ensure the uniqueness 

of each image within the dataset, thereby preventing the models from overfitting due to 

duplicate patterns. This is particularly crucial for public datasets, where prior 

preprocessing steps might be unknown. Following this, we converted all image files to the 

PNG format from their original JPEG/JPG and DICOM formats. PNG was chosen for its 

lossless compression, preserving image quality and ensuring no critical information was 

lost during the conversion process. Another crucial step was channel verification, where 

we confirmed that all images contained three RGB channels, ensuring a standardized 

input format for all models. We also resized the images to a consistent square dimension, 

a critical step for batch processing and maintaining uniformity across the dataset. This 
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uniform resizing is particularly important for ensuring that all models can effectively 

process the images during training. The overall workflow of these preprocessing steps is 

depicted in Figure 2, illustrating the systematic approach we took to prepare the datasets 

for optimal model performance across all algorithms employed in the study. 

 

 
 

Figure 2. Preprocessing workflow. All datasets underwent comprehensive preprocessing 

prior to training with LightCnnRad, DepthNet, and VGG-16 models. 

 

While a general preprocessing workflow was maintained for all models, we 

accommodated specific architectural requirements where necessary. For instance, 

LightCnnRad and DepthNet required input images of different sizes due to their design. 

In the case of LightCnnRad, the input images were resized to 150x150 pixels, reflecting 

the model's focus on operating efficiently with smaller image dimensions while 

maintaining classification accuracy. In contrast, DepthNet, which employs a more 

complex architecture with depthwise separable convolutions, processes images resized 

to 512x512 pixels. The larger input size is consistent with DepthNet's need for higher 

resolution to fully exploit its depthwise separable convolution layers, which are designed 

to capture more detailed spatial information. These preprocessing differences are tailored 

to maximize the strengths of each model's architecture, ensuring that LightCnnRad 

maintains its efficiency with smaller images while DepthNet leverages higher-resolution 

inputs for more intricate feature extraction. For all models, the images underwent 

standard data augmentation through random horizontal flipping, followed by conversion 

to tensors and normalization across the RGB channels, with pixel values scaled to a range 

of [-1, 1].  
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Training Procedure 

 

LightCnnRad, DepthNet, and VGG-16 were trained using all available datasets on a 

machine equipped with a 13th Gen Intel Core i7-13650HX processor running at 2.60 GHz, 

32 GB of RAM, and an NVIDIA GeForce RTX 4070 GPU. This high-performance setup 

ensured efficient training and rapid model iterations. 

 

The training process involved running our models for a total of 100 epochs, with early 

stopping employed to prevent overfitting. We consistently used a learning rate of 0.001 

across all datasets, optimized through a grid search to ensure stable and gradual 

convergence. For LightCnnRad and DepthNet, multiple optimizers were initially tested 

across different datasets. RMSprop (alpha=0.9 and 0.8, with weight decay=0.0001 and 

0.00001 for LightCnnRad and DepthNet, respectively) yielded the best results for most 

datasets, except for the prostate cancer MRI dataset, where Adam was more effective 

due to its adaptive learning rate. For VGG-16 models, Stochastic Gradient Descent (SGD, 

momentum=0.9) provided superior convergence and performance. 

 

Additionally, a batch size of 32 was used, allowing for efficient use of memory and more 

stable gradient estimates. The cross-entropy loss function was employed to measure the 

discrepancy between predicted probabilities and true class labels, providing a robust 

criterion for model optimization. Despite the complexity of classifying the aggressiveness 

of prostate cancer based on histopathological information, the consistent application of 

these optimized hyperparameters across all datasets contributed to the stable 

performance of our models. 

 

Our models were implemented using PyTorch v.2.3 and Cuda v.12.1, which provided a 

flexible and efficient framework for developing and training deep learning models. 

PyTorch's dynamic computational graph and extensive library support facilitated the 

implementation of our architectures and the execution of the training process. Overall, the 

training procedure was designed to optimize the performance of our models, ensuring 

that they can effectively analyze radiological images across various modalities with high 

accuracy and efficiency. 

 

The Architecture of LightCnnRad and DepthNet 

 

LightCnnRad and DepthNet are optimized versions of well-established neural network 

architectures, adapted to balance computational efficiency with high performance in 

radiological image classification tasks. LightCnnRad, inspired by traditional CNNs, is 

designed to maintain simplicity while achieving robust classification accuracy. The model 

features three convolutional layers, each followed by batch normalization and ReLU 
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activation functions. These layers progressively increase in the number of filters (from 12 

to 32) and are interspersed with max pooling to reduce spatial dimensions, ultimately 

producing a compact representation that is passed through a fully connected layer for 

final classification. This design minimizes computational complexity while preserving high 

performance, making it suitable for large-scale image analysis. 

 

DepthNet builds upon the architecture of MobileNet [25], employing depthwise separable 

convolutions to significantly reduce the number of parameters compared to traditional 

convolutions. This model consists of four blocks, each comprising a depthwise 

convolution followed by a pointwise convolution, batch normalization, and ReLU 

activation. These blocks progressively increase the channel dimensions, ensuring 

detailed feature extraction while maintaining efficiency. The final output is flattened and 

passed through fully connected layers, with dropout regularization to prevent overfitting, 

before generating the classification output. By adopting depth-wise separable 

convolutions, DepthNet achieves a significant reduction in computational demands 

without compromising on accuracy. 

 

VGG-16 was also selected as a benchmark for comparison due to its well-documented 

performance in image classification tasks, allowing us to highlight the efficiency and 

effectiveness of our optimized models, LightCnnRad and DepthNet. Figure 3 (A, B, C, 

and D) illustrates the architectures and parameter counts for all three models. 

 

Transfer Learning 

 

Transfer learning involves utilizing a pre-trained model for new classification and 

prediction tasks, leveraging its prior training on extensive datasets to enhance 

performance on related but distinct problems. This approach offers several advantages, 

such as reducing the training time and providing good levels of generalizability due to the 

model's exposure to a vast array of data during its initial training. However, transfer 

learning also has limitations. Pre-trained models often embed general features from the 

images they were trained on, which may not be optimal for specific contexts, such as 

medical imaging, where the features of interest can be quite distinct [26]. 

 

VGG-16 is one of the most renowned deep learning architectures used in transfer 

learning, initially trained on the ImageNet dataset, which contains over 14 million high-

resolution images across 1000 different categories [24]. VGG-16 is characterized by its 

depth, consisting of 16 layers—13 convolutional layers and 3 fully connected layers—

demonstrating remarkable performance across various applications [27,28]. To compare 

the robustness and efficiency of our proposed models, LightCnnRad and DepthNet, with 

a well-established model, we conducted a comparative analysis involving VGG-16. Using 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2024. ; https://doi.org/10.1101/2024.09.15.24313585doi: medRxiv preprint 

https://paperpile.com/c/IcKjQ6/tKAM
https://paperpile.com/c/IcKjQ6/J2dm
https://paperpile.com/c/IcKjQ6/wTqd
https://paperpile.com/c/IcKjQ6/PSU5+mAXB
https://doi.org/10.1101/2024.09.15.24313585
http://creativecommons.org/licenses/by/4.0/


 

PyTorch, we implemented VGG-16 and set the learning rate to 0.001 to ensure 

consistency with our models' training. We applied two approaches: fine-tuning the pre-

trained VGG-16 with all the datasets and training it from scratch on the same datasets. 

 

 
 

Figure 3. A) Log scale of the number of parameters and the architectures of 

LightCnnRad, B) DepthNet, and C) VGG-16 deep learning models. 
 

Fine-tuning involves adjusting the weights of the pre-trained VGG-16 model with our 

specific datasets, allowing the model to adapt its learned features to the new data while 

retaining the beneficial features learned from the original ImageNet dataset [29]. This 

method can significantly speed up training and improve performance, especially when the 

new dataset is limited in size [30]. Training from scratch, however, involves initializing the 

model's weights randomly and training it entirely on our datasets without leveraging prior 

knowledge from ImageNet, providing a baseline to assess the benefits of transfer learning 

[30]. This comparative analysis aimed to evaluate whether our simplified architectures, 

LightCnnRad and DepthNet, can achieve similar or superior performance to the traditional 

and more complex VGG-16 model, but with reduced computational complexity. For VGG-

16, we employed both transfer learning and training from scratch to fully explore its 
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capabilities. In contrast, due to the lightweight nature of LightCnnRad and DepthNet, we 

focused solely on training from scratch to assess their performance. 

 

Data Availability 

 

All data links produced in the present study are available in Table 1 of this paper. Due to 

privacy and security concerns, as well as the sensitivity of medical data, the MR images 

from the prostate dataset analyzed in this study are not publicly available. The complete 

codebase and detailed architecture of the algorithms, along with step-by-step instructions, 

are accessible in our GitHub repository at https://github.com/PKhosravi-

CityTech/LightCNNRad-DepthNet.  

 

Results 

 

Overall Performance Comparison 

 

Our experimental results indicate that LightCnnRad (mean AUC = 0.82) and DepthNet 

(mean AUC = 0.85) achieve performance comparable to the pre-trained VGG-16 model 

(mean AUC = 0.80). Notably, all of these algorithms outperform the VGG-16 model 

trained from scratch (mean AUC = 0.74). Table 2 summarizes the performance of all four 

algorithms, detailing the mean AUC, accuracy (ACC), sensitivity, and specificity, along 

with their respective standard deviations. The confusion matrices corresponding to the 

four models are provided in Figures 2-5 in the Supplementary Material. Among the 

models, DepthNet exhibits the highest mean accuracy (ACC) at 0.81, followed closely by 

LightCnnRad and the pre-trained VGG-16. Additionally, DepthNet shows superior mean 

specificity (0.87) compared to the pre-trained VGG-16 (0.81), though it has a slightly lower 

sensitivity (DepthNet: 0.71, VGG-16: 0.74), underscoring its effectiveness in accurately 

identifying negative cases. 

 

We employed the bootstrapping method to estimate confidence intervals for the 

differences in AUC scores among the algorithms. This non-parametric technique involves 

repeatedly resampling the dataset to generate simulated samples, thereby providing a 

more robust measure of variability, particularly beneficial for complex models or when 

dealing with small sample sizes (refer to Figure 6 in the Supplementary Material). The 

standard deviations presented in Table 2 for the AUC, ACC, sensitivity, and specificity 

metrics were calculated using the Numpy package in Python, which underscores the 

performance variability across the models. Notably, LightCnnRad exhibited lower 

standard deviations (0.13 for AUC and 0.15 for ACC) alongside DepthNet (0.15 for AUC 

and 0.13 for ACC), indicating greater outcome stability when compared to the pre-trained 

VGG-16 (0.24 for AUC and 0.21 for ACC) and the VGG-16 trained from scratch (0.21 for 
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AUC and 0.18 for ACC). This methodological approach facilitates a rigorous evaluation 

of model performance while effectively accounting for data uncertainties. 

 

 

Table 2. Overall performance of DepthNet, LightCnnRad, pre-trained VGG-16, and 

trained from scratch VGG-16 across various metrics. 
 

Algorithm Mean 

AUC 

Std Dev 

AUC 

Mean 

ACC 

Std Dev 

ACC 

Mean 

Sensitivity 

Std Dev 

Sensitivity 

Mean 

Specificity 

Std Dev 

Specificity 

Depthnet 0.85 0.15 0.81 0.12 0.71 0.25 0.87 0.08 

LightCnnRad 0.82 0.13 0.76 0.15 0.66 0.33 0.82 0.20 

Pretrained 
VGG-16 

0.80 0.24 0.78 0.21 0.74 0.28 0.81 0.25 

Scratch VGG-
16 

0.74 0.21 0.72 0.18 0.62 0.32 0.79 0.18 

 

 

The following sections provide a detailed analysis of the model's performance on each 

dataset, highlighting the strengths and weaknesses observed in their classification key 

metrics. 

 

CT Datasets 

All models demonstrated exceptional performance on the COVID-19 CT dataset. Both 

LightCnnRad and VGG-16, whether pre-trained or trained from scratch, achieved perfect 

AUC scores of 1.00, while DepthNet also exhibited strong performance with an AUC of 

0.93. This consistently high performance across all models underscores the relative ease 

of distinguishing COVID-19 in CT images, particularly when a substantial amount of data 

is available (4000 images per class). The large dataset size likely contributed to the 

models' ability to generalize well, enabling accurate and reliable classification of COVID-

19 cases (Figure 4 and Figure 1 in the Supplementary Material). 

DepthNet (AUC = 0.90) and LightCnnRad (AUC = 0.80) outperformed both the pre-trained 

VGG-16 (AUC = 0.69) and VGG-16 trained from scratch (AUC = 0.59) on the lung cancer 

CT dataset, which consisted of fewer than 300 images per class. This performance 

disparity is likely due to the small dataset size (Figure 1A), which tends to favor models 

with lower complexity. The lightweight architectures of DepthNet and LightCnnRad make 

them less susceptible to overfitting, allowing them to deliver more stable and reliable 

results on limited data. These findings emphasize the value of streamlined architectures 

in data-constrained environments, making them particularly effective for tasks like lung 

cancer CT image classification (Figure 4 and Figure 1 in the Supplementary Material). 
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The results highlight the critical importance of selecting model architectures that align with 

the size and nature of the available data, particularly in clinical contexts where data may 

be scarce. 

 

 
 

 

Figure 4. Comparison of AUC Scores for DepthNet, LightCnnRad, and VGG-16 Models. 
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MRI Datasets 

For the Alzheimer's MRI dataset, DepthNet (AUC = 0.96) and pre-trained VGG-16 (AUC 

= 0.97) exhibit excellent performance, indicating their robustness in detecting Alzheimer's 

disease through MRI scans. LightCnnRad (AUC = 0.77) and VGG-16 trained from scratch 

(AUC = 0.69) show comparatively lower performance. The medium-sized dataset, with 

around 2000 images per class (Table 1), is sufficient for more complex models like pre-

trained VGG-16 and DepthNet to perform well. However, VGG-16 trained from scratch 

struggles due to insufficient data to learn effectively. LightCnnRad's simpler architecture, 

while beneficial for smaller datasets, appears to be less effective for this medium-sized 

dataset, suggesting it might require further optimization or additional training data to 

improve its performance (Figure 4 and Figure 1 in the Supplementary Material). 

LightCnnRad (AUC = 0.68) outperformed DepthNet (AUC = 0.66), pre-trained VGG-16 

(AUC = 0.33), and VGG-16 trained from scratch (AUC = 0.40) in predicting neoadjuvant 

therapy outcomes using the multi-sequence TCIA-Breast Cancer MRI dataset. This 

suggests that LightCnnRad is more effective at capturing the subtle features necessary 

for this challenging classification task. Despite incorporating both pre- and post-contrast 

MRI images to leverage multi-sequence data, the overall model performance remained 

modest. The complexity added by using multi-sequence images, combined with the 

relatively small number of patient cases (188 patients) despite the high number of images 

per class (about 10,000 images per class), likely contributed to the difficulty faced by the 

more complex models like VGG-16 in achieving high accuracy. The complexity of this 

task is further heightened by the challenge of predicting pathology based on treatment 

outcomes without targeted tumor cropping, a limitation stemming from the absence of 

expert radiologists during preprocessing. LightCnnRad's simpler architecture, however, 

allowed it to navigate these complexities more effectively, avoiding overfitting and better 

managing the intricacies of the data. These findings underscore the importance of model 

selection in scenarios involving high task complexity and limited patient numbers, where 

streamlined models like LightCnnRad can offer a performance advantage over more 

complex architectures (Figure 4 and Figure 1 in the Supplementary Material). 

LightCnnRad outperformed all other models on the Prostate Cancer MRI dataset, 

achieving an AUC of 0.62. DepthNet (AUC = 0.58) also performed better than both the 

pre-trained VGG-16 (AUC = 0.50) and the VGG-16 model trained from scratch (AUC = 

0.50). The relatively low AUC scores for the VGG-16 models suggest that these more 

complex architectures struggled to classify the prostate cancer MRI images effectively, 

performing no better than random chance. This result highlights the difficulty these 

models faced in capturing the subtle and intricate patterns present in the prostate MRI 

images. Even though the pre-trained VGG-16 model was trained on large and diverse 

datasets such as ImageNet, these datasets are not optimized for medical imaging tasks 
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like prostate cancer detection, which may explain the lackluster performance. In contrast, 

LightCnnRad demonstrated superior performance, likely due to its streamlined 

architecture, which appears better suited to the specific features present in the 

preprocessed prostate MRI images. The preprocessing steps—such as cropping the 

images to focus on the prostate gland and the most relevant anatomical structures—likely 

contributed to the improved performance of the simpler models. It's also worth noting that 

prostate cancer aggressivity correlates well with the PIRADS radiological classification 

system. PIRADS considers multiple imaging modalities, including diffusion-weighted 

imaging (DWI), which was not used or trained in this study. Our results suggest that, 

although classifying prostate cancer from MRI images remains challenging, using simpler 

and specialized models like DepthNet and LightCnnRad, combined with effective 

preprocessing techniques, can improve performance. Future work could further explore 

the inclusion of additional imaging modalities, such as DWI, to enhance model accuracy 

and better reflect the comprehensive PIRADS classification. 

This highlights the importance of selecting the appropriate model architecture and 

preprocessing techniques, particularly in complex medical imaging tasks where data 

characteristics differ significantly from more general datasets (Figure 4 and Figure 1 in 

the Supplementary Material). 

 

Ultrasound Dataset 

For the US-Breast Cancer dataset (200 images per class), the performance of the models 

aligns with expectations: lighter models tend to perform better with limited data. 

LightCnnRad achieved the highest AUC at 0.76, underscoring its effectiveness in 

interpreting ultrasound images in such scenarios. DepthNet (AUC = 0.70) and pre-trained 

VGG-16 (AUC = 0.74) also performed well, indicating their capability to handle ultrasound 

images, though they might benefit from further optimization. In contrast, VGG-16 trained 

from scratch showed the lowest performance with an AUC of 0.65, likely due to the 

model's complexity and the insufficient available data for effective training from scratch. 

These results suggest that while complex models can benefit from transfer learning, 

simpler architectures like LightCnnRad can offer superior performance in contexts with 

limited data and high task complexity. This finding emphasizes the importance of 

selecting appropriate model architectures based on the data available and the specific 

challenges of the task (Figure 4 and Figure 1 in the Supplementary Material). 

X-ray Datasets 

The X-ray datasets used in this study contained a moderate to low number of images 

(Figure 1), yet all models performed well on these tasks. On the X-ray COVID-19 PNA 

dataset, all models—LightCnnRad, pre-trained VGG-16, DepthNet, and VGG-16 trained 
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from scratch—achieved perfect AUC scores of 1.00. This exceptional performance 

indicates that COVID-19 features in X-ray images are relatively straightforward for these 

models to detect. Similarly, the models performed strongly on the X-ray Pneumonia 

dataset, with DepthNet (AUC = 0.98), LightCnnRad (AUC = 0.97), pre-trained VGG-16 

(AUC = 0.99), and VGG-16 trained from scratch (AUC = 0.98) all showing consistently 

high AUC values. These results suggest that pneumonia features in X-ray images are 

effectively captured by all models. 

For the X-ray Tuberculosis dataset, the models continued to perform well, though with 

more variation in their results. Pre-trained VGG-16 achieved the highest AUC at 0.99, 

followed by DepthNet (AUC = 0.96), VGG-16 trained from scratch (AUC = 0.87), and 

LightCnnRad (AUC = 0.75). The superior performance of the pre-trained VGG-16 

suggests that pre-training on large, diverse datasets may provide an advantage in this 

application, while LightCnnRad's lower AUC indicates that it may be less effective in this 

particular task (Figure 4 and Figure 1 in the Supplementary Material). 

Interpretation beyond algorithms 

 

The findings from this study highlight the critical importance of selecting appropriate 

model architectures based on the specific characteristics of the dataset and the clinical 

task at hand. The consistent performance of DepthNet and LightCNNRad, particularly in 

scenarios with limited data, underscores the advantage of streamlined architectures in 

medical image analysis. These models demonstrate that, in many cases, simpler 

architectures can achieve or even exceed the performance of more complex models like 

VGG-16, especially when the available data is not extensive (Figure 5). 

 

The results suggest that while VGG-16—especially in its pre-trained form—generally 

offers robust performance across various tasks, its complexity can be a disadvantage 

when the dataset size is constrained or when the task requires the model to discern subtle 

patterns from a limited number of examples. In contrast, the simpler architectures of 

DepthNet and LightCnnRad are less prone to overfitting and can better generalize under 

these conditions. This finding suggests that increasing model complexity does not 

necessarily result in better performance in medical image analysis. 

 

Moreover, the study underscores the critical role of preprocessing techniques in 

enhancing model performance. For instance, the application of cropping and other 

preprocessing steps helped to focus the analysis on the most relevant areas of the 

images, which was particularly beneficial for simpler models like LightCNNRad and 

DepthNet. This indicates that thorough preprocessing can reduce the need for more 

complex models by delivering cleaner and more focused data for analysis. 
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The variability in performance observed across different models and datasets also 

highlights the importance of understanding the underlying data characteristics. For 

example, the high variability in VGG-16's performance across different tasks suggests 

that while it is a powerful model, its effectiveness can be highly dependent on the nature 

of the data and the specific task. This reinforces the need for a multifactorial approach in 

model selection, where factors such as dataset size, image quality, and the specific 

clinical question are all considered. 

 

 
Figure 5. (A)  Box plots of performance metrics for different algorithms. (B) Heatmap of 

mean metrics for different algorithms. (C) Accuracy comparison of DepthNet, 

LightCnnRad, and VGG-16 models. 

 

Overall, these findings advocate for a more nuanced approach to model selection in 

medical imaging, one that considers not just the algorithmic complexity but also the 

practical aspects of the data and the task. By focusing on the broader context in which 

these models are applied, we can develop more effective, reliable, and clinically relevant 

tools for medical image analysis. This holistic perspective is essential for advancing the 

field and ensuring that the models developed are not only accurate but also generalizable 

across different clinical settings. 

 

Discussion 

 

The development of LightCnnRad and DepthNet represents a significant advancement in 

the application of CNNs to radiological image analysis. Our study aimed to address the 

limitations of traditional deep learning models, such as VGG-16, by proposing simpler 

architectures that maintain high performance while reducing computational complexity. 
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The experimental results demonstrate that LightCnnRad (AUC = 0.82) and DepthNet 

(AUC = 0.85) achieve accuracy rates comparable to the pre-trained VGG-16 model (AUC 

= 0.80) across a validation set of diverse radiological images. Despite their simpler 

architectures, both models exhibited strong classification performance across various 

imaging modalities, including MRI, CT, X-ray, and Ultrasound. This highlights their 

robustness and generalizability in medical image analysis. 

 

One of the key advantages of LightCnnRad and DepthNet is their computational 

efficiency. The reduced number of parameters in these models translates to faster training 

times and lower computational resource requirements (Figures 6 to 9 in the 

Supplementary Material). This is particularly beneficial in clinical settings where real-time 

processing and analysis are crucial. For example, LightCnnRad, with its simpler 

architecture, maintains high accuracy while significantly cutting down on the training 

duration compared to more complex models. DepthNet, leveraging depthwise separable 

convolutions, achieves a similar reduction in computational demands without 

compromising performance. 

 

Our comparative analysis with the VGG-16 model, both pre-trained and trained from 

scratch, underscores the potential of simplified CNN architectures. While the pre-trained 

VGG-16 benefits from transfer learning due to its extensive pre-training on the ImageNet 

dataset, our models, designed specifically for radiological applications, can adapt 

efficiently to the nuances of medical imaging data. This adaptability is crucial for tasks 

that require specialized feature extraction, such as distinguishing between benign and 

malignant tumors or classifying different stages of diseases. 

 

The results from fine-tuning VGG-16 also highlight a critical insight: pre-trained models, 

while powerful, may not always provide optimal performance for domain-specific tasks. 

The features learned from general datasets like ImageNet may not align perfectly with the 

features needed for medical image analysis. Our study shows that tailored architectures, 

designed with domain-specific requirements in mind, can achieve competitive or even 

superior performance with less computational overhead, which is in alignment with 

previous findings that emphasize the benefits of using pre-trained models on medical 

image datasets over those trained on natural images like ImageNet [31]. 

 

The implications of our findings for clinical practice are significant. By utilizing models like 

LightCnnRad and DepthNet, healthcare providers can implement efficient, real-time 

analysis of radiological images without the need for extensive computational 

infrastructure. This can facilitate faster diagnosis and treatment decisions, ultimately 

improving patient outcomes. 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2024. ; https://doi.org/10.1101/2024.09.15.24313585doi: medRxiv preprint 

https://paperpile.com/c/IcKjQ6/0AFm
https://doi.org/10.1101/2024.09.15.24313585
http://creativecommons.org/licenses/by/4.0/


 

 

Future work will focus on further optimizing these models and validating their performance 

in real-world clinical settings. This includes expanding the datasets to encompass a wider 

range of imaging modalities and conditions, as well as exploring the integration of these 

models into existing diagnostic workflows. Additionally, we plan to investigate the 

potential of combining our simplified architectures with other machine learning 

techniques, such as ensemble learning, to further enhance performance. 

 

In summary, our study challenges the common misconception that more complex 

architectures always lead to higher performance. The high performance of LightCnnRad 

and DepthNet across various tasks suggests that simpler models can be highly effective, 

especially when carefully designed for specific applications. The findings emphasize the 

importance of a multifactorial approach in developing and applying CNNs to radiological 

image analysis, ensuring that models are not only accurate but also computationally 

efficient and adaptable to diverse clinical environments. 

 

Conclusion 

 

This study introduced LightCnnRad and DepthNet, two novel CNN architectures 

specifically designed for radiological image analysis. These models achieved 

performance comparable to the more complex pre-trained VGG-16, while significantly 

reducing computational complexity and training times. LightCnnRad and DepthNet 

excelled across various imaging modalities, including MRI, CT, X-ray, and Ultrasound, 

proving their versatility and efficiency in medical imaging tasks. 

 

Our findings underscore that simpler architectures can achieve competitive performance, 

highlighting the potential of models like LightCnnRad and DepthNet in clinical settings 

where computational resources and real-time processing are critical. Moreover, our 

analysis goes beyond algorithmic performance, emphasizing the importance of a holistic 

approach that includes preprocessing techniques and consideration of external factors to 

enhance model effectiveness. 

 

Future research will focus on optimizing these models further and validating their 

performance in real-world clinical environments. In conclusion, LightCnnRad and 

DepthNet represent promising tools for efficient and accurate radiological image analysis, 

advancing the capabilities of CNNs in medical imaging by combining high performance 

with computational efficiency. 
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Supplementary Material 

 
 

 

 

Figure 1. Comparison of AUC values for DepthNet, LightCNNRad, pre-trained VGG-16, 

and VGG-16 trained from scratch across nine datasets. 
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Figure 2. Confusion matrices for DepthNet across all datasets. 
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Figure 3. Confusion matrices for LightCNNRad across all datasets. 
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Figure 4. Confusion matrices for the pre-trained VGG-16 across all datasets. 
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Figure 5. Confusion matrices for the VGG-16 trained from scratch across all datasets. 
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Figure 6. Confidence intervals for the differences in AUC scores between algorithms 

were estimated using bootstrapping. 
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Figure 7. Efficiency of LightCnnRad on the Alzheimer's MRI dataset, measured by GPU 

utilization, CPU usage, and RAM utilization. 
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Figure 8. Efficiency of DepthNet on the Alzheimer's MRI dataset, measured by GPU 

utilization, CPU usage, and RAM utilization. 
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Figure 9. Efficiency of pre-trained VGG-16 on the Alzheimer's MRI dataset, measured 

by GPU utilization, CPU usage, and RAM utilization. 
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Figure 10. Efficiency of VGG-16 trained from scratch on the Alzheimer's MRI dataset, 

measured by GPU utilization, CPU usage, and RAM utilization. 
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