- 1 Comparative Effectiveness of the mRNA-1273 and BNT162b2 COVID-19 Vaccines
- 2 Among Adults With Underlying Medical Conditions: A Systematic Literature Review

3 and Pairwise Meta-Analysis Using GRADE

- 4 Xuan Wang,¹ Ankit Pahwa,² Mary T. Bausch-Jurken,³ Anushri Chitkara,² Pawana Sharma,⁴
- 5 Mia Malmenäs,¹ Sonam Vats,² Michael Gordon Whitfield,⁴ Kira Zhi Hua Lai,⁵ Priyadarsini
- 6 Dasari,⁶ Ritu Gupta,² Maria Nassim,⁷ Nicolas Van de Velde,³ Nathan Green,⁸ Ekkehard

7 Beck³

- ⁸ ¹ICON plc, Stockholm, Sweden; ²ICON plc, Bengaluru, India; ³Moderna, Inc., Cambridge,
- 9 MA, USA; ⁴ICON plc, London, United Kingdom; ⁵ICON plc, Toronto, ON, Canada; ⁶ICON
- 10 plc, Blue Bell, PA, USA; ⁷ICON plc, Langen, Germany; ⁸University College London,

11 London, United Kingdom

12	Corresponding Author:	Ekkehard Beck, PhD
13		Moderna, Inc.
14		325 Binney St, Cambridge, MA 02142, USA
15		Email: Ekkehard.beck@modernatx.com
16		Phone: +49 151 68557928
17	Running title:	Comparative COVID-19 Vaccine Effectiveness in Adults with
18		Medical Conditions

19 ABSTRACT

- 20 Introduction: This systematic literature review and pairwise meta-analysis evaluated the
- 21 comparative effectiveness of mRNA-1273 versus BNT162b in patients with at least one
- 22 underlying medical condition at high risk for severe COVID-19.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

23 Methods: MEDLINE, Embase, and Cochrane databases were searched for relevant articles from January 1, 2019 to February 9, 2024. Studies reporting effectiveness data from at least 24 two doses of mRNA-1273 and BNT162b2 vaccination in adults with medical conditions at 25 high risk of developing severe COVID-19 according to the US Centers for Disease Control 26 and Prevention were included. Outcomes of interest were SARS-CoV-2 infection (overall, 27 symptomatic, and severe), hospitalization due to COVID-19, and death due to COVID-19. 28 29 Risk ratios (RRs) were calculated with random effects models. Subgroup analyses by specific medical conditions, number of vaccinations, age, and SARS-CoV-2 variant were conducted. 30 31 Heterogeneity between studies was estimated with chi-square testing. The certainty of evidence was assessed using the Grading of Recommendations, Assessments, Development, 32 and Evaluations framework. 33 **Results:** Sixty-five observational studies capturing the original/ancestral-containing primary 34 series to Omicron-containing bivalent original-BA4-5 vaccinations were included in the 35 36 meta-analysis. mRNA-1273 was associated with significantly lower risk of SARS-CoV-2 infection (RR, 0.85 [95% CI, 0.79–0.92]; I^2 =92.5%), symptomatic SARS-CoV-2 infection 37 $(RR, 0.75 [95\% CI, 0.65-0.86]; I^2=62.3\%)$, severe SARS-CoV-2 infection (RR, 0.83 [95%) 38 39 CI, 0.78–0.89]; I^2 =38.0%), hospitalization due to COVID-19 (RR, 0.88 [95% CI, 0.82–0.94]; I^2 =38.7%), and death due to COVID-19 (RR, 0.84 [95% CI, 0.76–0.93]; I^2 =1.3%) than 40

BNT162b2. Findings were generally consistent across subgroups. Evidence certainty was low
or very low because sufficiently powered randomized controlled trials are impractical in this
heterogeneous population.

44 Conclusion: Meta-analysis of 65 observational studies showed that vaccination with mRNA45 1273 was associated with a significantly lower risk of SARS-CoV-2 infection and COVID-

- 46 19-related hospitalization and death than BNT162b2 in patients with medical conditions at
- 47 high risk of severe COVID-19.
- 48 Keywords: BNT162b2; comorbidity; COVID-19; effectiveness; mRNA vaccine; mRNA-
- 49 1273; SARS-CoV-2; severe acute respiratory syndrome coronavirus 2

50

51 Key Summary Points

- 52 Why carry out this study?
- 53 More than 20% of the global population has a medical condition that increases their risk of
- 54 developing severe COVID-19.
- 55 Global and national health authorities recommend COVID-19 vaccination in populations with
- 56 underlying medical conditions to mitigate the risk of severe illness; however, limited data are
- 57 available to inform population-level policy and individual vaccination decisions.
- 58 What was learned from the study?
- 59 To support clinical decision-making regarding COVID-19 vaccination, this systematic
- 60 literature review and meta-analysis synthesized real-world effectiveness data to evaluate the
- 61 comparative effectiveness of mRNA-1273 versus BNT162b2 in adults with at least one
- 62 medical condition that increases the risk of developing severe COVID-19.
- 63 Vaccination with mRNA-1273 was associated with a significantly lower risk of SARS-CoV-
- 64 2 infections and COVID-19–associated hospitalization and death in patients at risk of
- 65 developing severe COVID-19 based on underlying medical conditions.

66 **INTRODUCTION**

67	Although immunity to COVID-19 acquired through vaccination or natural SARS-CoV-2
68	infection has reduced rates of severe disease in the general population [1,2], the risk of
69	COVID-19-associated morbidity and mortality in the post-pandemic setting remains high,
70	particularly in people with specific medical conditions [3]. An estimated 1.7 billion people
71	(22% of the global population) have at least one underlying medical condition, such as
72	chronic lung diseases, cancer, chronic kidney disease, diabetes, heart conditions, or solid
73	organ transplant, that increases their risk of developing severe COVID-19 [3,4]. Consistent
74	with these risks, the World Health Organization (WHO) considers adults with these
75	comorbidities to be a high priority group for COVID-19 vaccination [5].
76	The high efficacy and safety of the two mRNA vaccines developed against the ancestral
77	SARS-CoV-2 strain, mRNA-1273 (Spikevax [®] ; Moderna, Inc., Cambridge, MA, USA) [6]
78	and BNT162b2 (Comirnaty [®] ; Pfizer/BioNTech, New York, NY, USA/Mainz, Germany), [7]
79	were demonstrated in phase 3 randomized controlled trials (RCTs) [8,9]. While
80	immunocompromised individuals were excluded, the pivotal studies included participants
81	with some high-risk comorbidities, and demonstrated high efficacy in these populations
82	comparable to the healthy participants [8,9].
83	Although mRNA-1273 and BNT162b2 are both mRNA vaccines, their formulations differ in
84	the amount of mRNA encoding the spike protein (mRNA-1273, 100/50 mcg; BNT162b2, 30
85	mcg) as well as in the lipid nanoparticle delivery systems [6,7,10,11]. In real-world studies
86	differences in immunogenicity and effectiveness have been observed particularly in some
87	high-risk populations, such as older and immunocompromised individuals [12-14]. Real-

88 world effectiveness data are crucial to help inform vaccine selection and procurement

89 decisions for COVID-19 national immunization programs because comparative high quality RCT evidence is lacking in the populations at greatest risk of severe COVID-19 disease. 90 91 Similar to seasonal influenza vaccination [15], COVID-19 vaccines are now updated 92 periodically [16]; regulators and policy makers no longer require RCT evidence for approval 93 of updated COVID-19 vaccines [17,18], and data from observational studies are increasingly 94 used to support policy [19]. Given differences across vaccine formulations, the prohibitive 95 number of people needed to enroll in potential RCTs designed for each high-risk group, and the variability in SARS-CoV-2 variants that emerge and their impact on the burden of 96 97 disease, synthesis of effectiveness data using robust meta-analyses on the comparative performance of the two major COVID-19 vaccines provides a means to inform the choice of 98 99 vaccine for future mRNA COVID-19 vaccination, particularly among vulnerable patient 100 populations. 101 We therefore conducted a systematic literature review (SLR) and pairwise meta-analysis to 102 compare the clinical effectiveness of mRNA-1273 versus BNT162b2 in adults with at least 103 one underlying medical condition predisposing them to developing severe COVID-19. Our

doses, is mRNA-1273 more effective than BNT162b2 at preventing SARS-CoV-2 infections

specific research question was "Following primary series vaccination and additional vaccine

and COVID-19–related hospitalizations and deaths in people with underlying medical

107 conditions?" To evaluate the certainty of evidence generated from our meta-analysis, we

108 employed the Grading of Recommendations, Assessments, Development, and Evaluations

109 (GRADE) framework [20] used by national immunization technical advisory groups

110 (NITAGs) to develop vaccine recommendations [21].

104

111 METHODS

112 Search strategy and study selection

- 113 This SLR and meta-analysis is registered in INPLASY (INPLASY202460065) and was
- 114 conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-
- 115 Analyses 2020 framework [22]. Data are from previously conducted studies; no new studies
- 116 with human participants or animals were performed.
- 117 Embase, MEDLINE, MEDLINE In-Process, e-pubs ahead of print, and Cochrane databases,
- 118 including Cochrane Central Register of Controlled Trials and Cochrane Database of
- 119 Systematic Reviews, were searched via the Ovid platform to retrieve studies published from
- 120 January 1, 2019 to February 9, 2024. Search queries are provided in Table S1. To
- 121 complement the main search, previous SLRs completed by our research group [12,13] as well
- as recently published SLRs were cross-checked for additional references [12,13,23-38].
- 123 The population, intervention, comparison, and outcomes used in the SLR are summarized in
- 124 **Table S2.** We focused this SLR on adults with medical conditions known to increase the risk
- 125 of developing severe COVID-19, a population considered to be a high priority group for
- 126 COVID-19 vaccination by WHO and national public health institutes such as the US Centers
- 127 for Disease Control and Prevention (CDC) and the European Centre for Disease Prevention
- and Control [3,5,39]. We defined the target population by selecting comorbidities from the
- 129 list of medical conditions published by the CDC as those conferring elevated risk for
- 130 developing severe COVID-19 [3]: adults with autoimmune disease, solid tumors, solid organ
- transplant, hematologic malignancies, chronic kidney disease with or without hemodialysis,
- type 1 or 2 diabetes, cardiovascular disease, cerebrovascular disease, chronic liver disease,
- 133 neurologic disease, chronic respiratory disease, obesity, primary immunodeficiency
- 134 syndrome or described as immunocompromised. Published clinical trials and observational

135 136	studies reporting clinical effectiveness outcomes in adults ≥ 18 years of age with the previously specified underlying medical conditions were eligible for inclusion in the SLR.
137	Only studies reporting data from participants who received mRNA-1273 or BNT162b2,
138	including variant-updated versions, were included. Homologous primary series with or
139	without homologous or heterologous additional doses where the last dose was mRNA-1273
140	or BNT162b2 were allowed (Table S2). Studies reporting data from heterologous 2-dose
141	vaccine regimens, comparing only mRNA-1273 or only BNT162b2 as the last dose of the
142	series versus another COVID-19 vaccine as the last dose, or comparing mRNA-1273 or
143	BNT162b2 primary series versus other COVID-19 vaccine primary series were excluded.
144	Clinical effectiveness outcomes of interest were those relevant to vaccine effectiveness (VE)
145	against COVID-19 as follows: SARS-CoV-2 infection, symptomatic SARS-CoV-2 infection,
146	severe SARS-CoV-2 infection, hospitalization due to COVID-19, and death due to COVID-
147	19. SARS-CoV-2 infections were symptomatic or asymptomatic and confirmed by a positive
148	laboratory test. Symptomatic infections were further defined as a positive test accompanied
149	by COVID-19 symptoms, including but not limited to fever, cough, shortness of breath,
150	sudden onset of anosmia or ageusia, and in some countries, runny nose. Severe SARS-CoV-2
151	infections were defined by individual studies; infections that resulted in hospitalization or
152	death were also considered to be severe infections for this analysis. Hospitalization due to
153	COVID-19 was defined as hospitalization associated with a positive SARS-CoV-2 test. Death
154	due to COVID-19 was defined as death associated with a positive SARS-CoV-2 test and no
155	other reported cause of death.

Additional rules used to determine study and data inclusion in the meta-analysis are provided
in the Appendix – Supplementary Methods.

158 Two independent reviewers screened all identified articles using a 2-level approach.

159 Discrepancies were resolved by consensus or a third reviewer. In level 1, titles and abstracts

160 were screened against the inclusion criteria. In level 2, the full texts of articles that passed

- 161 level 1 screening were retrieved and evaluated against selection criteria to determine final
- 162 eligibility.

163 Data extraction and quality assessment

164 Study design details, baseline patient and disease characteristics, vaccine intervention details,

165 and effectiveness endpoints were extracted. Data were extracted for single, specific medical

166 conditions if available; however, patients may have had other underlying comorbidities.

- Original study authors were contacted during data abstraction to provide clarity or additionaldata if needed.
- 169 Risk of bias was assessed in accordance with Cochrane review guidelines [40] using the

170 Newcastle-Ottawa Scale [41] for observational studies. The certainty of evidence for meta-

analysis results was evaluated based on GRADE [21].

172 Statistical analysis

173 Consistent with previous comparative effectiveness meta-analyses in immunocompromised 174 populations and older adults [12-14], we conducted a pairwise meta-analysis to compare vaccination with mRNA-1273 to vaccination with BNT162b2 in patients with underlying 175 medical conditions. Only studies that reported the number of events and sample size, VE, or 176 other effect measures per arm and subgroup were included in the meta-analysis. Risk ratios 177 178 (RRs) were pooled across studies using random effects meta-analysis models. Individual studies were weighted using the inverse variance method [42]. A continuity correction of 0.5 179 180 was added to the number of events and sample size in both arms in studies where no events 181 were observed in one or both arms [43]. A standard pairwise meta-analysis with RRs as the

input comparing mRNA-1273 to BNT162b2 was conducted [42,44,45]. Where available, 182 RRs were calculated from the number of events and sample size per arm, consistent with the 183 184 methodology of other recently conducted meta-analyses for COVID-19 vaccines [28,34]. For studies that only reported VE, RR was estimated as 1-(VE/100) based on the reported 185 definition of VE. Based on the assumption that all COVID-19 outcomes were rare [46,47], 186 odds ratio (OR), hazard ratio (HR), and incidence rate ratio (IRR) were considered to be 187 188 approximately equal to RR. The same approach was therefore taken for studies reporting OR, HR, or IRR; RR was estimated as $(1-OR) \times 100$, $(1-HR) \times 100$, and $(1-IRR) \times 100$. If a 189 190 study reported VE, OR, HR, or IRR both adjusted for covariates and unadjusted, adjusted 191 data were preferentially used in the meta-analysis. Because the target population consists of patients who may have multiple comorbidities and 192 193 immunocompromising conditions, we primarily considered two populations: the broad at-risk 194 population of adults with at least one medical condition as previously specified and the very 195 high risk population of immunocompromised adults with medical conditions defined as 196 clinically extremely vulnerable (CEV) groups 1 or 2 [48]. Although limited by feasibility, for comprehensiveness, we also conducted additional meta-analyses for specific groups and 197 198 medical conditions (cancer, cardiovascular-metabolic-renal disease, treatment with 199 immunosuppressive therapy) and individual comorbidities (autoimmune disease, 200 cardiovascular disease, chronic kidney disease, chronic respiratory disease, diabetes, hematologic malignancy, solid organ transplant), which are presented in the Appendix – 201 Supplemental Methods with the definitions of the medical conditions. 202 203 Similar to seasonal influenza vaccination, multiple mRNA COVID-19 vaccine formulations 204 have been administered across pandemic and non-pandemic settings and COVID-19 vaccines

are also expected to be periodically updated to match circulating variants [49]. In order to

206	capture the variability of vaccine administration and updates over time, we performed
207	subgroup analyses for the primary populations to evaluate the comparative effectiveness of
208	mRNA-1273 versus BNT162b2 considering differences in dosing regimen (2 doses, ≥3 doses
209	overall, \geq 4 doses), receipt of homologous versus heterologous vaccine (applicable for \geq 3
210	dose series), age group (18-65 years), and SARS-CoV-2 variant status (Delta, Omicron).
211	If the SARS-CoV-2 variant was not reported or specified directly, variants were assumed to
212	be Delta from May 2021 (non-US studies) or June 2021 (US studies) through November
213	2021 and Omicron as of December 2021 based on the predominant variant circulating locally
214	when data were collected [50-52].
215	If there were fewer than two studies for a given outcome or subgroup, the results of the
216	corresponding analysis were not feasible.
217	Publication bias was assessed by visual examination of funnel plots and Egger's regression
218	test for asymmetry [53,54]. Heterogeneity across studies was evaluated using chi-square
219	testing [55], with the percentage of variation across studies estimated using the I^2 statistic
220	(scale, 0–100%; 0% indicates no evidence of heterogeneity). Results were summarized in
221	forest plots showing effect estimates and their 95% CIs. Meta-analyses were conducted in R
222	v4.3.1 using the packages meta [56] and metafor [57].
223	RESULTS
224	Search results and included studies

Of 3,814 articles screened, 68 were included in the SLR. Three studies were excluded from

- the meta-analysis because of insufficient data [58], mixed series VE [59], and unclear vaccine
- series with no clarification provided by authors [60], leaving 65 studies (all non-RCTs)
- 228 included in the meta-analysis of adults with at least one underlying medical condition. Forty-

five studies (all non-RCTs) of adults with CEV 1 or 2 conditions were included in the meta-analysis.

231	The characteristics of the 65 studies included in the meta-analysis are summarized in Table
232	1. Overall, our meta-analysis included over 4.0 million patients who received mRNA-1273
233	and over 5.1 million patients who received BNT162b2. Eleven studies were industry-
234	sponsored [61-71]. More than half of the included studies were conducted in North America
235	(United States, n=36 [62-64,66,67,70-100]; Canada, n=2 [101,102]; Mexico, n=1 [103]).
236	Twenty-two studies involved European patients (Spain, n=9 [61,68,104-110]; Italy, n=5
237	[111-115]; Bulgaria, n=2 [116,117]; Austria, n=1 [118];Greece, n=1 [119]; Netherlands, n=1
238	[120]; Sweden, n=1 [121], Switzerland, n=1 [65]; multicountry, n=1 [122]). One study each
239	was conducted in Qatar [69], Singapore [123], Taiwan [124], and in multiple countries [125].
240	Most studies involved patients with autoimmune disease (n=17) [63,65,74,76,80,85,87,91-
241	93,95,97,104,112,115,120,123]; with mixed conditions (n=8 [67,71,76,86,90,101,118,122]),
242	solid organ transplant (n=12 [64,72,81,88,99,100,105,106,111,119,121,124]), and chronic
243	kidney disease (n=9 [62,67-69,73,89,96,102,125]) also common among included studies.
244	Seven studies included populations with mixed cancer [64,70,75,78,83,84,94], with a further
245	8 studies including only patients with hematologic malignancies [64,70,76,98,107-110] and 5
246	studies including only patients with solid tumors [61,76,113,114,116]. Other medical
247	conditions included were immunocompromised patients (n=5) [64,66,67,76,77], diabetes
248	(n=5) [67,75,79,103,117], chronic respiratory disease (n=3) [67,75,116], cardiovascular
249	disease (n=3) [67,75,116], obesity [103], primary immunodeficiency syndrome [64], and
250	chronic liver disease (n=1) [82]. Most studies reported data from patients infected with the
251	Delta variant (n=19), with studies reporting Omicron infection data also comprising a
252	considerable proportion of the overall meta-analysis set (n=11). Risk of bias was not
253	evaluated in 7 studies because full texts were not published [65,71,75,81,90,97,125]. Of the

- 58 remaining evaluable studies, 33 (57%) had no serious risk of bias and 24 (41%) had
- serious and 1 (2%) had very serious risk of bias (**Table S3**).
- 256 Meta-analysis results of the comparative effectiveness of mRNA-1273 and BNT162b2 in the
- base-case are shown in Figures 2–5 and in the subgroups of groups of medical conditions
- and individual comorbidities in **Figures S1–S10**.
- 259 There was no suspected publication bias for any outcomes in the base-case populations,
- 260 except for possible publication bias for symptomatic SARS-CoV-2 infection in adults with
- 261 CEV 1 or 2 conditions (Egger's regression test, P < 0.05).

262 SARS-CoV-2 infection

- 263 Meta-analysis of 52 studies reporting the SARS-CoV-2 infection outcome found that
- vaccination with mRNA-1273 was associated with a significantly lower risk of SARS-CoV-2
- infection compared with vaccination with BNT162b2 in adults with at least one underlying
- 266 medical condition (RR, 0.85 [95% CI, 0.79–0.92]; Figure 2 and Figure 3a). There was
- 267 considerable heterogeneity between the studies ($I^2=92.5\%$).
- In 38 studies reporting the SARS-CoV-2 infection outcome in adults with CEV 1 or 2
- 269 conditions, vaccination with mRNA-1273 was associated with a significantly lower risk of
- 270 SARS-CoV-2 infection compared with BNT162b2 (RR, 0.90 [95% CI, 0.84–0.97]; Figure
- 4). Between-study heterogeneity was estimated to be considerable (I^2 =80.2%).
- 272 The certainty of evidence in both primary meta-analyses was very low because of
- 273 inconsistency and indirectness arising from heterogeneous outcome definitions and the
- 274 composition of the populations analyzed; risk of bias also contributed to very low evidence
- certainty in adults with CEV 1 or 2 conditions (**Table 2** and **Table 3**).

276	Subgroup meta-analyses of studies reporting SARS-CoV-2 infection by vaccine regimen, age
277	group, and SARS-CoV-2 variant were generally similar to the primary results in adults with
278	at least one underlying medical condition (Figure 5a) and in adults with CEV 1 or 2
279	conditions (Figure 5b). Trends towards reduced risk of SARS-CoV-2 infection among
280	patients who received mRNA-1273 versus BNT162b2 were observed across all of the
281	subgroups analyzed. In particular, mRNA-1273 was associated with a statistically significant
282	reduction in infection risk in both the SARS-CoV-2 Delta and Omicron variant subgroups in
283	adults with at least one underlying medical condition and CEV 1 and 2 conditions.

284 Symptomatic SARS-CoV-2 infection

A total of 11 studies reporting symptomatic SARS-CoV-2 infection were included in the

286 meta-analysis of adults with at least one underlying medical condition. In this population,

vaccination with mRNA-1273 was associated with a significantly lower risk of infection

compared with BNT162b2 (RR, 0.75 [95% CI, 0.65–0.86]; Figure 2; Figure 3b).

Heterogeneity between studies was estimated to be substantial ($I^2=62.3\%$).

290 Meta-analysis of 6 studies reporting data for adults with CEV 1 or 2 conditions found that

vaccination with mRNA-1273 was associated with a trend towards lower risk of symptomatic

infection compared with vaccination with BNT162b2 (RR, 0.83 [95% CI, 0.68–1.01]; Figure

4); however, this result was not statistically significant. There was substantial heterogeneity

294 between studies ($I^2=62.2\%$).

295 The certainty of evidence in both primary meta-analyses was low because only

296 nonrandomized studies were included, and because of indirectness resulting from

297 heterogeneity in the composition of the population of adults with at least one underlying

298 medical condition (**Table 2** and **Table 3**).

299	When analyzed by vaccine regimen, age group, and SARS-CoV-2 variant subgroups, trends
300	toward reduced risk of symptomatic SARS-CoV-2 infection with mRNA-1273 vaccination
301	versus BNT162b vaccination were observed in adults with at least one underlying medical
302	condition (Figure 5a) and in adults with CEV 1 or 2 conditions (Figure 5b). All subgroups
303	analyzed were consistent with the primary analyses, except for adults with CEV 1 or 2
304	conditions who received 2 doses (RR, 1.50 [95% CI, 0.63–3.56]; I^2 =56.7%).

305 Severe SARS-CoV-2 infection

- 306 Meta-analysis of 42 studies reporting the severe SARS-CoV-2 infection outcome found that
- 307 vaccination with mRNA-1273 was associated with a significantly lower risk of severe SARS-
- 308 CoV-2 infection compared with BNT162b2 in adults with at least one underlying medical
- condition (RR, 0.83 [95% CI, 0.78–0.89]; Figure 2 and Figure 3c). Heterogeneity was
- stimated to likely be not important between studies (I^2 =38.0%).
- 311 Meta-analysis of 28 studies reporting the severe SARS-CoV-2 infection outcome in adults
- 312 with CEV 1 or 2 conditions found that vaccination with mRNA-1273 was associated with a
- 313 significantly lower risk of severe SARS-CoV-2 infection compared with vaccination with
- BNT162b2 (RR, 0.81 [95% CI, 0.77–0.86]; **Figure 4**). No heterogeneity between the studies was observed ($I^2=0\%$).
- The certainty of evidence in both primary meta-analyses was very low because of risk of bias and indirectness resulting primarily from heterogeneity in the composition of the populations analyzed (**Table 2** and **Table 3**).
- 319 Subgroup meta-analyses of studies reporting severe SARS-CoV-2 infection by vaccine
- 320 regimen, age group, and SARS-CoV-2 variant were generally similar to the primary results in
- adults with at least one underlying medical condition (Figure 5a) and in patients with CEV 1
- 322 or 2 conditions (Figure 5b). Trends towards reduced risk of severe SARS-CoV-2 infection

- among patients who received mRNA-1273 versus BNT162b2 were observed in all of the
- 324 subgroups analyzed, including the Delta and Omicron variant subgroups.

325 Hospitalization due to COVID-19

- 326 Meta-analysis of 27 studies reporting hospitalization due to COVID-19 found that
- 327 vaccination with mRNA-1273 was associated with a significantly lower risk of
- 328 hospitalization compared with BNT162b2 in adults with at least one underlying medical
- 329 condition (RR, 0.88 [95% CI, 0.82–0.94]; Figure 2 and Figure 3d). Heterogeneity between
- studies was estimated to likely be not important (I^2 =38.7%).
- In 22 studies reporting hospitalization due to COVID-19 in adults with CEV 1 or 2

332 conditions, vaccination with mRNA-1273 was associated with a significantly lower risk of

333 hospitalization compared with BNT162b2 (RR, 0.84 [95% CI, 0.79–0.89]; Figure 4). No

heterogeneity between studies was observed ($I^2=0\%$).

The certainty of evidence in both primary meta-analyses was very low because of risk of bias and indirectness resulting primarily from heterogeneity in the composition of the population analyzed (**Table 2** and **Table 3**).

338 Results from subgroup meta-analyses of studies reporting hospitalization due to COVID-19

by vaccine regimen, age group, and SARS-CoV-2 variant were generally similar to the

primary results in adults with at least one underlying medical condition (Figure 5a) and in

adults with CEV 1 or 2 conditions (Figure 5b). Trends towards reduced risk of

342 hospitalization among patients who received mRNA-1273 versus BNT162b2 were observed

across all of the subgroups analyzed, including the Delta and Omicron SARS-CoV-2 variant

subgroups.

345 Death due to COVID-19

- 346 Meta-analysis of 21 studies reporting the death due to COVID-19 outcome found that
- 347 vaccination with mRNA-1273 was associated with a significantly lower risk of death due to
- 348 COVID-19 compared with vaccination with BNT162b2 in adults with at least one underlying
- medical condition (RR, 0.84 [95% CI, 0.76–0.93]; Figure 2 and Figure 3e). Heterogeneity
- between studies was estimated to likely be not important ($I^2=1.3\%$).
- In 13 studies reporting death due to COVID-19 in adults with CEV 1 or 2 conditions,
- 352 vaccination with mRNA-1273 was associated with a significantly lower risk of death due to
- 353 COVID-19 compared with BNT162b2 (RR, 0.68 [95% CI, 0.50–0.91]; Figure 4). No
- heterogeneity between studies was observed ($I^2=0\%$).
- 355 The certainty of evidence in both primary meta-analyses was very low because of risk of bias,
- imprecision, and indirectness resulting primarily from the heterogeneity in the composition of
- 357 the populations analyzed (**Table 2** and **Table 3**).
- 358 When analyzed by vaccine regimen, age group, and SARS-CoV-2 variant subgroups, trends
- toward reduced risk of death due to COVID-19 with mRNA-1273 vaccination versus
- 360 BNT162b vaccination were observed in adults with at least one underlying medical condition
- 361 (Figure 5a) and in adults with CEV 1 or 2 conditions (Figure 5b). All subgroups analyzed,
- 362 including the Delta and Omicron SARS-CoV-2 variant subgroups were consistent with the
- 363 primary analyses, except in adults with at least one underlying medical condition who
- 364 received \geq 3 heterologous vaccine doses (RR, 1.05 [95% CI, 0.35–3.18]; I^2 =23.8%).

365

366 **DISCUSSION**

367 In this meta-analysis of 65 studies comprising more than 9 million vaccinated adults with at

least one underlying medical condition putting them at risk for developing severe COVID-19,

369	we found that vaccination with mRNA-1273 was associated with a significantly lower risk of
370	asymptomatic and symptomatic SARS-CoV-2 infections, severe SARS-CoV-2 infection,
371	hospitalization due to COVID-19, and death due to COVID-19 compared with BNT162b2.
372	Our meta-analysis also consistently demonstrated across dosing regimens and in
373	immunocompromised patients and population subgroups with selected high-risk
374	comorbidities that vaccination with mRNA-1273 led to improved outcomes. The observed
375	trend, that the benefit associated with mRNA-1273 vaccination compared with BNT162b2
376	vaccination in reducing the risk of the severe COVID-19 outcomes (severe SARS-CoV-2
377	infection, hospitalization due to COVID-19, and death due to COVID-19) was higher among
378	adults with CEV groups 1 or 2 conditions than the larger overall population of adults with at
379	least one underlying medical condition, suggests that the importance of choice of mRNA
380	vaccine increases with the severity of the underlying conditions. For the
381	immunocompromised population (ie, adults with CEV 1 and 2 conditions), the findings of
382	our meta-analysis confirm results of a previous GRADE meta-analysis in the same population
383	which primarily considered studies on the primary vaccine series [12], as well as the findings
384	of a GRADE meta-analysis in the vulnerable population of older adults, many of whom are
385	likely to have similar comorbidities [4,13]. As it would be impracticable to generate
386	comparative RCT evidence for mRNA-1273 versus BNT162b2 in the heterogeneous
387	population of patients with medical conditions and in particular immunocompromised
388	patients, SLR and GRADE meta-analysis of observational studies represents the most robust
389	source of information [126] for decision makers in the vaccine ecosystem helping to protect
390	patients with underlying medical conditions against severe COVID-19.
391	Patients at high risk for developing severe COVID-19 illness based on their medical history
571	r attents at men fisk for developing severe eo vid-17 filless based on their filedical filstory

392 may have more than one underlying medical condition influencing risk, as has been

recognized in previous estimates of the global at-risk population [4]. Because no assumptions

394 were made about a single primary medical condition in the populations of our primary analyses, our finding that vaccination with mRNA-1273 was associated with reduced risk of 395 396 severe COVID-19 in adults with at least one underlying medical condition and patients who 397 are immunocompromised is relevant also to patients who may have multiple and varied comorbidities. Interpreting results for patient subgroups defined by groups of medical 398 399 conditions and individual diseases is challenging because smaller sample sizes and disease-400 specific factors (eg, use of immunosuppressive medications in some patients with autoimmune disease) may mask differences in VE between COVID-19 mRNA vaccines. 401 402 We observed a considerable amount of heterogeneity between studies for the SARS-CoV-2 infection and symptomatic SARS-CoV-2 infection outcomes but not important or no 403 404 heterogeneity for the severe SARS-CoV-2 infection, hospitalization due to COVID-19, and 405 death due to COVID-19 outcomes. The observed heterogeneity in this meta-analysis also occurred to a lesser extent than in the previous meta-analyses of Kavikondala, et al [13] and 406 407 Wang, et al [12]. Among the factors that may be driving the observed heterogeneity between 408 studies are differences in study populations, statistical approaches employed, outcome definitions (eg, for severe COVID-19), the post-vaccination timepoints analyzed, and 409 410 vaccination schedules. Subgroup analyses to account for differences in age, dosing regimens, and SARS-CoV-2 variants did not reduce the observed heterogeneity. However, the extensive 411 subgroup analyses conducted were consistent with the primary results and thus confirm the 412 robustness of our main findings. 413

At the current stage of the COVID-19 pandemic, in which there are high levels of immunity
in the general population and with Omicron being the predominant circulating SARS-CoV-2
variant [1,2], the public health focus has shifted to preventing severe COVID-19 in
vulnerable populations through vaccination [5]. In our Omicron subgroup analysis, there was

a statistically significant reduction in risk favoring mRNA-1273 for overall, symptomatic, 418 and severe SARS-CoV-2 infection outcomes in adults with at least one underlying medical 419 420 condition and overall SARS-CoV-2 infection and hospitalization due to COVID-19 in adults with CEV 1 or 2 conditions. All remaining outcomes, except for symptomatic SARS-CoV-2 421 infection in adults with CEV 1 or 2 conditions, for which no studies were reported, 422 423 numerically favored mRNA-1273 over BNT162b2 for the Omicron subgroup. The latter 424 findings could be attributed to relatively small numbers of studies included in the metaanalysis of the Omicron subgroup, especially for severe events, and the heterogeneity of the 425 426 target population. As data are still accumulating in the Omicron setting, statistically significant differences in VE may become apparent. However, the Omicron subgroup 427 analysis confirms the overall findings of the main analysis, and thus suggests applicability of 428 429 the findings of this meta-analysis for current and future vaccine decision-making. A key limitation of our study is that no RCTs or head-to-head trials were identified for 430

431 inclusion in our evidence synthesis. Our meta-analysis was based on observational studies, which are considered in the hierarchy of evidence to be of lower quality, resulting in a low 432 level of certainty per GRADE. While all of the included studies were observational and 433 434 considered to have some risk of bias, approximately half of the studies were considered to have a serious risk of bias or reported insufficient information to evaluate risk of bias, 435 limiting the feasibility of sensitivity analyses. However, we conducted several subgroup 436 analyses and found that estimates of VE were consistent with the primary analyses across all 437 COVID-19 outcomes studied. Availability of higher quality observational studies would 438 439 further add to the evidence on comparative COVID-19 VE. Many of the studies identified for this meta-analysis did not specify the SARS-CoV-2 variant reported, or authors defined 440 441 variants differently. For example, Hernandez et al, reported data for Alpha, Delta, and 442 Omicron SARS-CoV-2 infections [61] and Pinana et al, reported data for Delta SARS-CoV-2

infections only [107], despite the studies having been conducted in the same countries and
during similar time periods. Most studies reported data from all vaccinated patients; however,
some studies considered all infected and vaccinated patients, further contributing to the
heterogeneity of the meta-analysis population. Finally, patients may have had multiple
medical conditions, which makes interpreting the results presented in the Supplementary
Material in patients grouped by medical conditions challenging.

The primary strength of our evidence synthesis is that it is, to our knowledge, the first meta-449 analysis to provide comparative effectiveness results for the two available COVID-19 mRNA 450 vaccines in adults with underlying medical conditions at high risk for developing severe 451 COVID-19 disease across original/ancestral-containing primary series and booster 452 453 vaccination up until and including Omicron-containing bivalent original/B4-5 mRNA vaccines. We used broad search terms and robust SLR methodology. By searching the 454 MEDLINE, Embase and Cochrane databases and crosschecking results with other previously 455 456 published SLRs and meta-analyses, we developed a global analysis population of patients from different stages of the pandemic with multiple high-risk medical conditions represented. 457 Original study authors were contacted to provide clarification on published data where 458 459 necessary, enhancing the quality of data included in our analysis. Of all the base-case metaanalyses tested, publication bias was only suspected in adults with CEV 1 and 2 conditions 460 for the symptomatic SARS-CoV-2 outcome, further increasing the strength of our study. In 461 addition, using advanced meta-analysis methodology applied in other meta-analyses of 462 COVID-19 vaccination [28,34] allowed inclusion of both studies reporting event and 463 464 participant numbers by vaccine arm as well as studies reporting only VE. Notably, due to the lack of head-to-head data, our use of observational studies reporting VE data for each vaccine 465 to compare VE between the two COVID-19 mRNA vaccines is supported by a similar 466 467 analysis by the CDC Influenza Division [127].

468	In conclusion, vaccination with mRNA-1273 was associated with significantly lower risks of
469	SARS-CoV-2 infection and severe COVID-19 illness in patients with underlying medical
470	conditions, including those classified as immunocompromised, compared to BNT162b2.
471	Findings were consistent across vaccine regimen, age group, and Delta and Omicron SARS-
472	CoV-2 variants, as well as across patients with cancer, patients with cardiovascular,
473	metabolic, and renal conditions, and patients receiving immunosuppressive drugs. In the
474	absence of RCTs evaluating head-to-head VE, synthesized comparative effectiveness data
475	provide the highest ranked evidence [126] that may guide the choice of COVID-19 vaccines
476	for individual patients and support population-level strategies designed to prevent severe
477	disease in high-risk populations.

478 Author Contributions

- 479 XW, AP, MTB-J, MM, and EB designed and performed the systematic literature review and
- 480 meta-analysis and critically evaluated the manuscript. PS, SV, RG, and MN performed the
- 481 systematic literature review and critically evaluated the manuscript. AG, MGW, KZHL, PD,
- 482 and NG conducted the analysis and critically evaluated the manuscript. MTB-J, NVdV, and
- 483 EB conceptualized the article and provided oversight and critical evaluation of the
- 484 manuscript. All authors contributed to the article and approved the submitted version.

485 Acknowledgments

- 486 Writing assistance was provided by Erin McClure, PhD, and Sheri Arndt, PharmD, of ICON
- 487 (Blue Bell, PA, USA) in accordance with Good Publication Practice (GPP 2022) guidelines,
- 488 funded by Moderna, Inc., and under the direction of the authors.

489 **Data Sharing Statement**

- 490 All original data generated or analyzed in this study are included in this article/as
- 491 Supplementary Material. Further inquiries can be directed to the corresponding author.

492 **Conflicts of Interest**

- 493 XW, AP, AC, PS, MM, SV, MGW, KZHL, PD, RG, and MN are employees of ICON plc, a
- 494 clinical research organization paid by Moderna, Inc., to conduct the study. NG is an
- 495 independent consultant employed at University College of London, and was paid by
- 496 Moderna, Inc. to conduct aspects of the study. MTB-J, NVdV, and EB are employees of
- 497 Moderna, Inc., and hold stock/stock options in the company. Authors employed by Moderna,
- 498 Inc. were involved in the study design, analysis and interpretation of data, the writing of the
- 499 manuscript, and the decision to submit the manuscript for publication.

500

501 **REFERENCES**

- 502 1. Arora RK, Joseph A, Van Wyk J, et al. SeroTracker: a global SARS-CoV-2
- seroprevalence dashboard. Lancet Infect Dis. 2021;21:e75-e6.
- 504 2. World Health Organization (WHO). Statement on the fifteenth meeting of the IHR
- 505 (2005) Emergency Committee on the COVID-19 pandemic. Available at:
- 506 https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-
- 507 the-international-health-regulations-(2005)-emergency-committee-regarding-the-
- 508 <u>coronavirus-disease-(covid-19)-</u>
- 509 pandemic?adgroupsurvey=%7Badgroupsurvey%7D&gclid=EAIaIQobChMI4Ojtsdbe
- 510 _gIVjQRyCh07igt4EAAYASACEgJ9pfD_BwE&fbclid=IwAR2M8EAyiSrAodhK9p
- 511 <u>-X582nHkP2AigpSX8pYIsLsPwqYh4SG26RGokGe7E</u>. Accessed July 5, 2024.
- 512 3. Centers for Disease Control and Prevention. Underlying conditions and the higher risk
- 513 for severe COVID-19. Available at: <u>https://www.cdc.gov/covid/hcp/clinical-</u>
- 514 <u>care/underlying-</u>
- 515 conditions.html?CDC_AAref_Val=https://www.cdc.gov/coronavirus/2019-
- 516 <u>ncov/hcp/clinical-care/underlyingconditions.html</u>. Accessed July 30, 2024.
- 517 4. Clark A, Jit M, Warren-Gash C, et al. Global, regional, and national estimates of the
- 518 population at increased risk of severe COVID-19 due to underlying health conditions
- 519 in 2020: a modelling study. Lancet Glob Health. 2020;8:e1003-e17.
- 520 5. World Health Organization (WHO). WHO roadmap on uses of COVID-19 vaccines
- 521 in the context of Omicron and high population immunity. Available at:
- 522 https://iris.who.int/bitstream/handle/10665/373987/WHO-2019-nCoV-Vaccines-
- 523 <u>SAGE-Prioritization-2023.2-eng.pdf?sequence=1</u>. Accessed June 18, 2024.
- 524 6. Spikevax (mRNA-1273). Full Prescribing Information, Moderna, Inc., Cambridge,
- 525 MA, 2022.

526 7. Comirnaty (BNT162b2). Full Prescribing Information, Pfizer/BioNTech, New York,

527 NY, 2022.

528 8. Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273

529 SARS-CoV-2 vaccine. N Engl J Med. 2021;384:403-16.

9. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA
COVID-19 vaccine. N Engl J Med. 2020;383:2603-15.

- 532 10. Cari L, Naghavi Alhosseini M, Mencacci A, Migliorati G, Nocentini G. Differences
- 533 in the expression levels of SARS-CoV-2 spike protein in cells treated with mRNA-
- based COVID-19 vaccines: a study on vaccines from the real world. Vaccines (Basel).
 2023;11:879.
- 536 11. Zhang L, More KR, Ojha A, et al. Effect of mRNA-LNP components of two globally 537 marketed COVID-19 vaccines on efficacy and stability. NPJ Vaccines. 2023;8:156.

538 12. Wang X, Haeussler K, Spellman A, et al. Comparative effectiveness of mRNA-1273

and BNT162b2 COVID-19 vaccines in immunocompromised individuals: a

- 540 systematic review and meta-analysis using the GRADE framework. Front Immunol.
- 541 2023;14:1204831.
- 542 13. Kavikondala S, Haeussler K, Wang X, et al. Comparative effectiveness of mRNA-

543 1273 and BNT162b2 COVID-19 vaccines among older adults: systematic literature

544 review and meta-analysis using the GRADE framework. Infect Dis Ther.

- 545 2024;13:779-811.
- Kavikondala S, Haeussler K, Wang X, et al. Immunogenicity of mRNA-1273 and
 BNT162b2 in immunocompromised patients: systematic review and meta-analysis
 using GRADE. Infect Dis Ther. 2024;13:1419-38.
- 549 15. Nafziger AN, Pratt DS. Seasonal influenza vaccination and technologies. J Clin
 550 Pharmacol. 2014;54:719-31.

551 16. Centers for Disease Control and Prevention. CDC recommends updated 2024-2025 COVID-19 and flu vaccines for fall/winter virus season. Available at: 552 553 https://www.cdc.gov/media/releases/2024/s-t0627-vaccine-recommendations.html. Accessed July 7, 2024. 554 US Food & Drug Administration. FDA takes action on updated mRNA COVID-19 555 17. vaccines to better protect against currently circulating variants. US Food & Drug 556 557 Administration. Available at: https://www.fda.gov/news-events/pressannouncements/fda-takes-action-updated-mrna-covid-19-vaccines-better-protect-558 559 against-currently-circulating. Accessed August 28, 2024. European Centre for Disease Prevention and Control. ECDC-EMA statement on 560 18. updating COVID-19 vaccines composition for new SARS-CoV-2 virus variants. 561 European Centre for Disease Prevention and Control. Available at: 562 https://www.ecdc.europa.eu/sites/default/files/documents/covid-19-vaccines-563 564 composition-variants-statement-ECDC-EMA_0.pdf. Accessed August 28, 2024. 19. Bollaerts K, Wyndham-Thomas C, Miller E, et al. The role of real-world evidence for 565 regulatory and public health decision-making for Accelerated Vaccine Deployment- a 566 meeting report. Biologicals. 2024;85:101750. 567 Schünemann H, Brożek J, Guyatt G, Oxman A, eds. Handbook for Grading the 20. 568 Quality of Evidence and the Strength of Recommendations Using the GRADE 569 570 Approach: The GRADE Working Group; 2013. U.S. Advisory Committee on Immunization Practices (ACIP) Handbook for 571 21. Developting Evidence-Based Reommendations: Formulating questions, conducting 572 573 the systematic review, and assessing the certainty of evidence using GRADE. Centers for Disease Control and Prevention. Available at: 574

- 575 https://www.cdc.gov/vaccines/acip/recs/grade/downloads/ACIP-GRADE-
- 576 <u>Handbook_4-22-24.pdf</u>. Accessed July 31, 2024.
- 577 22. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated
 578 guideline for reporting systematic reviews. BMJ. 2021;372:n71.
- 579 23. Cai C, Peng Y, Shen E, et al. A comprehensive analysis of the efficacy and safety of
 580 COVID-19 vaccines. Mol Ther. 2021;29:2794-805.
- 581 24. Grana C, Ghosn L, Evrenoglou T, et al. Efficacy and safety of COVID-19 vaccines.
- 582 Cochrane Database Syst Rev. 2022;12:CD015477.
- 583 25. Kow CS, Hasan SS. Real-world effectiveness of BNT162b2 mRNA vaccine: a meta-
- analysis of large observational studies. Inflammopharmacology. 2021;29:1075-90.
- 585 26. Lee A, Wong SY, Chai LYA, et al. Efficacy of covid-19 vaccines in
- 586 immunocompromised patients: systematic review and meta-analysis. BMJ.
- 587 2022;376:e068632.
- Sadeghi S, Kalantari Y, Shokri S, et al. Immunologic response, efficacy, and safety of
 vaccines against COVID-19 infection in healthy and immunosuppressed children and
 adolescents aged 2 21 years old: a systematic review and meta-analysis. J Clin Virol.
 2022;153:105196.
- 592 28. Xu J, Lan X, Zhang L, et al. The effectiveness of the first dose COVID-19 booster vs.
- 593 full vaccination to prevent SARS-CoV-2 infection and severe COVID-19 clinical
- event: a meta-analysis and systematic review of longitudinal studies. Front Public
- 595 Health. 2023;11:1165611.
- 596 29. Elzouki AY, Elshafei MN, Aziz A, et al. Seroconversion and safety of Covid-19
 597 vaccines in pa-tients with chronic liver disease and liver transplant: A systematic
 598 review. Qatar Med J. 2023;2023:21.

599	30.	Adams K, Rhoads JP, Surie D, et al. Vaccine effectiveness of primary series and
600		booster doses against covid-19 associated hospital admissions in the United States:
601		living test negative design study. BMJ. 2022;379:e072065.
602	31.	Li Z, Hu Y, Zou B. The vaccine-response in patients with cirrhosis after COVID-19
603		vaccination: A systematic analysis of 168,245 patients with cirrhosis. J Hepatol.
604		2023;79:e157-e62.
605	32.	Ribeiro TB, Roque F, Ida F, et al. Early Real-World Data to Assess Benefits and
606		Risks of COVID-19 Vaccines: A Systematic Review of Methods. Vaccines (Basel).
607		2022;10.
608	33.	Petras M, Macalik R, Janovska D, et al. Risk factors affecting COVID-19 vaccine
609		effectiveness identified from 290 cross-country observational studies until February
610		2022: a meta-analysis and meta-regression. BMC Med. 2022;20:461.
611	34.	Rahmani K, Shavaleh R, Forouhi M, et al. The effectiveness of COVID-19 vaccines
612		in reducing the incidence, hospitalization, and mortality from COVID-19: a
613		systematic review and meta-analysis. Front Public Health. 2022;10:873596.
614	35.	Widhani A, Hasibuan AS, Rismawati R, et al. Efficacy, Immunogenicity, and Safety
615		of COVID-19 Vaccines in Patients with Autoimmune Diseases: A Systematic Review
616		and Meta-Analysis. Vaccines (Basel). 2023;11.
617	36.	Moron-Duarte LS, Chacon KR, Gutierrez MP, De La Hoz IH, Yomayusa N. Efficacy
618		and safety of four COVID-19 vaccines in preventing SARS-CoV-2 infection: A rapid
619		review. Biomedica. 2022;42:19-31.
620	37.	Ledda C, Costantino C, Motta G, et al. SARS-CoV-2 mRNA Vaccine Breakthrough
621		Infections in Fully Vaccinated Healthcare Personnel: A Systematic Review. Trop
622		Med Infect Dis. 2022;7.

- 623 38. Lee A, Wong SY, Tay SH. Booster COVID-19 Vaccines for Immune-Mediated
- Inflammatory Disease Patients: A Systematic Review and Meta-Analysis of Efficacyand Safety. Vaccines (Basel). 2022;10.
- 626 39. European Centre for Disease Prevention and Control. Interim public health
- 627 considerations for COVID-19 vaccination roll-out during 2023. Stockholm, Sweden:
- 628 April 5, 2023, 2023.
- 40. Higgins JPT SJ, Page MJ, Elbers RG, Sterne JAC. Chapter 8: Assessing risk of bias in
- a randomized trial. In: Higgins JPT TJ, Chandler J, Cumpston M, Li T, Page MJ,
- 631 Welch VA, ed. Cochrane Handbook for Systematic Reviews of Interventions version
- 632 6.3 (updated February 2022): Cochrane; 2022.
- 41. Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for
- 634 Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available at:
- 635 <u>https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp</u>. Accessed February
- 636 16, 2023.
- 637 42. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials.
 638 1986;7:177-88.
- 639 43. Deeks JJ, Higgins JPT, Altman DG. Chapter 10: Analysing data and undertaking
- 640 meta-analyses. In: Higgins JPT, Thomas J, Chandler J, et al, eds. Cochrane Handbook
- 641 for Systematic Reviews of Interventions. version 6.4 ed: Cochrane; 2023.
- 642 44. Daly C, Anwer S, Welton NJ, Dias S, Ades A. Meta-Analysis of Event Outcomes:
- 643 Guideline Methodology Document 3. NICE Guidelines Technical Support Unit.
- 644 Available at: <u>https://www.bristol.ac.uk/population-health-</u>
- 645 <u>sciences/centres/cresyda/mpes/nice/guideline-methodology-documents-gmds/</u>.
- 646 Accessed October 11, 2023.

- 45. Bucher HC, Guyatt GH, Griffith LE, Walter SD. The results of direct and indirect
- 648 treatment comparisons in meta-analysis of randomized controlled trials. J Clin

Epidemiol. 1997;50:683-91.

- Greenland S, Thomas DC. On the need for the rare disease assumption in case-control
 studies. Am J Epidemiol. 1982;116:547-53.
- 47. Wu N, Joyal-Desmarais K, Ribeiro PAB, et al. Long-term effectiveness of COVID-19
- vaccines against infections, hospitalisations, and mortality in adults: findings from a
- rapid living systematic evidence synthesis and meta-analysis up to December, 2022.
- 655 Lancet Respir Med. 2023;11:439-52.
- 48. BC COVID Therapeutics Committee. Practice Tool #2 Definitions of
- 657 CEV/Immunosuppressed. BC Centre for Disease Control. Available at:
- 658 https://medicalstaff.islandhealth.ca/sites/default/files/covid-19/latest-
- 659 communications/Island%20Health/bcctc-practice-tool-2-definitions-cev-
- 660 <u>immunosuppressed.pdf</u>. Accessed February 16, 2023.
- 49. Chi WY, Li YD, Huang HC, et al. COVID-19 vaccine update: vaccine effectiveness,
- 662 SARS-CoV-2 variants, boosters, adverse effects, and immune correlates of protection.
- 663 J Biomed Sci. 2022;29:82.
- 50. Lambrou AS, Shirk P, Steele MK, et al. Genomic Surveillance for SARS-CoV-2
- 665 Variants: Predominance of the Delta (B.1.617.2) and Omicron (B.1.1.529) Variants -
- United States, June 2021-January 2022. MMWR Morb Mortal Wkly Rep.
- 667 2022;71:206-11.
- 51. Implications for the EU/EEA on the Spread of the SARS-CoV-2 Delta (B.1.617.2)
- 669 Variant of Concern. European Centre for Disease Control and Prevention. Available
- 670 at: <u>https://www.ecdc.europa.eu/sites/default/files/documents/Implications-for-the-EU-</u>

- 671 <u>EEA-on-the-spread-of-SARS-CoV-2-Delta-VOC-23-June-2021.pdf</u>. Accessed August
- 6723, 2024, 2024.
- 52. 06/15/2021: Lab Advisory: CDC Classifies SARS-CoV-2 Variant B.1.617.2 (Delta) a
- 674 Variant of Concern. Centers for Disease Control and Prevention. Available at:
- 675 https://www.cdc.gov/locs/2021/06-15-2021-lab-advisory-CDC_SARS-CoV-
- 676 <u>2_Variant_B_1_617_2_Delta.html</u>. Accessed August 3, 2024, 2024.
- 53. Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on
 choice of axis. J Clin Epidemiol. 2001;54:1046-55.
- 54. Sterne JAC, Egger M. Regression methods to detect publication and other bias in
- 680 meta-analysis. In: Rothstein HR, Sutton AJ, Borenstein M, eds. Publication Bias in
- Meta-Analysis: Prevention, Assessment and Adjustments: John Wiley & Sons, Ltd;
 2005:99-110.
- 683 55. Higgins JPT, Thomas J, Chandler J, et al. Cochrane Handbook for Systematic
- 684 Reviews of Interventions version 6.4 (updated August 2023). Available at:

685 <u>https://training.cochrane.org/handbook</u>. Accessed July 30, 2024.

- 56. Schwarzer G. meta: an R package for meta-analysis. R News. 2007;7:40-5.
- 57. Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat
 Softw. 2010;36:1-48.
- 58. Leuva H, Zhou M, Brau N, et al. Influence of cancer on COVID-19 incidence,
- 690 outcomes, and vaccine effectiveness: a prospective cohort study of U.S. veterans.
- 691 Semin Oncol. 2022;49:363-70.
- 692 59. Oliver MJ, Thomas D, Balamchi S, et al. Vaccine effectiveness against SARS-CoV-2
- 693 infection and severe outcomes in the maintenance dialysis population in Ontario,
- 694 Canada. J Am Soc Nephrol. 2022;33:839-49.

695	60.	Widdifield J, Kwong JC, Chen S, et al. Vaccine effectiveness against SARS-CoV-2
696		infection and severe outcomes among individuals with immune-mediated
697		inflammatory diseases tested between March 1 and Nov 22, 2021, in Ontario, Canada:
698		a population-based analysis. Lancet Rheumatol. 2022;4:e430-e40.
699	61.	Hernandez A, Boigues M, Felip E, et al. Immune response and effects of COVID-19
700		vaccination in patients with lung cancer-COVID lung vaccine study. Cancers (Basel).
701		2022;15:137.
702	62.	Manley HJ, Li NC, Aweh GN, et al. SARS-CoV-2 vaccine effectiveness and
703		breakthrough infections among patients receiving maintenance dialysis. Am J Kidney
704		Dis. 2023;81:406-15.
705	63.	Motwani KK, Hashash JG, Farraye FA, et al. Impact of holding immunosuppressive
706		therapy in patients with inflammatory bowel disease around mRNA COVID-19
707		vaccine administration on humoral immune response and development of COVID-19
708		infection. J Crohns Colitis. 2023;17:1681-8.
709	64.	Mues KE, Kirk B, Patel DA, et al. Real-world comparative effectiveness of mRNA-
710		1273 and BNT162b2 vaccines among immunocompromised adults identified in
711		adminstrative claims data in the United States. Vaccine. 2022;40:6730-9.
712	65.	Raptis CE, Polysopoulos C, Berger C, et al. Risk of SARS-COV-2 infection
713		following three doses of BNT162b2 or MRMA-1273 in patients with inflammatory
714		rheumatic diseases [abstr POS0547]. Annals of the Rheumatic Diseases. 2023;82:539.
715	66.	Sun T, Li L, Mues KE, et al. Real-World Effectiveness of a Third Dose of mRNA-
716		1273 versus BNT162b2 on Inpatient and Medically Attended COVID-19 among
717		Immunocompromised Adults in the United States. medRxiv. Preprint posted online
718		January 31, 2024. doi:10.1101/2024.01.30.24302015.

- 719 67. Kopel H, Nguyen VH, Bogdanov A, et al. Comparative Effectiveness of the Bivalent
- 720 (Original/Omicron BA.4/BA.5) mRNA COVID-19 Vaccines mRNA-1273.222 and
- 721 BNT162b2 Bivalent in Adults With Underlying Medical Conditions in the United
- 722 States. *medRxiv*. Preprint posted online
- 723 68. Quiroga B, Soler MJ, Ortiz A, et al. Anti-spike antibodies 3 months after SARS-CoV-
- 2 mRNA vaccine booster dose in patients on hemodialysis: the prospective

725 SENCOVAC study. Clin Kidney J. 2022;15:1856-64.

- 726 69. Alkadi MM, Hamad A, Ghazouani H, et al. Effectiveness of messenger RNA vaccines
- against SARS-CoV-2 infection in hemodialysis patients: a case-control study.
- 728 Vaccines (Basel). 2022;11:49.
- 729 70. Song Q, Bates B, Shao YR, et al. Risk and outcome of breakthrough COVID-19
- 730 infections in vaccinated patients with cancer: real-world evidence from the National
- 731 COVID Cohort Collaborative. J Clin Oncol. 2022;40:1414-27.
- 732 71. Nguyen VH, Boileau C, Bogdanov A, et al. 2359. Relative effectiveness of mRNA-
- 733 1273, BNT162b2, and Ad26.COV2.S vaccines in adults at higher risk for severe
- 734 COVID-19 outcomes. Open Forum Infectious Diseases. 2023;10:ofad500.1980.
- 735 72. Aslam S, Adler E, Mekeel K, Little SJ. Clinical effectiveness of COVID-19
- vaccination in solid organ transplant recipients. Transpl Infect Dis. 2021;23:e13705.
- 737 73. Butt AA, Talisa VB, Yan P, et al. Real-world effectiveness of the severe acute
- respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines in preventing
- confirmed infection in patients on chronic hemodialysis. Clin Infect Dis.
- 740 2022;75:e617-e22.
- 741 74. Cook CE, Patel NJ, Fu X, et al. Comparative effectiveness of BNT162b2 and mRNA-
- 742 1273 vaccines against COVID-19 infection among patients with systemic

743		autoimmune rheumatic diseases on immunomodulatory medications. J Rheumatol.
744		2023;50:697-703.
745	75.	Drawz PE, DeSilva M, Bodurtha P, et al. Effectiveness of BNT162b2 and mRNA-
746		1273 second doses and boosters for severe acute respiratory syndrome coronavirus 2
747		(SARS-CoV-2) infection and SARS-CoV-2-related hospitalizations: a statewide
748		report from the Minnesota Electronic Health Record Consortium. Clin Infect Dis.
749		2022;75:890-2.
750	76.	Embi PJ, Levy ME, Naleway AL, et al. Effectiveness of 2-dose vaccination with
751		mRNA COVID-19 vaccines against COVID-19-associated hospitalizations among
752		immunocompromised adults-nine states, January-September 2021. MMWR Morb
753		Mortal Wkly Rep. 2021;70:1553.
754	77.	Embi PJ, Levy ME, Patel P, et al. Effectiveness of COVID-19 vaccines at preventing
755		emergency department or urgent care encounters and hospitalizations among
756		immunocompromised adults: an observational study of real-world data across 10 US
757		states from August-December 2021. Vaccine. 2023;41:5424-34.
758	78.	Figueiredo JC, Merin NM, Hamid O, et al. Longitudinal SARS-CoV-2 mRNA
759		vaccine-induced humoral immune responses in patients with cancer. Cancer Res.
760		2021;81:6273-80.
761	79.	Fu Y, Wu K, Wang Z, et al. Effectiveness of various COVID-19 vaccine regimens
762		among 10.4 million patients from the National COVID Cohort Collaborative during
763		pre-Delta to Omicron periods - United States, 11 December 2020 to 30 June 2022.
764		Vaccine. 2023;41:6339-49.
765	80.	Holroyd KB, Healy BC, Conway S, et al. Humoral response to COVID-19
766		vaccination in MS patients on disease modifying therapy: immune profiles and
767		clinical outcomes. Mult Scler Relat Disord. 2022;67:104079.

- 768 81. Joerns J, Bollineni S, Mahan LD, et al. High-dose mycophenolate use at vaccination
- is independently associated with breakthrough COVID-19 among lung transplant
- patients. Transplantation. 2022;106:e271-e4.
- 771 82. John BV, Ferreira RD, Doshi A, et al. Third dose of COVID-19 mRNA vaccine
- appears to overcome vaccine hyporesponsiveness in patients with cirrhosis. J Hepatol.
- 773 2022;77:1349-58.
- 83. Kelly JD, Leonard S, Boscardin WJ, et al. Comparative mRNA booster effectiveness
- against death or hospitalization with COVID-19 pneumonia across at-risk US veteran
- 776 populations. Nat Commun. 2023;14:2976.
- 84. Kelly JD, Leonard S, Hoggatt KJ, et al. Incidence of severe COVID-19 illness
- following vaccination and booster with BNT162b2, mRNA-1273, and Ad26.COV2.S
 vaccines. JAMA. 2022;328:1427-37.
- Khan N, Mahmud N. Effectiveness of SARS-CoV-2 vaccination in a veterans affairs
 cohort of patients with inflammatory bowel disease with diverse exposure to
- immunosuppressive medications. Gastroenterology. 2021;161:827-36.
- 783 86. Kshirsagar M, Nasir M, Mukherjee S, et al. The risk of hospitalization and mortality
- after breakthrough SARS-CoV-2 infection by vaccine type: observational study of
- medical claims data. JMIR Public Health Surveill. 2022;8:e38898.
- 786 87. Liew J, Gianfrancesco M, Harrison C, et al. SARS-CoV-2 breakthrough infections
- among vaccinated individuals with rheumatic disease: results from the COVID-19
- Global Rheumatology Alliance provider registry. RMD Open. 2022;8:e002187.
- 789 88. Malinis M, Cohen E, Azar MM. Effectiveness of SARS-CoV-2 vaccination in fully
- vaccinated solid organ transplant recipients. Am J Transplant. 2021;21:2916-8.

791	89.	Miao J, Olson E, Houlihan S, et al. Effects of SARS-CoV-2 vaccination on the
792		severity of COVID-19 infection in patients on chronic dialysis. J Nephrol.
793		2023;36:1321-8.
794	90.	Niu J, Sareli C, Mayer D, Visbal A, Sareli AE. A population-based propensity score-
795		matched study of COVID-19 vaccination on clinical outcomes in hospitalized adult
796		patients with COVID-19 [abstr 1928]. Open Forum Infectious Diseases.
797		2022;9:ofac492.1555.
798	91.	Parsons C, Rubio J, Boulougoura A, Krishfield S, Kyttaris V. Predictors of a weak
799		antibody response to COVID-19 mRNA vaccine in systemic lupus erythematosus.
800		Rheumatol Int. 2023;43:1621-7.
801	92.	Patel NJ, Wang X, Fu X, et al. Factors associated with COVID-19 breakthrough
802		infection among vaccinated patients with rheumatic diseases: a cohort study. Semin
803		Arthritis Rheum. 2022;58:152108.
804	93.	Risk M, Hayek SS, Schiopu E, et al. COVID-19 vaccine effectiveness against
805		omicron (B.1.1.529) variant infection and hospitalisation in patients taking
806		immunosuppressive medications: a retrospective cohort study. Lancet Rheumatol.
807		2022;4:e775-e84.
808	94.	Rooney A, Bivona C, Liu B, et al. Risk of SARS-CoV-2 breakthrough infection in
809		vaccinated cancer patients: a retrospective cohort study. J Hematol Oncol.
810		2022;15:67.
811	95.	Shen C, Risk M, Schiopu E, et al. Efficacy of COVID-19 vaccines in patients taking
812		immunosuppressants. Ann Rheum Dis. 2022;81:875-80.
813	96.	Sibbel S, McKeon K, Luo J, et al. Real-world effectiveness and immunogenicity of
814		BNT162b2 and mRNA-1273 SARS-CoV-2 vaccines in patients on hemodialysis. J
815		Am Soc Nephrol. 2022;33:49-57.

816	97.	Singh J SN, Anzalone A, Olex A, Sun J, Madhira V, Patel R. Breakthrough COVID-
817		19 infections post-vaccination among immunocompromised patients with
818		autoimmune or inflammatory rheumatic diseases: a retrospective cohort analysis from
819		a U.S. nationally-sampled electronic medical record data repository. Arthritis
820		Rheumatol. 2021;73:abstr L16.
821	98.	Wang L, Kaelber DC, Xu R, Berger NA. COVID-19 breakthrough infections,
822		hospitalizations and mortality in fully vaccinated patients with hematologic
823		malignancies: a clarion call for maintaining mitigation and ramping-up research.
824		Blood Rev. 2022;54:100931.
825	99.	Yetmar ZA, Bhaimia E, Bierle DM, Ganesh R, Razonable RR. Breakthrough COVID-
826		19 after SARS-CoV-2 vaccination in solid organ transplant recipients: an analysis of
827		symptomatic cases and monoclonal antibody therapy. Transpl Infect Dis.
828		2022;24:e13779.
829	100.	Radcliffe C, Azar MM, Cohen E, et al. Clinical effectiveness of additional primary
830		SARS-CoV-2 vaccine doses for solid organ transplant recipients. Clin Transplant.
831		2022;36:e14601.
832	101.	Grewal R, Kitchen SA, Nguyen L, et al. Effectiveness of a fourth dose of COVID-19
833		mRNA vaccine against the Omicron variant among long term care residents in
834		Ontario, Canada: test negative design study. BMJ. 2022;378:e071502.
835	102.	Wing S, Thomas D, Balamchi S, et al. Effectiveness of three doses of mRNA
836		COVID-19 vaccines in the hemodialysis population during the Omicron period. Clin J
837		Am Soc Nephrol. 2023;18:491-8.
838	103.	Bello-Chavolla OY, Antonio-Villa NE, Valdes-Ferrer SI, et al. Effectiveness of a
839		nationwide COVID-19 vaccination program in Mexico against symptomatic COVID-

- 840 19, hospitalizations, and death: a retrospective analysis of national surveillance data.
- 841 Int J Infect Dis. 2023;129:188-96.
- 842 104. Egri N, Calderon H, Martinez R, et al. Cellular and humoral responses after second
- and third SARS-CoV-2 vaccinations in patients with autoimmune diseases treated
- 844 with rituximab: specific T cell immunity remains longer and plays a protective role
- against SARS-CoV-2 reinfections. Front Immunol. 2023;14:1146841.
- 846 105. Mazuecos A, Villanego F, Zarraga S, et al. Breakthrough infections following mRNA
- 847 SARS-CoV-2 vaccination in kidney transplant recipients. Transplantation.
- 848 2022;106:1430-9.
- 849 106. Odriozola A, San Segundo D, Cuadrado A, et al. SARS-CoV-2 and liver transplant:
- how has it behaved in this sixth wave? Transplantation. 2022;106:1445-9.
- Pinana JL, Lopez-Corral L, Martino R, et al. SARS-CoV-2 vaccine response and rate
 of breakthrough infection in patients with hematological disorders. J Hematol Oncol.
 2022;15:54.
- 108. Pinana JL, Martino R, Vazquez L, et al. SARS-CoV-2-reactive antibody waning,
- booster effect and breakthrough SARS-CoV-2 infection in hematopoietic stem cell
- transplant and cell therapy recipients at one year after vaccination. Bone Marrow
 Transplant. 2023;58:567-80.
- 858 109. Pinana JL, Vazquez L, Calabuig M, et al. One-year breakthrough SARS-CoV-2
- 859 infection and correlates of protection in fully vaccinated hematological patients.
- 860 Blood Cancer J. 2023;13:8.
- Rodriguez-Mora S, Corona M, Solera Sainero M, et al. Regular humoral and cellular
 immune responses in individuals with chronic myeloid leukemia who received a full
 vaccination schedule against COVID-19. Cancers (Basel). 2023;15:5066.

864	111.	Bonazzetti C, Tazza B, Gibertoni D, et al. Relationship between immune response to
865		severe acute respiratory syndrome coronavirus 2 vaccines and development of
866		breakthrough infection in solid organ transplant recipients: the CONTRAST cohort.
867		Clin Infect Dis. 2023;76:1761-7.
868	112.	Capuano R, Prosperini L, Altieri M, et al. Symptomatic COVID-19 course and
869		outcomes after three mRNA vaccine doses in multiple sclerosis patients treated with
870		high-efficacy DMTs. Mult Scler. 2023;29:856-65.
871	113.	Cona MS, Riva A, Dalu D, et al. Clinical efficacy of the first two doses of anti-SARS-
872		CoV-2 mRNA vaccines in solid cancer patients. Cancer Med. 2023;12:12967-74.
873	114.	Pino MS, Cheli S, Perna M, et al. The national COVID-19 vaccination campaign
874		targeting the extremely vulnerable: the Florence Medical Oncology Unit experience in
875		patients with cancer. Eur J Cancer. 2022;170:149-57.
876	115.	Sormani MP, Schiavetti I, Inglese M, et al. Breakthrough SARS-CoV-2 infections
877		after COVID-19 mRNA vaccination in MS patients on disease modifying therapies
878		during the Delta and the Omicron waves in Italy. EBioMedicine. 2022;80:104042.
879	116.	Dimitrov G, Valkov T, Batselova H, et al. Nationwide analysis of the impact of
880		COVID-19 in patients with a cardiovascular, oncological or chronic pulmonary
881		disease in the context of an Eastern European country with a low vaccination rate,
882		Bulgaria: March 2020-April 2022. BMJ Open. 2023;13:e068431.
883	117.	Valkov T, Dimitrov G. The impact of COVID-19 vaccination on Bulgarian patients
884		with uncomplicated type 2 diabetes mellitus as the only chronic condition. Acta
885		Medica Bulgarica. 2023;50:18-22.
886	118.	Heinzl MW, Kolenchery L, Resl M, et al. High anti-CoV2S antibody levels at
887		hospitalization are associated with improved survival in patients with COVID-19
888		vaccine breakthrough infection. Int J Environ Res Public Health. 2022;19:15581.

889 119. Marinaki S, Xagas E, Tsoutsoura P, et al. Occurrence of severe SARS-CoV-2

- 890 infection in fully vaccinated solid organ transplant recipients. Transplant Proc.
 891 2022;54:1405-8.
- 892 120. Boekel L, Stalman EW, Wieske L, et al. Breakthrough SARS-CoV-2 infections with
- the delta (B.1.617.2) variant in vaccinated patients with immune-mediated
- 894 inflammatory diseases using immunosuppressants: a substudy of two prospective

cohort studies. Lancet Rheumatol. 2022;4:e417-e29.

- 121. Magnusson JM, Larsson H, Alsaleh A, et al. COVID-19 in lung transplant recipients:
- an overview of the Swedish national experience. Transpl Int. 2021;34:2597-608.
- 898 122. Kissling E, Hooiveld M, Martinez-Baz I, et al. Effectiveness of complete primary

899 vaccination against COVID-19 at primary care and community level during

900 predominant Delta circulation in Europe: multicentre analysis, I-MOVE-COVID-19

and ECDC networks, July to August 2021. Euro Surveill. 2022;27:2101104.

- 902 123. Yeo T, Quek AML, Yong KP, et al. COVID-19 infection after two doses of SARS-
- 903 CoV-2 mRNA vaccine in multiple sclerosis, AQP4-antibody NMOSD and MOGAD.
- 904 Mult Scler Relat Disord. 2022;65:104003.
- 905 124. Chen CC, Hsu MK, Huang YJ, et al. Protective effect of vaccine doses and antibody
- 906 titers against SARS-CoV-2 infection in kidney transplant recipients. Transpl Int.

907 2023;36:11196.

- 908 125. Haarhaus M, Woitas RP, Veiga PM, et al. Multinational comparative efficacy of 6
- 909 different COVID-19 vaccines for the prevention of breakthrough infection and
- 910 mortality in HD patients [abstr 4363]. Nephrology Dialysis Transplantation.
- 911 2023;38:gfad063c_4363.

- 912 126. Glover J, Izzo D, Odato K, Wang L. EBM page generator. Trustees of Dartmouth
- 913 College and Yale University. Available at: <u>https://www.ebmpyramid.org/index.php</u>.

914 Accessed August 28, 2024.

- 915 127. Lewis NM, Chung JR, Uyeki TM, et al. Interpretation of relative efficacy and
- 916 effectiveness for influenza vaccines. Clin Infect Dis. 2022;75:170-5.

918 TABLES

919 **Table 1** Characteristics of included studies

Author, year			Study	characteri	stics					Out	comes repor	ted	
	Design	Country and data source	Medical condition	SARS- CoV-2 testing method	Variant	Vaccine doses	Study period	Vaccinated, n	SARS- CoV-2 Infection	Symptomatic SARS-CoV-2 infection	Severe SARS- CoV-2 infection	Hospitalization due to COVID- 19	Death due to COVI D-19
Alkadi, 2022 [69]	Test-negative case-control study	Qatar Hamad Medical Corporation	CKD with hemodialysis	PCR	NR	2 doses (MM vs PP)	Dec 20, 2020 to Jan 3, 2022	mRNA- 1273: 69 BNT162b2: 622	Y	N	N	N	N
Aslam, 2021 [72]	Retrospective cohort study	USA Transplant registry	Solid organ transplant	NS	Alpha ^a	2 doses (MM vs PP)	Jan 2021 to Jun 2021	mRNA- 1273: 375 BNT162b2: 632	Y	Y	Y	Y	Y
Bello-Chavolla, 2023 [103]	Retrospective cohort study	Mexico SISVER database	Diabetes, other (obesity)	RAT or RT- PCR	Mixed variants (B.1.1.5 19 and Delta)	2 doses (MM vs PP)	Dec 24, 2020 to Sep 27, 2021	Diabetes mRNA- 1273: 453 BNT162b2: 30,160 Obesity mRNA- 1273: 385 BNT162b2: 28,515	Y	Y	Y	Ν	Y

Boekel, 2022 [120]	Pooled study from 2 prospective o bservational studies	Netherlands 2 large, ongoing prospective multicenter cohort studies	Autoimmune disease	RAT or PCR	Delta	2 doses (MM vs PP)	Apr 26, 2020 to Mar 1, 2021; Feb 2, 2021 to Aug 1, 2021	With immunosup pressants mRNA- 1273: 563 BNT162b2: 2,019 Without immunosup pressants mRNA- 1273: 203 BNT162b2: 598	Y	Ν	Y	Υ	Υ
Bonazzetti, 2023 [111]	Prospective cohort study	Italy Medical records from RCCS Azienda Ospedaliero- Universitaria die Bologna	Solid organ transplant	RAT or PCR	Mixed variants (Alpha, Delta, and Omicron) ^a	3 doses (MMM vs PPP; PPM vs PPP)	Feb 2021 to Jan 2022 (enroll ment); follow -up until Apr 30, 2022	mRNA- 1273: 136 BNT162b2: 70	Y	Ν	Y	Y	Ν
Butt, 2022 [73]	Test-negative case-control study	USA Department of Veterans Affairs COVID-19 Shared Data Resource	CKD with hemodialysis	Laborat ory diagnos is	Mixed variants (Beta and Delta)	2 doses (MM vs PP)	Jan 26, 2021 to Aug 31, 2021	mRNA- 1273: 1,174 BNT162b2: 1,526	Y	Ν	N	Ν	N
Capuano, 2023 [112]	Retrospective cohort study	Italy MS Centers of the Raising	Autoimmune disease	RAT or PCR	Omicron a	3 doses (MMM vs PPP;	Sep 2021	mRNA- 1273: 46	Ν	Ν	Y	Ν	Y

		Italian Researchers MS study group				PPM vs MMP)	to Jul 2022	BNT162b2: 244					
Chen, 2023 [124]	Retrospective cohort study	Taiwan Taiwan Centers for Disease Control	Solid organ transplant	RAT or PCR	Omicron	2 doses (MM vs PP) 3 doses (MMM vs PPP; PPM, AAM, XXM vs MMP, AAP, XXP) 4 doses (MMM M vs PPPP; MMPM, MMXM , PPMM, PPPM, AMMM , AAMM, AAMM, AAAM, XXMM vs MMMP, AAAM,	Apr to Aug 2022	2 doses mRNA- 1273: 24 BNT162b2: 19 3 doses mRNA- 1273: 219 BNT162b2: 91 4 doses mRNA- 1273: 61 BNT162b2: 11	Y	Ν	N	Ν	Ν
Cona, 2023 [113]	Prospective cohort study	Italy Patient questionnaire from Luigi Sacco Hospital	Solid tumor	RAT or PCR	Alpha ^a	2 doses (MM vs PP)	Jan to Jun 2021	mRNA- 1273: 55 BNT162b2: 140	Y	Y	N	Ν	N

Cook, 2023 [74]	Retrospective cohort study	USA Electronic health records from Mass General Brigham	Autoimmune disease	RAT or PCR	Omicron and pre- Omicron (Alpha and Delta)	2 doses (MM vs PP) 2 or 3 doses (MM or MMM vs PP or PPP)	Dec 27, 2020 to May 15, 2021; end of follow -up Feb 22, 2022	mRNA- 1273: 4,322 BNT162b2: 5,516	Y	Ν	Ν	Ν	Ν
Dimitrov, 2023 [116]	Retrospective cohort study	Bulgaria Bulgarian Ministry of Health United Information Portal	Cardiovascul ar disease, chronic respiratory condition, solid tumor	RT- PCR and RAT	Mixed variants	2 doses (MM vs PP) 3 doses (AAM vs AAP; JM vs JP)	Mar 2020 to Apr 2022	2 doses mRNA- 1273: 914 BNT162b2: 8,033 3 doses mRNA- 1273: 96 BNT162b2: 900	Ν	Ν	Y	Ν	Y
Drawz, 2022 [75]	Test-negative case-control study	USA Minnesota Electronic Health Record Consortium	Cardiovascul ar disease (including hypertension) , chronic respiratory condition, diabetes, mixed cancer	PCR	Delta ^a	2 doses (MM vs PP) 3 doses (MMM vs PPP)	Aug 29, 2021 to Nov 27, 2021	2 doses mRNA- 1273: 1,066,645 BNT162b2: 1,732,112 3 doses mRNA- 1273: 609,153 BNT162b2: 395,634	Y	Ν	Y	Y	Ν

Egri, 2023 [104]	Prospective cohort study	Spain Department of Autoimmune Diseases, Hospital Clinic Barcelona	Autoimmune disease	RAT or PCR	Mixed variants (Delta and Omicron) ^a	3 doses (MMM vs PPP)	May 2021 to Jan 2022	mRNA- 1273: 7 BNT162b2: 2	Y	Y	N	N	N
Embi, 2021 [76]	Test-negative case-control study	USA VISION Network	Autoimmune disease, hematologic malignancy, immuncompr omised, mixed conditions, solid tumor	PCR	Delta	2 doses (MM vs PP)	Jan 17 to Sep 5, 2021	mRNA- 1273: 4,337 BNT162b2: 6,227	Y	N	Y	Y	N
Embi, 2023 [77]	Test-negative case-control study	USA VISION Network	Immunocom promised	RT- PCR	Delta	2 doses (MM vs PP) 3 doses (MMM vs PPP)	Aug 26 to Dec 25, 2021	2 doses mRNA- 1273: 1,698 BNT162b2: 2,509 3 doses mRNA- 1273: 452 BNT162b2: 919	Y	N	Y	Y	N
Figueiredo, 2021 [78]	Prospective cohort study	USA SeroNet CORALE study	Mixed cancer	SARS- CoV-2 IgG assays	Mixed variants (Alpha and Delta) ^a	2 doses (MM vs PP)	Dec 22, 2020 to Aug 30, 2021	mRNA- 1273: 128 BNT162b2: 163	Y	N	Y	Y	N
Fu, 2023 [79]	Retrospective cohort study	USA National	Diabetes	PCR	Pre- Delta, Delta, Omicron	2 doses (MM vs PP)	Dec 11, 2020 to Jun	2 doses mRNA- 1273: 55,234	Y	Ν	Y	N	Y

		COVID Cohort Collaborative			, and mixed variants	3 doses (MMM vs PPP; PPM vs MMP; JM vs JP)	30, 2022	BNT162b2: 86,447 3 doses mRNA- 1273: 46,065 BNT162b2: 48,528					
Grewal, 2022 [101]	Test-negative case-control study	Canada Provincial databases	Mixed conditions	RT- PCR	Omicron	3 doses (MMM vs PPP)	Dec 30, 2021 to Apr 27, 2022	mRNA- 1273: 57,604 ^b BNT162b2: 48,706 ^b	Y	Y	Y	Ν	Ν
Haarhaus, 2023 [125]	Retrospective cohort study	22 countries in Europe, Asia, Africa, and South America Multinational dialysis provider network	CKD with hemodialysis	PCR	Mixed variants (Alpha and Delta) ^a	2 doses (MM vs PP)	Jan 31 to Jul 15, 2021	mRNA- 1273: 1,521 BNT162b2: 13,116	Y	Ν	Ν	Ν	Ν
Heinzl, 2022 [118]	Retrospective cohort study	Austria Electronic health records from Department of Internal Medicine at Saint John of God Hospital Linz	Mixed conditions	PCR	Delta	2 doses (MM vs PP)	Aug to Dec 2021	mRNA- 1273: 4 BNT162b2: 61	Ν	Ν	Y	Ν	Y
Hernandez, 2022 [61]	Prospective cohort study	Spain Medical records	Solid tumor	PCR	Mixed variants (Alpha, Delta, and	2 doses (MM vs PP)	NR; censor data Jun 2, 2022	2 doses mRNA- 1273: 119	Ν	Ν	Y	Ν	Y

					Omicron) ^a	3 doses (MMM vs PPP)		BNT162b2: 2 3 doses mRNA- 1273: 93 BNT162b2: 1					
Holroyd, 2022 [80]	Retrospective cohort study	USA Brigham MS Center CLIMB repository	Autoimmune disease	PCR, anti- Spike antibod y testing (Roche Elecsys)	Delta ^a	2 doses (MM vs PP)	Jun to Dec 2021	mRNA- 1273: 110 BNT162b2: 133	Y	Ν	Y	Y	Y
Joerns, 2022 [81]	Retrospective cohort study	USA University of Texas Southwestern Medical Center	Solid organ transplant	NR	Mixed variants ^a	2 doses (MM vs PP)	Mar 1, 2020 to Sep 24, 2021	mRNA- 1273: 18 BNT162b2: 33	Y	Y	N	Ν	Ν
John, 2022 [82]	Retrospective cohort study	USA Veterans Outcomes and Costs Associated with Liver Disease cohort	Chronic liver disease	PCR	Mixed variants (Delta and Omicron)	2 doses (MM vs PP) 3 doses (MMM vs PPP)	Dec 18, 2020 to Feb 11, 2022	2 doses mRNA- 1273: 6,875 BNT162b2: 6,166 3 doses mRNA- 1273: 6,229 BNT162b2: 6,812	Ν	Ν	Y	Ν	Y

Kelly, 2022 [84]	Retrospective cohort study	USA Veterans Health Administration	Mixed cancer	Laborat ory diagnos is	Mixed variants (Delta and Omicron)	3 doses (MMM vs PPP)	Jul 1, 2021 to Apr 29, 2022; follow -up until May 30, 2022	mRNA- 1273: 79,517 BNT162b2: 67,780	Y	Y	Y	Y	Ν
Kelly, 2023 [83]	Retrospective cohort study	USA Veterans Health Administration COVID-19 Shared Data Resource	Mixed cancer	Laborat ory diagnos is	Delta, Omicron , and mixed variants (Delta and Omicron)	3 doses (MMM vs PPP)	Jul 1, 2021 to Apr 9, 2022; follow -up until May 30, 2022	mRNA- 1273: 101,749 BNT162b2: 87,308	Y	Y	Y	N	Ν
Khan, 2021 [85]	Retrospective cohort study	USA Veterans Health Administration	Autoimmune disease	PCR, antibod y testing, or physicia n note	Alpha ^a	2 doses (MM vs PP)	Dec 18, 2020 to Apr 20, 2021	mRNA- 1273: 3,380 BNT162b2: 2,873	Y	Ν	Y	Ν	N
Kissling, 2022 [122]	Test-negative case-control study	Europe (Croatia, France, Ireland, the Netherlands, Portugal, Romania, Spain [4 regions], England,	Mixed conditions	RT- PCR, antigen testing	Delta	2 doses (MM vs PP)	Jul to Aug 2021	mRNA- 1273: 172 BNT162b2: 1,016	Y	Y	N	Ν	Ν

		Scotland) Medical records, questionnaires, vaccine registry											
Kopel, 2024 [67]	Retrospective cohort study	USA Veradigm Network EHR dataset and Komodo dataset	Cardiovascul ar disease, chronic kidney disease with and without hemodialysis, chronic respiratory condition, diabetes, immunocom promised, mixed conditions	HCP confirm ed diagnos is codes	Omicron	≥3 doses (X ^c M vs X ^c P)	Sep 8, 2022 to May 31, 2023	mRNA- 1273: 757,572 BNT162b2: 1,204,975	Y	Ν	Y	Y	Ν
Kshirsagar, 2022 [86]	Retrospective cohort study	USA medical claims data	Mixed conditions	Laborat ory diagnos is	Mixed variants (Alpha and Delta) ^a	2 doses (MM vs PP)	Mar 10 to Oct 14, 2021	mRNA- 1273: 5,480 BNT162b2: 11,339	Ν	Ν	Y	Y	Y
Liew, 2022 [87]	Retrospective cohort study	USA COVID-19 Global Rheumatology Alliance	Autoimmune disease	PCR, antigen or antibod y test	Mixed variants (Alpha and Delta) ^a	2 doses (MM vs PP)	Jan 5 to Sep 30, 2021	mRNA- 1273: 21 BNT162b2: 45	Ν	N	Y	Y	Y
Magnusson, 2021 [121]	Retrospective cohort study	Sweden Referring hospitals in Sweden	Solid organ transplant	PCR, antigen test	Mixed variants ^a	2 doses (MM vs PP)	Feb 1, 2020 to Apr 30, 2021	mRNA- 1273: 3 BNT162b2: 4	Y	Y	Y	Y	Ν

Malinis, 2021 [88]	Retrospective cohort study	USA Yale New Haven Hospital	Solid organ transplant	NR	Mixed variants (Alpha and Delta) ^a	2 doses (MM vs PP)	Start date NR; end date as of May 18, 2021	mRNA- 1273: 167 BNT162b2: 288	Y	Ν	Y	N	Y
Manley, 2023 [62]	Retrospective cohort study	USA EHR	CKD with hemodialysis	RT- PCR	Delta, pre- Delta, and mixed variants (Delta and pre- Delta)	2 doses (MM vs PP)	Feb 1 to Dec 18, 2021	mRNA- 1273: 6,853 BNT162b2: 5,132	Y	Ν	Y	Y	Υ
Marinaki, 2022 [119]	Prospective cohort study	Greece Hospital records from Laiko Hospital Athens	Solid organ transplant	PCR	Mixed variants (Delta and Omicron) ^a	2 doses (MM vs PP)	NR	mRNA- 1273: 147 BNT162b2: 302	Y	Ν	Y	Y	Ν
Mazuecos, 2022 [105]	Retrospective cohort study	Spain Spanish Society of Nephrology COVID-19 Registry	Solid organ transplant	NR	Delta	2 doses (MM vs PP)	Apr 1 to Oct 2, 2021	mRNA- 1273: 213 BNT162b2: 121	N	Ν	Y	Y	Y
Miao, 2023 [89]	Retrospective cohort study	USA Mayo Health Clinic in the Midwest	CKD with hemodialysis	Laborat ory diagnos is	Mixed variants (Alpha, Delta, and Omicron)	2 doses (MM vs PP)	Apr 1, 2020 to Oct 31, 2022	mRNA- 1273: 53 BNT162b2: 114	Ν	Ν	Y	Y	Y

Motwani, 2023 [63]	Prospective cohort study	USA Data source NR	Autoimmune disease	PCR	Mixed variants (Delta and Omicron) ^a	2 doses (MM vs PP)	>12 month s	mRNA- 1273: 684 BNT162b2: 1,170	Y	N	Y	Y	N
Mues, 2022 [64]	Retrospective cohort study	USA HealthVerity database	Hematologic malignancy, immunocom promised, mixed cancer, other (primary immunodefic iency syndrome), solid organ transplant	PCR or antigen test	Delta	2 doses (MM vs PP)	Dec 11, 2020 to Oct 12, 2021	mRNA- 1273: 57,700 BNT162b2: 66,757	Y	Ν	Y	Y	N
Nguyen, 2023 [71]	Retrospective cohort study	USA EHR linked to pharmacy and medical claims	Mixed conditions	NR	Mixed variants (Delta and Omicron) ^a	2 doses (MM vs PP) 3 doses (MMM vs PPP)	Primar y series: Feb 1 to Oct 18, 2021 Booste r: Oct 19, 2021 to Jan 31, 2022	2 doses mRNA- 1273: 855,458 BNT162b2: 842,335 3 doses mRNA- 1273: 208,725 BNT162b2: 214,564	Y	Ν	Y	Y	Ν
Niu, 2022 [90]	Retrospective cohort study	USA Memorial Healthcare System,	Mixed conditions	NR	Delta ^a	2 doses (MM vs PP)	Jun 1 to Sep 20, 2021	mRNA- 1273: 37 BNT162b2: 225	Ν	N	Y	N	Y

		Hollywood, Florida											
Odriozola, 2022 [106]	Retrospective cohort study	Spain Medical records and patient surveys from Marqués de Valdecilla University Hospital and San Pedro Hospital	Solid organ transplant	RAT confirm ed by RT- PCR or antigen test	Omicron	3 doses (MMM vs MMP)	Late Nov 2021 to Feb 23, 2022	mRNA- 1273: 23 BNT162b2: 6	Ν	Ν	Y	Y	Y
Parsons, 2023 [91]	Prospective cohort study	USA Beth Israel Deaconess Medical Center lupus cohort	Autoimmune disease	PCR or anti- nucleoc apsid IgG assay	Mixed variants (Delta and Omicron) ^a	2 doses (MM vs PP) 3 doses (MMM vs PPP)	Dec 2020 to Mar 2022	2 doses mRNA- 1273/BNT16 2b2: 16 ^d 3 doses mRNA- 1273: 27 BNT162b2: 35	Y	N	Ν	N	N
Patel, 2023 [92]	Retrospective cohort study	USA EHR from Mass General Brigham	Autoimmune disease	PCR or antigen test	Mixed variants (Delta and Omicron) ^a	2 doses (MM vs PP)	Dec 11, 2020 to Nov 15, 2021	mRNA- 1273: 4,588 BNT162b2: 6,080	Y	Ν	N	N	N
Pinana, 2022 [107]	Prospective cohort study	Spain GETH-TC registry	Hematologic malignancy	PCR or antigen test	Delta ^a	2 doses (MM vs PP)	Dec 2020 to early Dec 2021	mRNA- 1273: 983 BNT162b2: 362	Y	Ν	Ν	Ν	Ν

Pinana, 2023a [109]	Prospective cohort study	Spain GETH-TC registry	Hematologic malignancy	PCR or antigen test	Mixed variants (Alpha or Beta, Delta, and Omicron)	2 doses (MM vs PP) 3 doses (MMM vs PPP)	Primar y: Dec 30, 2020 to Jun 30, 2021 Booste r: until Jul 28, 2022	2 doses mRNA- 1273: 1,086 BNT162b2: 410 3 doses mRNA- 1273: 910 BNT162b2: 361	Y	Ν	Ν	Ν	Ν
Pinana, 2023b [108]	Prospective cohort study	Spain GETH-TC registry	Hematologic malignancy	PCR or antigen test	Mixed variants (Alpha or Beta, Delta, and Omicron)	2 doses (MM vs PP) 3 doses (MMM vs PPP)	Primar y: Dec 30, 2020 to Jun 30, 2021 Booste r: until Jul 28, 2022	2 doses mRNA- 1273: 456 BNT162b2: 97 3 doses mRNA- 1273: 97 BNT162b2: 382	Υ	Ν	Ν	Ν	Ν
Pino, 2022 [114]	Retrospective cohort study	Italy Medical Oncology Unit in Florence at Santa Maria Annunziata, Serristori and Borgo San Lorenzo Hospitals	Mixed cancer	NR	Alpha ^a	2 doses (MM vs PP)	Mar 26 to Apr 4, 2021	mRNA- 1273: 527 BNT162b2: 96	Y	Ν	Ν	Ν	Ν

Quiroga, 2022 [68]	Prospective cohort study	Spain Hospital	CKD with hemodialysis	PCR or antigen test	NR	3 doses (XXM vs XXP)	NR	mRNA- 1273: 481 BNT162b2: 230	Y	Ν	N	Ν	N
Radcliffe, 2022 [100]	Retrospective cohort study	USA Medical chart records from transplant center	Solid organ transplant	PCR	NR	3 doses (MMM vs PPP) 4 doses (MMM M vs PPPP)	NR	3 doses mRNA- 1273: 142 BNT162b2: 282 4 doses mRNA- 1273: 1 BNT162b2: 2	Y	Ν	N	Ν	Ν
Raptis, 2023 [65]	Prospective cohort study	Switzerland SCQM registry	Autoimmune disease	Patient- reported PCR or antigen test	Mixed variants (Delta and Omicron) ^a	3 doses (MMM or RRM vs PPPor RRP)	Dec 8, 2021 to Nov 24, 2022	mRNA- 1273: 218 BNT162b2: 227	Y	Ν	N	N	N
Risk, 2022 [93]	Retrospective cohort study	USA Michigan Medicine healthcare system	Autoimmune disease	PCR	Omicron	2 doses (MM vs PP) 3 doses (MMM vs PPP)	Dec 16, 2021 to Mar 4, 2022	mRNA- 1273: 4,863 ^d BNT162b2: 4,863 ^d	Y	Ν	Y	Y	N
Rodriguez- Mora, 2023 [110]	Prospective cohort study	Spain EHR from patients with CML at Hospital Universitario Ramon y Cajal	Hematologic malignancy	Antigen test	Mixed variants (Alpha, Delta, and Omicron) ^a	2 doses (MM vs PP)	Jan 2021 to 17 month s after second dose	mRNA- 1273: 16 BNT162b2: 9	Y	Ν	Ν	Ν	N

Rooney, 2022 [94]	Retrospective cohort study	USA University of Kansas	Mixed cancer	PCR	Delta	2 doses (MM vs PP)	Feb to Oct 2021	mRNA- 1273: 2,993 BNT162b2: 6,423	Y	Ν	N	Ν	N
Shen, 2022 [95]	Retrospective cohort study	USA Michigan Medicine healthcare system	Autoimmune disease	Laborat ory test	Delta	2 doses (MM vs PP)	Jan 1 to Dec 7, 2021	mRNA- 1273: 2,046 BNT162b2: 2,064	Y	Ν	Y	Y	N
Sibbel, 2022 [96]	Retrospective cohort study	USA Dialysis organization	CKD with hemodialysis	PCR	Alpha ^a	2 doses (MM vs PP)	Jan 15 to Apr 30, 2021	mRNA- 1273: 19,900 BNT162b2: 10,140	Y	Ν	Y	Y	Y
Singh, 2021 [97]	Retrospective cohort study	USA National COVID Cohort Collective	Autoimmune disease	NR	Mixed variants ^a	2 doses (MM vs PP)	Jan 2020 to Sep 23, 2021	mRNA- 1273: 11,300 BNT162b2: 30,670	Y	Ν	Ν	Ν	Ν
Song, 2022 [70]	Retrospective cohort study	USA National COVID Cohort Collective	Hematologic malignancy, mixed cancer	RT- PCR	Mixed variants (Alpha and Delta) ^a	2 doses (MM vs PP)	Dec 1, 2020 to May 31, 2021	mRNA- 1273: 15,895 BNT162b2: 43,259	Y	Ν	Y	N	N
Sormani, 2022 [115]	Prospective cohort study	Italy 35 Italian multiple sclerosis centers	Autoimmune disease	PCR	Delta, Omicron , and mixed variants (Delta and Omicron)	2 doses (MM vs PP)	Mar 4 to Dec 15, 2021	mRNA- 1273: 314 BNT162b2: 1,391	Y	Ν	Ν	Ν	Ν

Sun, 2024 [66]	Retrospective cohort study	USA HealthVerity database	Immunocom promised	NR	Mixed variants ^a	3 doses (RRM vs RRP)	Dec 11, 2021 to Aug 31, 2022	mRNA- 1273: 52,943 BNT162b2: 60,084	Y	N	Y	Y	N
Valkov, 2023 [117]	Retrospective cohort study	Bulgaria Bulgarian Ministry of Health United Information Portal	Diabetes	RT- PCR, antigen test	Mixed variants ^a	2 doses (MM vs PP) 3 doses (<u>JM vs</u> <u>JP:</u> AAM vs AAP)	Mar 2020 to Jun 2022	2 doses mRNA- 1273: 73 BNT162b2: 553 3 doses mRNA- 1273: 6 BNT162b2: 55	Ν	Ν	Y	Ν	Y
Wang, 2022 [98]	Retrospective cohort study	USA EHR	Hematologic malignancy	NR	Mixed variants (Alpha and Delta) ^a	2 doses (MM vs PP)	Dec 2020 to Oct 2021	mRNA- 1273: 1,239 BNT162b2: 4,658	Y	N	Y	Y	N
Wing, 2023 [102]	Retrospective cohort study	Canada Provincial health administrative databases	CKD with hemodialysis	RT- PCR	Omicron	3 doses (MMM vs PPP)	Dec 1, 2021 to Feb 28, 2022	mRNA- 1273: 1,662 BNT162b2: 4,761	Y	N	Ν	N	N
Yeo, 2022 [123]	Prospective cohort study	Singapore National Neuroscience Institute and National University Hospital	Autoimmune disease	PCR, RAT	Delta ^a	2 doses (MM vs PP) 3 doses (MMM vs PPP)	Aug 1, 2021 to Dec 31, 2021	2 doses mRNA- 1273: 38 BNT162b2: 327 3 doses	Y	Y	Y	Y	N

								mRNA- 1273:31 BNT162b2: 141					
Yetmar, 2022 [99]	Retrospective cohort study	USA NR	Solid organ transplant	PCR, antigen test	Delta	2 doses (MM vs PP)	Aug to Sep 2021	mRNA- 1273: 12 BNT162b2: 22	Ν	Ν	Y	Ν	Y

- 920 ^a Assumed based on study period.
- 921 ^b Number of vaccinated participants included in the infection analysis. For the symptomatic infection analysis, n=1,831 (mRNA-1273) and
- 922 n=2,139 (BNT162b2; for the severe infection analysis, n=1,518 (mRNA-1273) and n=1,638 (BNT162b2).
- 923 ^c Undefined number of doses of any vaccine prior to the Omicron-containing bivalent original-BA4-5 booster dose.
- ^d Overall number of vaccinated participants. No separate numbers per vaccine arm were provided.
- 925 A, dose of AstraZeneca ChAdOx1 COVID-19 vaccine; CKD, chronic kidney disease; CML, chronic myeloid leukemia; IgG, immunoglobulin
- 926 G; J, dose of Johnson & Johnson Ad26.COV2.S COVID-19 vaccine; EHR, electronic health record; M, dose of Moderna mRNA-1273 COVID-
- 927 19 vaccine; MS, multiple sclerosis; NR, not reported; NS, not specified; PCR, polymerase chain reaction; P, dose of Pfizer/BioNTech
- 928 BNT162b2 COVID-19 vaccine; R, dose of any mRNA COVID-19 vaccine; RAT, rapid antigen test; RT-PCR, reverse transcription polymerase
- 929 chain reaction; X, dose of unknown COVID-19 vaccine.
- 930

931 **Table 2** Summary of overall GRADE findings in adults with at least one underlying medical condition

Certainty a	ssessment						mRNA-1273,	BNT162b2,	RR	Certaint
							n/N (%) ^a	n/N (%) ^a	(95% CI)	у
Studies, n	Study design	RoB	Inconsistenc	Indirectne	Imprecisio	Other				
			У	SS	n	considerations				
SARS-CoV	-2 infection									
52	Non	Not serious	Very	Very	Not serious	Strong association	45,454/	70,272/	0.85	Type 4 ^d
	randomized		serious ^b	serious ^c			1,905,056	2,429,031	(0.79–0.92)	
							(2.38%)	(2.89%)		
	ic SARS-CoV-2 infe		Not sarious	Seriouse	Not sprious	Strong association			0.75	Type 3f
Symptomat	ic SARS-CoV-2 infe	Not serious	Not serious	Serious ^e	Not serious	Strong association	2,597/ 631,889	3,262/ 621,815	0.75 (0.65–0.86)	Type 3 ^f
	Non		Not serious	Serious ^e	Not serious	Strong association	2,597/	3,262/		Type 3 ^f
11	Non		Not serious	Serious ^e	Not serious	Strong association	2,597/ 631,889	3,262/ 621,815		Type 3 ^f
11	Non randomized		Not serious	Serious ^e	Not serious	Strong association	2,597/ 631,889	3,262/ 621,815		Type 3 ^f

							(0.20%)	(0.27%)		
Hospitaliza	tion due to COVID	-19		1	•					•
27	Non	Serious ^j	Not serious	Serious ^k	Not serious	Strong association	3,383/	5,658/	0.88	Type 4 ⁱ
	randomized						1,193,030	1,655,375	(0.82-0.94)	
							(0.28%)	(0.34%)		
Death due	to COVID-19									
21	Non	Serious ¹	Not serious	Very	Serious ⁿ	Strong association	138/	206/	0.84	Type 4°
	randomized			serious ^m			81,556	72,883	(0.76–0.93)	
							(0.17%)	(0.28%)		

932

933 GRADE, Grading of Recommendations, Assessments, Development, and Evaluations; HR, hazard ratio; IRR, incidence rate ratio; OR, odds

934 ratio; RoB, risk of bias; RR, relative risk; VE, vaccine effectiveness.

^a Total number of patients across studies that reported the number of events and sample size for a particular outcome. Studies that reported only

936 VE, RR, OR, HR, or IRR were not counted

- 937 ^b Rating downgraded due to considerable heterogeneity (I^2 =92.5%)
- 938 ^c Major concern for population heterogeneity: Patients with mixed conditions or "immunocompromised" patients (as defined in the article) were
- 939 considered in 15.4% of studies. Additionally, the studies may have included patients with comorbidities not of interest and patients with

- 940 differences in the use of immunosuppressive therapies. Some concern for intervention heterogeneity, outcome heterogeneity and indirect
- 941 comparison: Intervention comparison pairs were heterogeneous in 3.8% of studies; indirect comparison was performed in 5.8% of studies;
- 942 outcome definitions were rather heterogeneous (test positive and/or symptomatic, any severity)
- ⁹⁴³ ^d Lower grading (type 4) due to very serious concern for inconsistency and indirectness
- ^e Major concern for population heterogeneity: Patients with mixed conditions were considered in 18.2% of studies. Additionally, the studies may
- 945 have included patients with comorbidities not of interest and patients with differences in the use of immunosuppressive therapies. Some concern
- 946 for indirect comparison: Indirect comparison was performed in 9.1% of studies
- ⁹⁴⁷ ^fLower grading (type 3) due to serious concern for indirectness and nonrandomized studies
- ^g Serious or very serious RoB in 19 of 42 studies (45.3%): Boekel 2022 [120], Capuano 2023 [112], Dimitrov 2023 [116], Embi 2021 [76],
- 949 Figueiredo 2021 [78], Hernandez 2022 [61], Kshirsagar 2022 [86], Liew 2022 [87], Magnusson 2021 [121], Malinis 2021 [88], Manley 2023
- 950 [62], Marinaki 2022 [119], Miao 2023 [89], Motwani 2023 [63], Odriozola 2022 [106], Song 2022 [70], Valkov 2023 [117], Wang 2022 [98],
- 951 and Yetmar 2022 [99]
- ⁹⁵² ^h Major concern for population heterogeneity: SARS-CoV-2-infected subset of the vaccinated population was studied or patients with mixed
- 953 conditions or "immunocompromised" patients (as defined in the article) were considered in 30.9% of studies. Additionally, the studies may have
- 954 included patients with comorbidities not of interest and patients with differences in the use of immunosuppressive therapies. Some concern for
- 955 intervention heterogeneity, outcome heterogeneity and indirect comparison: Intervention comparison pairs were heterogeneous in 7.1% of
- studies; indirect comparison was performed in 9.5% of studies; outcome definitions were rather heterogeneous (defined severe infection and
- 957 derived from hospitalization and/or death)
- ⁹⁵⁸ ⁱ Lower grading (type 4) due to serious concern for RoB and indirectness
- ^j Serious or very serious RoB in 12 of 27 studies (44.4%): Boekel 2022 [120], Embi 2021 [76], Figueiredo 2021 [78], Kshirsagar 2022 [86],
- 960 Liew 2022 [87], Magnusson 2021 [121], Manley 2023 [62], Marinaki 2022 [119], Miao 2023 [89], Motwani 2023 [63], Odriozola 2022 [106],
- 961 and Wang 2022 [98]

⁹⁶² ^k Major concern for population heterogeneity: SARS-CoV-2-infected subset of the vaccinated population was studied or patients with mixed

963 conditions or "immunocompromised" patients (as defined in the article) were considered in 44.4% of studies. Additionally, the studies may have

964 included patients with comorbidities not of interest and patients with differences in the use of immunosuppressive therapies. Some concern for

965 intervention heterogeneity and indirect comparison: Intervention comparison pairs were heterogeneous in 3.7% of studies; indirect comparison

966 was performed in 14.8% of studies

¹Serious or very serious RoB in 12 of 21 studies (57.1%): Boekel 2022 [120], Capuano 2023 [112], Dimitrov 2023 [116], Hernandez 2022 [61],

968 Kshirsagar 2022 [86], Liew 2022 [87], Malinis 2021 [88], Manley 2023 [62], Miao 2023 [89], Odriozola 2022 [106], Valkov 2023 [117], and

969 Yetmar 2022 [99]

^m Major concern for population heterogeneity and intervention heterogeneity: SARS-CoV-2-infected subset of the vaccinated population was

studied or patients with mixed conditions or "immunocompromised" patients (as defined in the article) were considered in 52.4% of studies.

972 Additionally, the studies may have included patients with comorbidities not of interest and patients with differences in the use of

973 immunosuppressive therapies. Intervention comparison pairs were heterogeneous in 19.0% studies. Some concern for indirect comparison:

974 Indirect comparison was performed in 4.8% of studies

⁹⁷⁵ ⁿ Rating downgraded due to 17 out of 21 studies (81.0%) with 95% CIs crossing thresholds of harm as well as benefit

976 ^o Lower grading (type 4) due to serious concern for RoB and imprecision and very serious concern for indirectness

977 **Table 3** Summary of overall GRADE findings in adults with CEV 1 or 2 conditions

	ssessment						mRNA-1273,	BNT162b2,	RR	Certain
							n/N (%) ^a	n/N (%) ^a	(95% CI)	у
Studies, n	Study design	RoB	Inconsistenc	Indirectne	Imprecisio	Other				
			У	SS	n	considerations				
SARS-CoV-	2 infection									
38	Non	Serious ^b	Serious ^c	Serious ^d	Not serious	Strong association	16,456/	23,707	0.90	Type 4 ^e
	randomized						983,311	/1,120,372		
							(1.67%)		(0.84 –0.97)	
								(2.12%)		
Symptomati	c SARS-CoV-2 inf	ection		1	1	L				
6	Non	Not serious	Not serious	Not serious	Not serious	Possible	2,112/	2,415/	0.83	Type 3 ^f
6	Non randomized	Not serious	Not serious	Not serious	Not serious	Possible publication bias	2,112/ 629,848	2,415/ 618,517	0.83 (0.68–1.01)	Type 3 ^f
6		Not serious	Not serious	Not serious	Not serious					Type 3 ^f
6		Not serious	Not serious	Not serious	Not serious		629,848	618,517		Type 3 ^f
		Not serious	Not serious	Not serious	Not serious		629,848	618,517		Type 3 ^f

28	Non	Serious ^g	Not serious	Very	Not serious	Strong association	1,701/	2,738/	0.81	Type 4 ⁱ
	randomized			serious ^h			946,925	1,035,591	(0.77-0.86)	
							(0.18%)	(0.26%)		
Hospitaliz	aion due to COVID-	19								
22	Non	Serious ^j	Not serious	Very	Serious ¹	Strong association	1,603/390,141	2,535/479,736	0.84	Type 4 ^m
	randomized			serious ^k			(0.41%)	(0.53%)	(0.79–0.89)	
Death las	4. COVID 10									
Death due	e to COVID-19									
13	Non	Very serious ⁿ	Not serious	Serious ^o	Serious ^p	Strong association	76	73/	0.68	Type 4 ^m
	randomized						/31,813	20,652 (0.35%)	(0.50-0.91)	
							(0.24%)			

978 CEV, clinically extremely vulnerable; GRADE, Grading of Recommendations, Assessments, Development, and Evaluations; HR, hazard ratio;

979 IRR, incidence rate ratio; OR, odds ratio; RoB, risk of bias; RR, relative risk; VE, vaccine effectiveness.

- ^a Total number of patients across studies that reported the number of events and sample size for a particular outcome. Studies that reported only
- 981 VE, RR, OR, HR, or IRR were not counted
- 982 ^b Serious or very serious RoB in 12 out of 38 studies (31.6%): Alkadi 2022 [69], Boekel 2022 [120], Chen 2023 [124], Embi 2021 [76],
- 983 Magnusson 2021 [121], Malinis 2021 [88], Manley 2023 [62], Marinaki 2022 [119], Motwani 2023 [63], Radcliffe 2022 [100], Rooney 2022
- 984 [94], and Wang 2022 [98]
- 985 ^c Rating downgraded due to considerable heterogeneity (I^2 =80.2%)
- 986 ^d Some concern for population, intervention, outcome heterogeneity and indirect comparison: Patients with mixed conditions were considered in
- 987 13.2% of studies. Additionally, the studies may have included patients with comorbidities not of interest and patients with differences in the use
- 988 of immunosuppressive therapies. Intervention comparison pairs were heterogeneous in 2.6% studies. Indirect comparison was performed in 5.3%
- 989 studies. Outcome definitions rather heterogeneous (test positive and/or symptomatic, any severity)
- ⁹⁹⁰ ^e Lower grading (type 4) due to serious concern for RoB and inconsistency and very serious concern for indirectness
- ⁹⁹¹ ^f Low grading (type 3) due to possible publication bias and inclusion of only nonrandomized studies
- ^g Serious or very serious RoB in 15 out of 28 studies (53.6%): Boekel 2022 [120], Capuano 2023 [112], Embi 2021 [76], Hernandez 2022 [61],
- ⁹⁹³ Liew 2022 [87], Magnusson 2021 [121], Malinis 2021 [88], Manley 2023 [62], Marinaki 2022 [119], Miao 2023 [89], Motwani 2023 [63],
- 994 Odriozola 2022 [106], Song 2022 [70], Wang 2022 [98], and Yetmar 2022 [99]
- ⁹⁹⁵ ^h Major concern for population heterogeneity: SARS-CoV-2-infected subset of the vaccinated population was studied or patients with mixed
- 996 conditions or "immunocompromised" patients (as defined in the article) were considered in 28.6% of studies. Additionally, the studies may have
- 997 included patients with comorbidities not of interest and patients with differences in the use of immunosuppressive therapies. Some concern for
- intervention heterogeneity, outcome heterogeneity and indirect comparison: Intervention comparison pairs were heterogeneous in 3.6% of
- studies; indirect comparison was performed in 10.7% of studies; outcome definitions were rather heterogeneous (defined severe infection and
- 1000 derived from hospitalization and/or death)
- ¹⁰⁰¹ ⁱ Lower grading (type 4) due to serious concern for RoB and very serious concern for indirectness

^j Serious or very serious RoB in 11 out of 22 studies (50.0%): Boekel 2022 [120], Embi 2021 [76], Holroyd 2022 [80], Liew 2022 [87],

Magnusson 2021 [121], Manley 2023 [62], Marinaki 2022 [119], Miao 2023 [89], Motwani 2023 [63], Odriozola 2022 [106], and Wang 2022
 [98]

¹⁰⁰⁵ ^k Major concern for population heterogeneity and indirect comparison: SARS-CoV-2-infected subset of the vaccinated population was studied or

- 1006 patients with mixed conditions or "immunocompromised" patients (as defined in the article) were considered in 40.9% of studies. Additionally,
- 1007 the studies may have included patients with comorbidities not of interest and patients with differences in the use of immunosuppressive
- 1008 therapies. Indirect comparison was performed in 18.2% of studies. Some concern for intervention heterogeneity: Intervention comparison pairs
- 1009 were heterogeneous in 4.5% of studies
- ¹Rating downgraded due to 14 out of 22 studies (63.6%) with 95% CIs crossing thresholds of harm as well as benefit
- ^m Lower grading (Type 4) due to serious concern for risk of bias, indirectness and imprecision
- ⁿ Serious or very serious RoB in 9 out of 13 studies (69.2%): Boekel 2022 [120], Capuano 2023 [112], Hernandez 2022 [61], Liew 2022 [87],

1013 Malinis 2021 [88], Manley 2023 [62], Miao 2023 [89], Odriozola 2022 [106], and Yetmar 2022 [99]

- ¹⁰¹⁴ ^o Major concern for population heterogeneity: SARS-CoV-2-infected subset of the vaccinated population was studied or patients with mixed
- 1015 conditions or "immunocompromised" patients (as defined in the article) were considered in 46.2% of studies. Additionally, the studies may have
- 1016 included patients with comorbidities not of interest and patients with differences in the use of immunosuppressive therapies. Some concern for
- 1017 intervention heterogeneity: Intervention comparison pairs were heterogeneous in 7.7% of studies
- ¹⁰¹⁸ ^P Rating downgraded due to 11 out of 13 studies (84.6%) with 95% CIs crossing thresholds of harm as well as benefit

1019 FIGURES

- 1020 Fig. 1 PRISMA flow diagram.^a Includes 2 preprints and 1 poster. CCRT, Cochrane Central
- 1021 Register of Controlled Trials; CDSR, Cochrane Database of Systematic Reviews; PRISMA,
- 1022 Preferred Reporting Items for Systematic Reviews and Meta-Analyses; SLR, systematic

1023 literature review.

Fig. 2 Summary of meta-analysis results on clinical effectiveness outcomes of the mRNA-1273 versus BNT162b2 COVID-19 vaccines in the overall population of adults with at least one of the following underlying medical conditions: autoimmune disease, solid tumor, solid organ transplant, hematologic malignancy, chronic kidney disease with and without hemodialysis, type 1 and 2 diabetes, cardiovascular disease, cerebrovascular disease, chronic liver condition, neurologic condition, chronic respiratory condition, obesity.

- 1031 Fig. 3 Meta-analysis results comparing the mRNA-1273 versus BNT162b2 COVID-19 vaccines in the overall population of adults with at least
- 1032 one medical condition^a by study for (a) SARS-CoV-2 infection, (b) symptomatic SARS-CoV-2 infection, (c) severe SARS-CoV-2 infection, (d)
- 1033 hospitalization due to COVID-19, and (e) death due to COVID-19. ^aAutoimmune disease, solid tumor, solid organ transplant, hematologic
- 1034 malignancy, chronic kidney disease with and without hemodialysis, type 1 and 2 diabetes, cardiovascular disease, cerebrovascular disease,
- 1035 chronic liver condition, neurologic condition, chronic respiratory condition, obesity.

1036 (a) **SARS-CoV-2** infection (n=52)

(b) Symptomatic SARS-CoV-2 infection (n=11)

1040 (c) Severe SARS-CoV-2 infection (n=42)

Study	mRNA-1273 n/N	BNT162b2 n/N		Random effects Weight Risk ratio [95% CI]
Aslam 2021	1 / 632	1 / 375	· · · · · · · · · · · · · · · · · · ·	0.06% 0.59 [0.04, 9.46]
Boekel 2022	2 / 766	6 / 2617		0.18% 1.14 [0.23, 5.63]
Bonazzetti 2023	0 / 136	3 / 70		0.05% 0.07 [0.00, 1.41]
Capuano 2023	0 / 46	0 / 244		0.03% 5.21 [0.10, 259.46]
Dimitrov 2023	0 / 90	9 / 841		0.06% 0.49 [0.03, 8.30]
Drawz 2022	35 / 4475	92 / 15478	· .	2.58% 1.32 0.89, 1.94
Embi 2021	138 / 4337	272 / 6227		6.54% 0.73 0.60, 0.89
Figueiredo 2021	1 / 128	1 / 163		0.06% 1.27 [0.08, 20.16]
Fu 2023	59 / 43174	86 / 43639	. ⊢ ⊷ i	3.33% 0.69 [0.50, 0.97]
Grewal 2022	161 / 1518	218 / 1638		6.91% 0.80 0.66, 0.96
Heinzl 2022	1/4	8/61		0.14% 1.91 [0.31, 11.72]
Hernandez 2023	0 / 93	0/1		0.03% 0.02 [0.00, 0.83]
Holroyd 2022	0/110	0 / 133		0.03% 1.21 [0.02, 60.35]
John 2022	0 / 6229	0 / 6812		0.03% 1.09 [0.02, 55.10]
Kelly 2022	118 / 79517	135 / 67780	={	5.09% 0.75 [0.58, 0.95]
Kelly 2023	68 / 549623	98 / 550185	**; ++{	3.69% 0.69 [0.51, 0.95]
Khan 2021	2 / 3380	1 / 2873		0.08% 1.70 [0.15, 18.74]
Kopel 2024	2360 / 758803	4198 / 1202211		13.88% 0.89 [0.85, 0.94]
Liew 2022	2/21	4/90/1202211	· · · · · · · · · · · · · · · · · · ·	0.18% 1.07 [0.21, 5.39]
Magnusson 2021	2/21	1/4		0.13% 2.67 [0.41, 17.42]
Malinis 2021	0 / 157	0 / 275		0.03% 1.75 [0.03, 87.61]
				3.88% 0.65 [0.48, 0.88]
Manley 2023 Marinaki 2022	79 / 6853	91 / 5132	_ − 	
Mazuecos 2022	2/147	5/302		0.17% 0.82 0.16, 4.19 2.23% 0.78 0.51, 1.20
Miao 2023	40 / 213	29 / 121	⊢ •+1	
Motwani 2023	11/53	22/114		
	1 / 684	2/1170		0.08% 0.86 [0.08, 9.41]
Mues 2022	90 / 57000	125 / 66757		4.49% 0.84 [0.64, 1.11]
Nguyen 2023	149 / 208725	199/214564	, I = (,	6.15% 0.77 [0.62, 0.95]
Niu 2022 Odriozola 2022	4 / 37	40 / 225	· · · · · · · · · · · · · · · · · · ·	0.49% 0.61 [0.23, 1.60]
	0 / 23	1/6		0.05% 0.10 [0.00, 2.13]
Sibbel 2022	99 / 23037	53 / 12169	H H	3.30% 0.99 [0.71, 1.38]
Sun 2024	232 / 52943	342 / 60084	. H	7.96% 0.77 [0.65, 0.91]
Valkov 2023	0 / 6	0 / 55		0.03% 8.00 [0.17, 372.34]
Wang 2022	50 / 1239	176 / 4658		3.72% 1.07 [0.79, 1.45]
Yeo 2022	0 / 38	0 / 327		0.03% 8.41 [0.17, 417.92]
Yetmar 2022	1 / 12	4 / 18		0.11% 0.38 [0.05, 2.96]
Bello-Chavolla 2023	NA / NA	NA / NA		0.12% 0.40 [0.06, 2.80]
Embi 2023	NA / NA	NA / NA	⊢ •-{	1.39% 0.54 [0.31, 0.94]
Kshirsagar 2022	NA / NA	NA / NA		14.21% 0.98 [0.94, 1.02]
Risk 2022	NA / NA	NA / NA		0.79% 0.73 [0.34, 1.54]
Shen 2022	NA / NA	NA / NA		0.15% 0.53 [0.09, 3.11]
Song 2022	NA / NA	NA / NA	 -	6.48% 0.83 [0.68, 1.02]
Total severe infection: 3708 (mRN Heterogeneity: $Chi^2 = 66.11$, df = Test for overall effect: Z = -5.19 (F	41 (P = 0.008), I ² = 38%			100% 0.83 [0.78, 0.89]
			0 0.1 1 10 100 1000	

Risk Ratio (log scale)

Favors mRNA–1273 Favors BNT162b2

1042 (d) Hospitalization due to COVID-19 (n=27)

Study	mRNA-1273 n/N	BNT162b2 n/N		Random effects Weight Risk ratio [95% CI]
Aslam 2021	1 / 632	1 / 375	⊢ • 1	0.06% 0.59 [0.04, 9.46]
Boekel 2022	2 / 766	6 / 2617	⊢	0.18% 1.14 [0.23, 5.63]
Bonazzetti 2023	0 / 136	3 / 70	⊢	0.05% 0.07 [0.00, 1.41]
Drawz 2022	35 / 4475	92 / 15478	<mark></mark>	2.75% 1.32 [0.89, 1.94]
Embi 2021	138 / 4337	272 / 6227	H=4	7.57% 0.73 [0.60, 0.89]
Figueiredo 2021	1 / 128	1 / 163	F4	0.06% 1.27 [0.08, 20.16]
Holroyd 2022	0 / 110	0 / 133	⊢ I	0.03% 1.21 [0.02, 60.35]
Kelly 2022	71 / 79517	60 / 67780	F≢4	3.38% 1.01 [0.72, 1.42]
Kopel 2024	2360 / 758803	4198 / 1202211	•	19.14% 0.89 [0.85, 0.94]
Liew 2022	5 / 21	11 / 45	⊢	0.54% 0.97 [0.39, 2.45]
Magnusson 2021	2/3	3 / 4	⊢	0.48% 0.89 [0.33, 2.37]
Marinaki 2022	2 / 147	6 / 302	F	0.19% 0.68 [0.14, 3.35]
Mazuecos 2022	134 / 213	84 / 121	Hell	10.13% 0.91 [0.77, 1.06]
Miao 2023	11 / 53	22 / 114	⊢	1.08% 1.08 [0.56, 2.05]
Motwani 2023	1 / 684	2/1170	F	0.08% 0.86 [0.08, 9.41]
Mues 2022	90 / 57000	125 / 66757		4.97% 0.84 [0.64, 1.11]
Nguyen 2023	149 / 208725	199 / 214564	H=E	7.05% 0.77 [0.62, 0.95]
Odriozola 2022	0 / 23	1 / 6	├ ─── ।	0.05% 0.10 [0.00, 2.13]
Sibbel 2022	99 / 23037	53 / 12169	⊢•1	3.57% 0.99 [0.71, 1.38]
Sun 2024	232 / 52943	342 / 60084	H	9.51% 0.77 [0.65, 0.91]
Wang 2022	50 / 1239	176 / 4658	I.≠-1	4.06% 1.07 [0.79, 1.45]
Yeo 2022	0 / 38	1 / 327	├ ──── ├	0.05% 2.80 [0.12, 67.64]
Embi 2023	NA / NA	NA / NA	⊢ ∙–Ę	1.44% 0.54 [0.31, 0.94]
Kshirsagar 2022	NA / NA	NA / NA	•	19.77% 0.98 [0.94, 1.02]
Manley 2023	NA / NA	NA / NA	┝╼┥	2.83% 0.61 [0.41, 0.89]
Risk 2022	NA / NA	NA / NA	<u>⊢_</u>	0.81% 0.73 [0.34, 1.54]
Shen 2022	NA / NA	NA / NA	F	0.15% 0.53 [0.09, 3.11]
Total hospitalization: 3383 (mF Heterogeneity: Chi ² = 42.42 , c Test for overall effect: Z = -3.7	df = 26 (P = 0.022), I ² = 38.7%			100% 0.88 [0.82, 0.94]
			0 0.1 1 10 100 10	00
			Risk Ratio (log scale) Favors mRNA-1273 Favors BNT162b2	

1044 (e) **Death due to COVID-19 (n=21)**

Study	mRNA–1273 n/N	BNT162b2 n/N		Handom effects Weight Risk ratio [95% CI]
Aslam 2021	0 / 632	0 / 375	↓	0.07% 0.59 [0.01, 29.87]
Boekel 2022	0 / 766	1 / 2617	⊢	0.10% 1.14 [0.05, 27.90]
Capuano 2023	0 / 46	0 / 244	├ ─── -	0.07% 5.21 [0.10, 259.46]
Dimitrov 2023	0 / 90	9 / 841	├ ──── ।	0.12% 0.49 [0.03, 8.30]
Fu 2023	59 / 43174	86 / 43639	⊢(8.60% 0.69 [0.50, 0.97]
Heinzl 2022	1 / 4	8 / 61	⊢	0.30% 1.91 [0.31, 11.72]
Hernandez 2023	0 / 93	0 / 1	•	0.07% 0.02 [0.00, 0.83]
Holroyd 2022	0 / 110	0 / 133	⊢	0.07% 1.21 [0.02, 60.35]
John 2022	0 / 6229	0 / 6812	⊢ I	0.06% 1.09 [0.02, 55.10]
Liew 2022	1 / 21	3 / 45	⊢	0.21% 0.71 [0.08, 6.47]
Malinis 2021	0 / 157	0 / 275	F	0.07% 1.75 [0.03, 87.61]
Manley 2023	22 / 6853	22 / 5132	<u>⊢</u> •1	2.82% 0.75 [0.42, 1.35]
Mazuecos 2022	35 / 213	36 / 121	┝╼┤	5.77% 0.55 [0.37, 0.83]
Miao 2023	3 / 53	2/114	⊢	0.32% 3.23 [0.56, 18.74]
Niu 2022	2/37	30 / 225	⊢	0.52% 0.41 [0.10, 1.63]
Odriozola 2022	0 / 23	1 / 6	⊢	0.10% 0.10 [0.00, 2.13]
Sibbel 2022	15 / 23037	8 / 12169	⊢∔ −1	1.35% 0.99 [0.42, 2.34]
Valkov 2023	0 / 6	0 / 55	⊢	0.07% 8.00 [0.17, 372.34]
Yetmar 2022	0 / 12	0 / 18	F	0.07% 1.46 [0.03, 69.09]
Bello-Chavolla 2023	NA / NA	NA / NA	⊢ I	0.26% 0.40 [0.06, 2.80]
Kshirsagar 2022	NA / NA	NA / NA	•	79.00% 0.89 [0.82, 0.96]
Total death: 138 (mRNA-1273), 2 Heterogeneity: $Chi^2 = 20.27$, df = Test for overall effect: Z = -3.36 (20 (P = 0.441), I ² = 1.3%		•	100% 0.84 [0.76, 0.93]
			0 0.1 1 10 100 1000 Risk Ratio (log scale)	
			Favors mRNA-1273 Favors BNT162b2	

1046 Fig. 4 Summary of meta-analysis results on clinical effectiveness outcomes of the mRNA-1273 versus BNT162b2 COVID-19 vaccines in adults

1050 Fig. 5 Summary of subgroup meta-analysis results on clinical effectiveness outcomes of the mRNA-1273 versus BNT162b2 COVID-19

1051 vaccines in adults with (a) at least one underlying medical condition^a and (b) CEV 1 and 2 conditions. ^aAutoimmune disease, solid tumor, solid

- 1052 organ transplant, hematologic malignancy, chronic kidney disease with and without hemodialysis, type 1 and 2 diabetes, cardiovascular disease,
- 1053 cerebrovascular disease, chronic liver condition, neurologic condition, chronic respiratory condition, obesity. Blue shading represents
- 1054 statistically significant RR in favor of mRNA-1273 over BNT162b2, purple shading represents statistically nonsignificant RR, and pink shading
- 1055 represents statistically nonsignificant RR in favor of BNT162b2 over mRNA-1273. CEV, clinically extremely vulnerable; RR, risk ratio.

1056 (a) Adults with at least one underlying medical condition

Outcome, Random Effects Risk Ratio (95% CI)	2 Doses	≥3 Doses Overall	≥3 Doses Homologous	≥3 Doses Heterologous	≥4 Doses	Age 18–65	Delta	Omicron
SARS-CoV-2 infection	0.86 (0.79–0.95)	0.82 (0.73–0.91)	0.78 (0.70–0.86)	0.92 (0.87–0.98)	0.97 (0.95–0.98)	0.89 (0.80–0.99)	0.76 (0.69–0.84)	0.81 (0.69–0.95)
Symptomatic SARS-CoV-2 infection	0.79 (0.41–1.51)	0.77 (0.73–0.81)	0.77 (0.73–0.81)	_	_	0.97 (0.06–16.07)	0.50 (0.20–1.25)	0.82 (0.73–0.92)
Severe SARS-CoV-2 infection	0.87 (0.80–0.93)	0.81 (0.73–0.89)	0.77 (0.66–0.90)	0.93 (0.74–1.16)	_	0.80 (0.71–0.91)	0.78 (0.69–0.87)	0.89 (0.85–0.93)
Hospitalization due to COVID-19	0.85 (0.79–0.92)	0.85 (0.74–0.97)	0.86 (0.64–1.14)	0.84 (0.71–0.98)	_	0.80 (0.71–0.91)	0.85 (0.73–1.00)	0.86 (0.67–1.11)
Death due to COVID-19	0.92 (0.80–1.05)	0.65 (0.23–1.86)	0.65 (0.10-4.10)	1.05 (0.35–3.18)	_	_	0.66 (0.47–0.93)	0.86 (0.18–4.12)

(b) Adults with CEV 1 and 2 conditions

Outcome, Random Effects Risk Ratio (95% CI)	2 Doses	≥3 Doses Overall	≥3 Doses Homologous	≥3 Doses Heterologous	Delta	Omicron
SARS-CoV-2 infection	0.91 (0.82–1.00)	0.87 (0.78–0.97)	0.92 (0.72–1.17)	0.93 (0.88–0.98)	0.79 (0.73–0.85)	0.87 (0.79–0.95)
Symptomatic SARS-CoV-2 infection	1.50 (0.63–3.56)	0.76 (0.71–0.82)	0.76 (0.71–0.82)	_	—	—
Severe SARS-CoV-2 infection	0.80 (0.73–0.87)	0.76 (0.66–0.87)	0.67 (0.51–0.89)	0.83 (0.76–0.90)	0.73 (0.65–0.82)	0.88 (0.75–1.04)
Hospitalization due to COVID-19	0.83 (0.76–0.90)	0.81 (0.70–0.93)	0.72 (0.44–1.16)	0.82 (0.72–0.93)	0.82 (0.73–0.92)	0.84 (0.73–0.97)
Death due to COVID-19	0.68 (0.51–0.92)	0.20 (0.01–3.98)	0.50 (0.00–256.45)	0.15 (0.01–1.70)	0.57 (0.38–0.85)	0.59 (0.01–28.72)