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Abstract 
Background 
Radiation and medical oncologists evaluate patients’ risk of imminent mortality with scales like 
Karnofsky Performance Status (KPS) and predicate treatment decisions on these evaluations. 
However, we hypothesized that statistical models derived from structured electronic health 
record (EHR) data could predict patient deaths within 30 days of radiotherapy consultation 
better than models developed only with patient age and physician-reported KPS.  

Methods 
Clinical data from patients who consulted in a radiotherapy department from June 2018 – 
February 2024 were abstracted from EHR databases, including patient demographics, 
laboratory results, medications, comorbidities, KPS, cancer stages, oncologic treatment 
histories, oncologist notes, radiologist reports, and pathologist narratives. A subset of structured 
features known or believed to be associated with mortality were curated and used to train and 
test logistic regression, random forest, and gradient-boosted decision classifiers. 

Results 
Of 38,262 patients, 951 (2.5%) died within 30 days of radiotherapy consultation. From 34.5 
gigabytes of tabular data, 2,977 clinical features were chosen or derived by a radiation 
oncologist, then reduced to 1,000 features using ANOVA F values. Using an event probability 
classification threshold of 0.2, optimized logistic regression, random forest, and gradient-
boosted decision classifiers tested with high accuracy (0.97, 0.98, and 0.98, respectively) and 
F1 scores (0.50, 0.54, and 0.52). The areas under receiver operating and precision-recall 
curves for the random forest model were respectively 0.94 and 0.55, which outperformed a 
model trained only with patient age and KPS (0.61 and 0.06). Models prominently weighed 
features that were rationally associated with mortality. 

Conclusion 
Statistical models developed from a physician-curated feature space of structured EHR data 
predicted patient deaths within 30 days of radiotherapy consultation better than a model 
developed only with a patient’s age and physician-assessed KPS. With clinically explicable 
feature weights, these models could influence treatment decisions such as the length of 
palliative radiotherapy courses.  
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Introduction 
In some cancer patients, the risk of 30-day mortality is high. According to one meta-analysis of 
88,000 patients, the risk in advanced cancer patients may be as high as 16%.1 Nevertheless, 
this estimate varies substantially with such factors as primary cancer site and patient 
performance status. Correctly identifying which cancer patients are at imminent mortality risk is 
difficult, and physicians are poor predictors.2,3 

If it were possible to accurately estimate cancer patients’ 30-day mortality risk, this could 
meaningfully better their treatment by involving early palliative care, which has been 
demonstrated to improve quality of life and lengthen survival.4-6 It may also curtail unnecessary 
treatment. For example, radiation oncologists must decide whether to prescribe short or 
prolonged radiation therapy (RT) treatment courses to palliate cancer-related pain. Nearly 70% 
of patients treated with palliative RT report less pain, and RT prescribed in a single treatment is 
as likely to achieve pain relief as five or ten treatments (fractions),7-10 but the durability of relief is 
shorter7,8,10 and the risk of long-term complications (e.g. local tumor progression11) greater with 
a single treatment than a prolonged course. Complicating a radiation oncologist’s decision 
further, dose-intensified stereotactic ablative radiotherapy (SABR) provided better pain relief 
than conventionally-dose fractionation schedules in some trials,12,13 yet SABR planning requires 
more work is more costly. Patients who pass away during or immediately after treatment with 
prolonged or dose-intensified palliative courses may have been better served by a single 
fraction.14 One Surveillance, Epidemiology, and End Results (SEER) database study reported 
that 48% of patients who received palliative RT before enrolling in hospice received an RT 
course that was longer than the number of days they survived in hospice.15 

Emerging evidence suggests that artificial intelligence (AI) may be able to predict patients’ 30-
day mortality risk. For example, the University of Pennsylvania Health System trained an AI to 
predict patients’ six-month mortality risk with data from medical oncology patients’ electronic 
health records (EHR)16 and validated the AI’s efficacy at increasing end-of-life physician-patient 
conversations in a prospective trial.17,18 Considering these results, we hypothesized that AI 
models could predict radiation oncology patient 30-day mortality using EHR data, and that 
models trained with curated, comprehensive features would outperform models trained only with 
patients’ ages and physicians’ assessments of their overall health as documented by their 
performance statuses. 

Methods 
Clinical features known or believed by a radiation oncologist to be associated with mortality risk 
were abstracted from an EHR (Epic Systems, Verona, WI) for patients who consulted with a 
radiation oncologist at any of seven BJC Healthcare Siteman Cancer Center sites between June 
2018 and February 2024. This study’s intent was to develop one or more machine learning (ML) 
model(s) that may provide actionable, interpretable outputs at the time of RT consultation; 
therefore, features were represented in ML training data at time points nearest to the RT 
consultation date. For example, patient age was represented as age on the date of RT 
consultation. For patients with multiple RT consultations, the date of the most recent re-
consultation was used as the benchmark. Recognizing that some information relevant to a 
radiation oncologist’s management decision may not be available on the consultation date, a 
two-week post-consultation buffer was coded into the preparation pipeline. For example, 
laboratory data obtained within two weeks of consultation date were included. 
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Event 
The classification event was death within 30 days of a patient’s most recent RT consultation. 
Patient vitality status was derived from the EHR. 

Features 
Features related to patient demographics, cancer and comorbid diagnoses, American Joint 
Committee on Cancer (AJCC) stages and treatment histories, laboratory results, medications, 
substance use histories, hospitalizations, performance status assessments, clinical trial 
participation, oncologist notes, radiologist reports, and pathologist narratives were abstracted 
and prepared for ML.  

Medications 
Virtually all medication prescriptions consisted of one of the top quartile most-prescribed 
formulations. A radiation oncologist manually reviewed these formulations and matched those 
deemed potentially relevant to mortality risk to one of 984 generic medication names. For 
example, “PEMBROLIZUMAB IVPD IN 100 ML” (the most common pembrolizumab 
formulation), “KEYTRUDA IV” (a brand name), and “INV-WUSM_BJH (160621) 
PEMBROLIZUMAB IVBP in 100 ML” (a clinical trial formulation) were matched to the generic 
“pembrolizumab.” Text matching was executed with a python implementation19 of the 
Levenshtein distance,20 and a 100% partial ratio threshold was required for a match. Matching 
prioritized the most relevant formulation constituents. For example, “MEROPENEM 1 GRAM/50 
ML IN 0.9% SODIUM CHLORIDE” matched “meropenem” rather than “saline.” For formulations 
with multiple relevant constituents, the first constituent was arbitrarily matched. For example, 
“BICTARVY” matched “bictegravir” rather than “emtricitabine” or “tenofovir alafenamide.” 
Medications included systemic therapies prescribed for cancer treatments. Medications were 
encoded as a binary feature (prescribed or not prescribed) because of the complexity of 
mapping medication dosage units (e.g. milligram, capsule, “puff”) to a single representation for 
each medication.  

Prior Radiation Therapy 
For patients who had previously received RT, cumulative doses per irradiated anatomic region 
were extracted. A radiation oncologist tokenized RT course names to 2,270 unique word 
fragments, reviewed them, and programmatically matched fragments that identified RT target 
anatomy to standardized names describing anatomic regions. For example, the fragment “BRS” 
parsed from “C1_RT_BRS_2023” matched “breast,” the fragment “INGUINAL” parsed from “C1 
L INGUINAL 20” matched “groin,” and the fragment “GK” (standing for Gamma Knife) parsed 
from “C2 GK 2023” matched “brain.” Past radiation doses were summed per anatomic region 
per patient. 

Laboratory Tests 
A radiation oncologist reviewed all uniquely protocoled laboratory tests, combined tests that 
evaluated common biologic parameters, and selected tests known or believed to be associated 
with mortality. For example, “GLUCOSE” and “GLUCOSE BY MONITOR DEVICE POC BJH” (a 
point-of-care glucose fingerstick) test results were combined under “GLUCOSE,” while 
“NUCHAL TRANSLUCENCY” (a fetal ultrasound parameter deemed unlikely to be associated 
with 30-day mortality) was excluded from the ML training/testing datasets. 
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Performance Statuses 
Physician assessments of Karnofsky Performance Status (KPS) were extracted for every 
patient. Because KPS is not a structured data element in our institution’s EHR, we wrote regular 
expressions to recognize templated language in radiation oncologists’ consultation notes and 
extract KPS scores. For some patients, the consulting radiation oncologist recorded an Eastern 
Cooperative Oncology Group (ECOG) performance status rather than a KPS, in which cases 
the ECOG score was converted to an approximate KPS. A minority of patient radiotherapy 
consultation notes did not document a performance status assessment. For these patients, the 
most recent KPS recorded by an interdisciplinary oncology provider’s note (e.g. medical or 
surgical oncology) was extracted.  

Substance Use Histories 
Patients’ tobacco, alcohol, and illicit drug use were extracted in structured classifications. These 
were reviewed and aggregated for simplicity to denote current, former, or no use.  

Cancer Stages 
The AJCC tumor (T), nodal (N), and metastatic (M) stage descriptors vary between cancer 
histologies and between AJCC staging versions within a single histology. To reduce staging 
complexity, histology-specific TNM descriptors were subsumed in a simpler descriptor subset 
that could more homogenously describe all cancer types. For example, T1, T1a, T1b, etc. were 
mapped to T1. Clinical (c) and pathologic (p) cancer stages were coded distinctly (e.g. cN1 and 
pN1) to recognize precise prognostic information available in post-surgical, pathologic staging 
while preserving clinical staging information for patients who never achieved a surgical 
treatment. 

Machine Learning 
Missing data were imputed by means of quantitative features with a nearly normal distribution 
(e.g. albumin), by medians of features with a skewed distribution (e.g. creatinine), or by modes 
of categorical features (e.g. ethnicity). However, features for which missing data communicated 
clinical meaning were not imputed by a statistical measure of centrality; for example, missing 
breast RT doses were imputed by zeros, because patients with missing values for this feature 
had not received RT targeted to the breast.   

ML training and testing was conducted using the python Scikit-Learn package,21 version 1.4.2. 
The methodology is visualized in Figure 1a. Data were split 70/30 into training and test datasets. 
Features were normalized, and the feature space reduced to 1,000 features with the highest 
ANOVA F variance ratios. Using the training dataset, a five-fold cross-validation grid search 
iteratively trained logistic regression (LR), random forest (RF), and gradient boosting decision 
tree (GBD) classifiers with varying hyperparameters to identify hyperparameter combinations 
that optimized model performance for each algorithm. Optimized models were then presented 
with the test dataset, and their performances quantified by accuracy, precision, recall, and F1 
scores. Separately, models trained only with KPS – representing physicians’ global 
assessments of imminent mortality likelihood – and age were tested and compared to the 
comprehensive models. 
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Results 
Clinical endpoints visualized in Figure 1b were abstracted for 38,262 patients. These comprised 
34.5 Gb of tabular data, including approximately 5.3 million patient encounters, 40.7 million 
laboratory values resulted from any of 4,134 laboratory tests, 14.6 million medication 
prescriptions from any of 24,080 uniquely named medications formulations (of which the top 
quartile accounted for 99.2% of prescriptions), 2.9 million oncologist notes, 1.9 million 
radiologist reports, 810,000 International Classification of Diseases-10 (ICD-10) comorbid 
diagnoses, 170,000 pathology narratives, 49,000 operative notes, and 31,000 RT courses (for 
which 99% of treatment targets could be described by one of 45 anatomic regions).  

A subset of patient characteristics is detailed in Table 1. The median patient age was 66 years, 
most of whom were female (52%) and white (82%). The great majority of patients had a good or 
excellent KPS (three-quarters scored 80 or better). Most had not previously been a hospital 
inpatient at the time of RT consultation, and only 12% had been hospitalized within the 
preceding 30 days. Few were annotated as currently smoking (12%), using alcohol (32%) or 
using illicit drugs (14%). Few were enrolled in an oncology clinical trial (5%). Most patients 
(62%) had one or more TNM cancer stage(s) that had been documented in a structured format 
by an oncology provider. The number of patients who died within 30 days of RT consultation 
was 951 (2.5%).  

After feature selection, engineering, and cleaning, the preliminary ML dataset comprised 38,262 
patients as rows and 2,977 features as columns. As described in the methods, this 
dimensionality was subsequently reduced to 1,000 features for training and testing.  

Feature  Median/Count Interquartile 
Range 

Age  65.6 57.1 – 73.0 
Sex    
 Female 19932 (52.1%)  
 Male 18328 (47.9%)  
 Unknown 2 (0%)  
Race    
 White 31370 (82.0%)  
 Black/African American 5904 (15.4%)  
 Asian 518 (1.4%)  
 Other, Declined, or 

Unknown 
470 (1.2%)  

Number of prior 
encounters 

 123 60 - 214 

Number of prior  0 0 - 1 

Figure 1: Machine learning training and testing methodology (A), and summary of 
abstracted EHR data from which features were selected or derived (B). ICD-10: International 
Classification of Diseases-10; KPS: Karnofsky Performance Status; Op: operative; RT: 
radiation therapy; TNM: tumor, node, and metastasis. 
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hospitalizations 
Recently hospitalized    
 Yes 4758 (12.4%)  
 No 33504 (87.6%)  
Smoking    
 Current every day 3803 (9.9%)  
 Current some days 921 (2.4%)  
 Former 15477 (40.5%)  
 No or unknown 18061 (47.2%)  
Pack-years (among 
smokers) 

 20.0 8.8 – 40.0 

Alcohol use    
 Yes 12181 (31.8%)  
 Former 5682 (14.9%)  
 No or unknown 20399 (53.3%)  
Illicit drug use    
 Yes 5450 (14.2%)  
 Former 4685 (12.2%)  
 No or unknown 28127 (73.5%)  
On an oncology clinical 
trial 

   

 Yes 1731 (4.5%)  
 No 36531 (95.5%)  
On a placebo-controlled 
oncology clinical trial 

   

 Yes 156 (0.4%)  
 No 38106 (99.6%)  
Karnofsky Performance 
Status 

 90 80 – 100 

Vitality 30 days post-
radiotherapy consultation 

   

 Alive 37311 (97.5%)  
 Deceased 951 (2.5%)  

Feature Group Number of Features   
Radiation therapy  46   
Laboratories 169   
Medications 929   
ICD-10 comorbidities 1521   
Cancer staging 296   
Table 1: Patient cohort characteristics and selected features. 
 

Using an event probability classification threshold of ≥ 0.2, LR, RF, and GBD models each 
tested with excellent accuracy (≥ 97%). The RF model tested with the highest precision, or 
positive predictive value (0.53), while the LR model tested with the highest recall, or sensitivity 
(0.58). The RF model achieved the best harmonic mean of precision and recall (F1 score of 
0.54). Model performances are detailed in Table 2.    

 Logistic Regression Random Forest Gradient Boosted Classifier 
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Accuracy 0.97 0.98 0.98 
Precision 0.48 0.53 0.50 
Recall 0.58 0.54 0.55 
F1 score 0.50 0.54 0.52 
Table 2: Performance of three ML models trained with 1000 clinical features to predict patient 
mortality within 30 days of RT consultation. Model output event probabilities of ≥ 0.2 were 
classified as predicted events. Accuracy is the sum of true positive (TP) and true negative (TN) 
predictions divided by the sum of TP, TN, false positive (FP) and false negative (FN) predictions. 
Precision is the TP divided by the sum of TP and FP. Recall is the TP divided by the sum of TP 
and FN. The F1 score is twice the product of precision and recall divided by the sum of 
precision and recall. 
 

The receiver operating curve for the RF model at varying probability classification thresholds 
achieved an area under the curve (AUC) of 0.94, and the precision-recall curve for the same 
model achieved an AUC of 0.55 (Figures 2a and 2c). By comparison, an RF model trained only 
with KPS and age achieved a receiver operating AUC of 0.61 and a precision-recall AUC of 0.06 
(Figures 2b and 2d). 

 

 

. 
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The ten features most strongly correlated with 30-day mortality for RF, GBD, and LR models are 
reported in Table 3. Each algorithm independently identified the number of prior encounters as a 
feature strongly associated with 30-day mortality; a greater number was associated with 
survival. Laboratory values associated with liver (albumin, prothrombin time, international 
normalized ratio, aspartate transaminase) or kidney (blood urea nitrogen) failure and 
medications associated with end-of-life comfort care (hyoscyamine, glycopyrrolate) were also 
among the top performing features. Patient KPS and age were also among the top features in 
the LR model.  

Random Forest Gradient Boosting Tree Logistic Regression 
Feature Importance Feature Importance Feature Coefficient 

Number of prior encounters 0.028 Albumin 0.094 Number of prior encounters -1.85 
Absolute neutrophil count 0.024 Number of prior encounters 0.080 Albumin -0.55 
Prescribed hyoscyamine 0.022 Lactate dehydrogenase 0.065 Blood urea nitrogen 0.33 
Blood urea nitrogen 0.022 Absolute neutrophil count 0.053 Prescribed morphine 0.30 
Albumin 0.021 Prescribed morphine 0.051 ICD-10: Personal history of 

medical treatment 
-0.27 

Aspartate transaminase 0.020 Blood urea nitrogen 0.037 Prescribed hyoscyamine 0.25 
White blood cell count 0.020 Prescribed hyoscyamine 0.035 Age 0.23 
Prescribed glycopyrrolate 0.020 Prescribed glycopyrrolate 0.032 Karnofsky performance 

status 
-0.21 

Lactate dehydrogenase 0.020 Aspartate transaminase 0.027 ICD-10: Other disorders of 
the nervous system 

-0.20 

Lactate 0.017 International Normalized 
Ratio 

0.023 Prothrombin time 0.18 

Table 3: The top ten features most strongly associated with patient mortality within 30 days of 
radiotherapy consultation for ML models. Negative logistic regression coefficients are correlated 
with 30-day survival, while positive coefficients are correlated with 30-day mortality. Random 
forest and gradient boosting tree feature importances do not have directionality. 
 

Discussion 
We demonstrated that AI models trained with ML algorithms on carefully selected, structured 
EHR clinical data could identify patients at elevated risk of death within 30 days of RT 
consultation. LR, RF, and GBD models each tested with excellent performance, but within the 
scope of our hyperparameter optimization methodology the RF model output best balanced 
precision and recall (F1 score of 0.54) at an event probability classification threshold of ≥ 0.2. It 
predicted with excellent AUCs for sensitivity/1-specificity and precision/recall curves (0.94 and 
0.55, respectively). Moreover, we demonstrated that a physician-curated, comprehensive 
feature space trained better models than a space inclusive only of patient ages and oncology 
provider estimations of patients’ imminent mortality risk as proxied by KPS scores. The most 
influential features in the models’ predictions have interpretable and clinically rational mortality 
associations. 

Figure 2: Receiver operating (2a, 2b) and precision-recall (2c, 2d) curves for random forest 
models trained with a full complement of 1000 curated features (2a, 2c) or trained only with 
patient Karnofsky performance status and age (2b, 2d).  
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For context, several excellent studies have employed ML techniques to predict cancer patient 
mortality at various time points: a random forest model trained with 566 clinical features derived 
from three classes (demographics, comorbidities, and laboratories) abstracted from 
hematology/oncology encounters for 26,525 patients predicted death within six months of 
outpatient encounters with a precision of 0.513 and a receiver-operating area under the curve of 
0.88.16 A Bayes point machine trained with 16 clinical features from 1,790 patients with spinal 
metastatic disease predicted 30-day mortality with a sensitivity/1-specificity AUC of 0.78.22 A 
regression model trained with “routine” laboratory, demographic, and biometric hospital 
admission features prospectively predicted deaths within 45 days of hospital admission for 911 
solid tumor patients significantly better than the patients’ admitting providers (AUC 0.83 vs. 0.75, 
p < 0.001).23 A Cox proportional hazards model trained to predict survival time with 3,813 
features derived from laboratories, vitals, ICD-9 codes, current procedural terminology codes, 
medications, and clinical notes (represented as 1-2 word phrases) for 14,600 metastatic cancer 
patients predicted one-year mortality with a sensitivity/1-specificity AUC of 0.77.24,25 

Our study is strengthened by its feature engineering methodology, which leveraged clinical 
domain expertise to preserve information within data.26 Utilizing domain experts’ knowledge is 
more effective than relying on algorithms to learn knowledge inductively in ML classification 
studies,27 and classifiers built with end-user insight may also be better clinically received. A 
radiation oncologist engaged at every step of data abstraction, feature selection, feature 
derivation, missing data imputation, and model output interpretation. The resulting feature space 
is, to our knowledge, among the most comprehensive of any that has been published to predict 
cancer patient short-term mortality. 

Many potential uses of this model may be conceived, but its development was specifically 
motivated by the clinical need to identify cancer patients who are best served by single-fraction 
palliative RT rather than prolonged or dose-intensified palliative RT. Results from the 
international phase III SCORAD trial are a case study illustrating this need. SCORAD 
investigated noninferiority of 8 Gy in a single fraction compared to 20 Gy in five fractions with 
respect to a primary endpoint of eight-week ambulatory rate in patients with spinal cord 
compression who were not candidates for surgical decompression. SCORAD stipulated that 
enrolled patients have a physician-assessed anticipated survival of at least eight weeks as an 
eligibility criterion. Despite this, (37%) patients died before eight weeks and could not be 
evaluated for the trial’s endpoint. The trial’s data monitoring committee increased the trial’s 
sample size, yet the trial narrowly failed to meet its noninferiority endpoint.28 Better patient 
mortality predictions might have altered SCORAD’s outcome. For enrollment to similar trials, an 
AI model such as ours may assess patient trial eligibility with greater accuracy and precision 
than a physician.  

Our work has notable limitations. Vitality status was coded as it existed in the EHR, and patient 
deaths may have been underreported. The 30-day mortality rate in our patient population was 
lower (2.5%) than has been reported in advanced cancer patients (16%), although this 
difference is at least in part because our study included patients at all stages of cancer 
diagnoses. We attempted multiple means to obtain access to the Social Security Death Index to 
corroborate our death data, but unsuccessfully.29 There are other limitations to EHR data, such 
as that smoking, alcohol, and drug use are neither consistently recorded by medical staff nor 
reliably reported by patients. Furthermore, KPS assessments, when not recorded in 
radiotherapy consultation notes, were extracted from an oncology note that antedated the 
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radiotherapy consult and consequently may not have represented the patient’s performance 
status on the date of radiotherapy consult. 

There remain opportunities to improve our feature space. Only a small fraction of unstructured 
data was structured at scale and included in the feature space. Large language AI models 
(LLMs) might facilitate greater use of these data. Dagdelen et al. used GPT-3 (OpenAI, San 
Francisco, CA) and Llama-2 (Meta, Menlo Park, CA) LLMs to extract complex material 
properties as structured outputs from scientific texts for downstream ML applications.30 In future 
work, we intend to investigate whether LLM-extracted structured features — particularly related 
to clinically validated prognostic indices — improve our model’s performance and increase its 
credibility to physician end-users. For example, LLMs might extract the number of brain 
metastases from magnetic resonance imaging radiologist reports, which is a parameter 
established in the Graded Prognostic Assessment tool31 to be associated with survival in many 
cancer histologies.  

Finally, we aim to test our model in a prospective clinical trial to evaluate its influence on 
radiation oncologist decision-making and patient quality-of-life. A May 2024 systematic review 
identified only 86 publications detailing randomized controlled trials evaluating AI tools in clinical 
practice (the review included trials published between January 2018 and November 2023). Of 
these, only three trials were targeted to oncology populations18,32,33 and only one18 in a palliative 
clinical context. Clinical validation of AI tools in oncology clinical practice broadly and radiation 
oncology specifically remains a critical need. 

Conclusion 
An RF model trained with structured EHR clinical features from a population of radiotherapy 
patients at a single large academic institution identified patients at elevated mortality risk within 
30 days of radiotherapy consultation with excellent accuracy and precision, and better than a 
model that relied only on patient age and a physician’s estimates of the patient’s performance 
status. This model may identify patients for whom single-fraction palliative RT courses would be 
preferred to prolonged RT courses. 
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