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Abstract

Routine epidemiological surveillance data represents one of the most continuous and

current sources of data during the course of an epidemic. This data is used to calibrate

epidemiological forecasting models as well as for public health decision making such

as imposition and lifting of lockdowns and quarantine measures. However, such data

is generated during testing and contact tracing and not through randomized sampling.

Furthermore, since the process of generating this data affects the epidemic trajectory

itself – identification of infected persons might lead to them being quarantined, for

instance – it is unclear how representative such data is of the actual epidemic itself.

For example, will the observed rise in infections correspond well with the actual rise

in infections? To answer such questions, we employ epidemiological simulations not to

study the effectiveness of different public health strategies in controlling the spread of the
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epidemic, but to study the quality of the resulting surveillance data and derived metrics

and their utility for decision making. Using the BharatSim simulation framework, we

build an agent-based epidemiological model with a detailed representation of testing and

contact tracing strategies based on those employed in Pune city during the COVID-19

pandemic. Infected persons are identified, quarantined and/or hospitalized based on

these strategies, and to generate synthetic surveillance data as well. We perform extensive

simulations to study the impact of different public health strategies and availability of

tests and contact tracing efficiencies on the resulting surveillance data as well as on the

course of the epidemic. The fidelity of the resulting surveillance data in representing

the real-time state of the epidemic and in decision-making is explored in the context of

Pune city.

Author Summary

Through this study, we evaluate the effectiveness of different public health metrics in

guiding decision-making during epidemics, using the COVID-19 pandemic in Pune, India,

as a case study. We analysed key public health metrics including the test positivity rate

(TPR), case fatality rate (CFR), and reproduction number (Rt). Through simulations of

the epidemic and the public health response and by varying levels of testing and contact

tracing, we assess how these metrics are related to epidemic curves such as infections

and deaths. The results show that the rate of change of TPR can help estimate the

severity of the outbreak and predict when it will peak. Rt is a strong predictor of the

infection peak, but large computed confidence intervals can place strong caveats on its

use in decision-making. In contrast, CFR is not useful for predicting the epidemic’s

severity or peak,as it tends to peak when the infection curve is on a decline and scales

non-linearly with the severity of the epidemic. Overall, our findings highlight that TPR

and Rt are valuable tools for real-time epidemic management, while CFR may have

limited utility. Through this study, we provide modelling evidence to support the use of

some metrics for public-health decision making during epidemics.
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1 Introduction 1

Routine epidemiological surveillance data is generated by public and private entities 2

as part of efforts to diagnose, treat and contain any outbreak [1]. For instance, during 3

COVID-19 outbreaks in Pune city, daily surveillance data [2] included (1) the number of 4

tests conducted, (2) the number of individuals who tested positive and their demographic 5

information, (3) the number of people hospitalised, (4) the number of deaths, and (5) 6

contacts of identified positive cases. Such surveillance data has been used as input for 7

several epidemiological forecasting models [3–9] which have tried to estimate the course 8

of the epidemic in India. Even though these forecasting models have their merits in 9

assisting decision-making and policies, they come with their own set of challenges [10–12]. 10

Similarly, surveillance data represents a noisy estimate of the actual epidemic and 11

therefore it is important to understand its limitations. Some analytical results have 12

been obtained to model the introduction of delays and under-reporting [13], but it is 13

unlikely that the complexities of the public health response itself, such as testing, contact 14

tracing and quarantining as well and resource constraints (such as number of testing 15

kits available) can be easily modelled in an analytical framework. Therefore, simulations 16

appear to be a useful tool to help understand the relationship between surveillance data 17

and the true epidemic. 18

In addition to forecast models, metrics derived from surveillance data such as Test 19

Positivity Rate (TPR), Case Fatality Rate (CFR) and Reproduction Number (Rt) have 20

themselves also been used to inform public health interventions. The World Health 21

Organization (WHO) advocated the use of TPR as a metric to indicate whether the 22

epidemic is controlled [14]. While this recommendation was not prescriptive or data- 23

driven, India, like many other countries, used TPR to gauge the true extent of the 24

pandemic and subsequently implement public health measures [15,16]. All over India, 25

different districts were demarcated into red, orange, or green zones [17, 18] based on 26

indicators derived from programmatic surveillance, including the number of daily cases 27

and the extent of testing and surveillance. Moreover, local governments implemented 28

strategies such as large-scale random testing to reduce the value of metrics like TPR [19], 29

hoping, in turn, to reduce the spread of the epidemic. 30

Even though such metrics provide useful insights into the nature of the true epidemic 31
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[20], understanding the correspondence between the actual epidemic curve and such 32

metrics alone remains a challenge. These indicators are often biased and may not pick 33

up asymptomatic carriers of the disease or even symptomatic carriers who choose not 34

to self-report due to social or economic reasons [21]. Moreover, practical issues like 35

limited resources, accessibility, and errors in data collection or analysis can lead to 36

undercounting [22, 23]. Evidence of such undercounting has been reported through the 37

use of serological surveys [24, 25]. Thus, it is essential to understand the relationship 38

between the true epidemic and the “observed” epidemic as inferred from surveillance 39

data. 40

Towards this end, we build an agent-based epidemiological model using the BharatSim 41

simulation framework [9] that simulates an epidemic and the attendant public health 42

response in the form of testing, quarantining, and contact tracing. We build this model 43

in the context of the public health system response to the COVID-19 pandemic in the 44

city of Pune, India. Several epidemiological models already exist in literature [26–31] 45

that simulate an epidemic by assigning different disease states to people throughout the 46

course of the epidemic. We choose an agent-based approach since it allows us to specify 47

characteristics such as geographical locations and activity schedules for each individual 48

(See Appendix S1). Likewise, this approach also allows us to track each individual’s 49

disease state, testing and quarantining status, and identified contacts, throughout 50

the pandemic. In addition to modelling the spread of the epidemic, we also consider 51

counterfactual scenarios with different public health responses, thereby studying the 52

relationship between derived metrics and the true epidemic. 53

1.1 COVID-19 in Pune city 54

Pune city is located in the state of Maharashtra in western peninsular India and has 55

a current estimated population of 4.5 million. The smallest administrative units are 56

the electoral wards or “prabhags”, and Pune consists of 41 prabhags, each containing 57

approximately 100,000 people.1 These prabhags are part of a larger administrative unit 58

called a “ward”, and each ward has a health officer who makes operational decisions 59

such as deploying personnel for contact tracing or disinfection. 60

1Recent expansion of the city to include suburbs has increased this number. See https://www.pmc.

gov.in/en/pmc-prabhag-rachna-2022.
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The first case of COVID-19 in Pune city was reported on March 9, 2020. Pune 61

experienced three major waves of the pandemic – the first between May-September 2020, 62

the second between February-May 2021 and the third between December 2021-January 63

2022 [32]. Pune experienced a complete lockdown between March-June 2020 and wards 64

with a high number of cases were quarantined from the rest of the city. Despite these 65

strict containment measures, the rate of growth of cases continued to increase [33] and 66

very high prevalence was observed in an early serological survey [34], suggesting that the 67

spread of SARS-CoV2 within containment zones was fairly unrestricted. The Infection 68

Fatality Rate computed using serological prevalence was comparable to results obtained 69

elsewhere in the world [34], suggesting that undercounting of COVID-19 related deaths 70

in Pune city was not substantial. With improvements in treatment protocols, the case 71

fatality rate in Pune declined almost monotonically between March 2020 and May 2021, 72

though the burden of mortality was much higher in the second wave [35]. 73

A compartmental epidemiological model (which also forms the basis for our model) 74

was operationally deployed during the first and second waves and forecasts were used 75

in infrastructure planning, especially for critical cases who required ventilator support 76

[20, 36]. While lockdowns were the main policy instrument used during the first year 77

of the pandemic, a more fine-grained policy for restriction of movement and economic 78

activity based on oxygenated bed occupancy levels and test positivity were employed 79

from June 2021, after the end of the second wave [37–39], with the explicit intention 80

of reducing further spread or “breaking the chain”. Surveillance data was also used in 81

estimates of prevalence and decision-making, using heuristic ideas relating case fatality 82

rate, test positivity to actual prevalence, and allocation of limited testing kits [20]. The 83

use of epidemiological surveillance data for decision-making is not unique to Maharashtra, 84

and has been attempted elsewhere as well see, for example [40–43]. In the next section, we 85

describe our epidemiological model and how the public health response was incorporated 86

into it. As a first step, we do not attempt to incorporate interventions such as lockdowns 87

to keep the model simpler and results interpretable. 88
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2 Materials and methods 89

2.1 Population Structure 90

We model a “Prabhag” of Pune City, consisting of 100,000 individuals. These individuals 91

are distributed demographically based on the estimated population data for 2012-14 [44]. 92

We allocate unique attributes to all individuals, including information related to their 93

home, office and neighbourhood locations (See Appendix S1 for a detailed description). 94

People “move” between these locations based on a schedule defined by their attributes. 95

For instance, an “employee” (any individual with an age under 60 years) travels daily 96

to their office in the morning, spends some time in their neighbourhood, and comes 97

back home in the evening (A schematic of the same is shown in Fig. 1). For a detailed 98

description of the schedules, see Appendix S1. We model an isolated prabhag with no 99

movement of the infection across prabhag boundaries. 100

2.2 Modelling the Public Health Response 101

Our model for the public health response is based on interviews with officials at the Pune 102

city COVID-19 “war-room”, a central data-gathering hub during 2020-2022. We elicited 103

information regarding strategies to identify individuals for testing, contact tracing and 104

quarantine. Analysis of contact tracing data between March-June 2020 (see Appendix 105

S6) suggested that on average, around seven contacts were identified for each index 106

patient and contacts were designated as high or low-risk based on proximity and duration 107

of contact (see following sections for more details). 108

While introducing testing, we consider scenarios where the start of the actual epidemic 109

is not coincident with the start of the public health response. For instance, in India, 110

while the first case of COVID-19 was detected in January 2020 [45], the availability 111

of tests was limited until May 2020, when about 453 tests per million people became 112

available [46]. To mimic this scenario, we activate testing only after a threshold number 113

of people “self-report” themselves as being sick. 114

There are three possible interventions through which an individual becomes eligible 115

for testing — Self-Reporting, Contact Tracing, and Random Testing. Depending on the 116

public health response, some of these interventions may or may not be active. We assume 117
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Fig 1. (A) A schematic describing the eight disease states and the transitions between
them. (B) A schematic of the geographical structure depicting the movement of people
between different locations. The agents (individuals) depicted here are employees who
travel daily to their office, spend some time in their neighbourhood and come back
home.

that there are limited tests every day and thus, not everyone who becomes eligible for 118

getting a test is immediately tested. Depending on the number of tests, individuals are 119

randomly selected from the list of all eligible people and are tested based on a priority 120

order described below. Note that individuals who are eligible for getting tested are 121

isolated until they receive their test. 122
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Self-reporting Individuals exhibiting symptoms of COVID-19 can self-report and 123

become eligible for receiving a test. Similar to real life, not all individuals will report 124

their symptoms, and there is a probability associated with reporting symptoms. People 125

with severe symptoms are more likely to self-report than people with mild symptoms. 126

Moreover, not all people exhibiting symptoms are infected with COVID-19. During the 127

epidemic, other diseases like the flu are still prevalent, and people infected with them 128

exhibit similar symptoms [47]. To mimic this in our model, a small fraction of individuals 129

(on average, 0.025% of the susceptible population) infected with flu-like illnesses (but 130

still susceptible to COVID-19) report their symptoms every day and become eligible for 131

getting a test. For simplicity, we assume that the people infected with or recovered from 132

COVID-19 are not susceptible to other flu-like illnesses. 133

Contact tracing Contacts are individuals who might have interacted with an agent 134

who tested positive. All individuals from the same household and a fraction of individuals 135

belonging to the same office and the same neighbourhood as the agent who tested positive 136

are selected as contacts. All household contacts (irrespective of their symptom status) 137

and all symptomatic office and neighbourhood contacts are classified as high-risk contacts, 138

and they are made eligible for testing. All the asymptomatic office and neighbourhood 139

contacts are classified as low-risk contacts, and they are isolated for 7 days. 140

Random testing Individuals are randomly selected from the population and are 141

made eligible for getting a test. These individuals are selected only if they are not 142

already hospitalised or eligible for a test through any other interventions mentioned 143

above. Moreover, positively tested, quarantined, or isolated individuals are also not 144

selected. 145

Priority order for testing Even during the peak of the first wave of the epidemic, 146

only about 12,000 tests were conducted daily in the Pune district, which is home to 147

approximately 12 million people [48]. National statistics also paint a similar picture [49], 148

and about a million tests were performed daily for a population of around 1.4 billion 149

people. Considering the limited number of tests, the Indian Council of Medical Research 150

formulated a set of guidelines to test individuals based on a priority order [50]. We 151

simulate such guidelines with a limited number of daily tests and a priority order for 152
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who receives the test. The priority order is as follows: 153

1. Self-reported symptomatic individuals and high-risk contacts 154

2. People eligible via random testing 155

Since there are a fixed number of daily tests, the people eligible for a test are pooled 156

together based on the priority order. During testing (which happens once daily), people 157

are randomly sampled from this pool and given a test. For instance, consider the Self 158

Reported + Random Testing public health response scenario – self-reported symptomatic 159

individuals are collected in pool one, and those eligible for random testing are collected 160

in pool two. According to the priority order, people are first randomly sampled from 161

pool one and given a test, and only if any tests are left, people are randomly sampled 162

from pool two and tested. We use only RT-PCR tests, which are assumed to have a 100% 163

specificity and 100% sensitivity, thereby ensuring no false positives or false negatives. 164

To account for the time delay in declaring results of RT-PCR tests, [51] we introduce a 165

two-day delay between an individual getting tested and receiving the test result. All 166

positively tested individuals are quarantined in their homes for 14 days to account for 167

the incubation period of COVID-19 [52]. 168

2.3 Simulating the Epidemic 169

The epidemic is seeded by randomly choosing a set of people and infecting them. The 170

number and location of such seed individuals can be varied to model different scenarios. 171

For example, infecting a large fraction of employees at a particular office mimics a 172

super-spreader event. In our experiments, we choose 100 random seed individuals (on 173

average) in a location-independent manner. A detailed description of this algorithm is 174

given in Appendix S2. 175

The progress of the disease is represented using disease states: Susceptible, Asymp- 176

tomatic, Presymptomatic, Mildly Infected, Severely Infected, Recovered, Hospitalised, 177

and Dead. Individuals can be in any one of these disease states, and the transition 178

between different states is shown in Fig. 1. Mathematically, such a system is described 179

by a set of eight coupled ordinary non-linear differential equations given in Appendix 180

S2. A variable of the form λDS , (where DS is the disease state) refers to the rate at 181
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which an agent exits that corresponding state. For example, λA is the constant rate 182

at which an agent exits the Asymptomatic state. Note that λS , the rate at which a 183

person exits the Susceptible state is not a constant rate and depends on a variety of 184

factors (see Appendix S2 for a detailed description). The other variables - γ, µ, δ and σ 185

- refer to the probability that an individual enters one of the two branched secondary 186

states after exiting the primary state. The subscript i indicates that these variables 187

are age-stratified. For example, for a given age group, γi is the probability that an 188

agent becomes Asymptomatic after exiting the Susceptible state. Similarly, 1-γi is 189

the probability that the agent becomes Presymptomatic. The values assigned to these 190

variables are given in Appendix S2. We assume that once people recover from the disease, 191

they cannot get reinfected. For a detailed description of the algorithm which governs 192

transitions between different disease states, refer to Appendix S2. 193

Calculation of Case Fatality Rate (CFR) Case Fatality Rate (CFR) for a cohort 194

of people identified on a given day is calculated as the fraction of people who died out 195

of that cohort. In our model, individuals are identified if they are tested positive or if 196

they die without getting tested (we assume that people can only die due to COVID-19). 197

In the initial days of the epidemic, before testing has started, only dead people are 198

identified, and CFR is effectively 100%. This leads to a very high value of CFR during 199

the initial days and thus we begin calculating CFR only from day 15. 200

Calculation of Rt Rt, also known as the effective reproduction number, is an estimator 201

of the number of infections caused by one infected person. During the COVID-19 202

pandemic, public health systems used Rt to guide and direct public health responses [53]. 203

We use the R Package, EpiEstim [54] to calculate Rt. EpiEstim computes Rt using only 204

daily incidence data and the serial interval distribution – the estimated time between 205

symptom onset in a case and their infector. EpiEstim has been validated against both 206

simulation and public-health data for COVID-19 [54]. For details on the parameters 207

used while computing Rt, please refer to Appendix S7. 208

Analysis of Contact Tracing Data from Pune Anonymized contact tracing data 209

was used to compute the average number of contacts. The Ethics Committee of Indian 210

Institute of Science Education and Research, Pune, India approved the analysis of 211
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COVID-19 programmatic data. 212

2.4 Experimental Design 213

A public health response is a combination of different interventions that can be imple- 214

mented. The interventions are (a) Self Reported (SR) - Only people who self-report 215

are tested, (b) Contact Tracing (CT) - Identified high-risk contacts are tested, and 216

low-risk contacts are isolated and (c) Random Testing (RT) - people who are randomly 217

sampled from the population are tested. 218

To compare the relationship between metrics and the true state of the epidemic, we 219

conduct four sets of experiments - 220

1. Variation of λS in the absence of any public health intervention, where λS is the 221

rate at which an agent exits the Susceptible state, 222

2. Variation of the public health response given a fixed number of 500 daily tests. We 223

use the following combinations of interventions 224

(a) Self Reported (SR) 225

(b) Self Reported along with Contact Tracing (SR+CT) 226

(c) Self Reported along with Random Testing (SR+RT) 227

(d) Self Reported along with Contact Tracing and Random Testing (SR+RT+CT) 228

3. Variation of the number of daily tests given a fixed public health response 229

(SR+RT+CT) 230

4. Variation of the efficiency of contact tracing given a fixed number of 500 daily 231

tests and a fixed public health response - SR + RT + CT. This involves varying 232

two parameters, fO and fN which describe the fraction of identified contacts at 233

the office and neighbourhood respectively. 234

All the values of the described parameters which are varied during each experiment 235

are given in Table 1. Since our model is inherently stochastic in nature, we ran 30 236

simulations for each set of parameters, and our results are based on an average of these 237

30 simulations for each parameter set. 238
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Sr.no Description Variation of parameters

1 Variation of λS 0.3, 0.4, 0.5

2
Variation of public health scenarios given 500
daily tests

• Self Reported

• Self Reported + Contact Tracing

• Self Reported + Random Testing

• Self Reported + Contact Tracing +
Random Testing

3

Variation of the number of daily tests given a
fixed public health response - Self Reported +
Contact Tracing + Random Testing

100,200,300,500,700

4

Variation of efficiency of contact tracing (frac-
tion of contacts identified at office,fraction of
contacts identified in the neighborhood) given
500 daily tests and a fixed public health re-
sponse - Self Reported + Contact Tracing +
Random Testing

• low - (0.05, 0.025)

• medium - (0.15, 0.075)

• high - (0.25, 0.125)

Table 1. Description of the parameters varied during each experiment. There are four
different public health response scenarios - (1) SR Only people who self-report are
tested, (2) SR + CT People who self-report, identified high-risk contacts and low-risk
symptomatic contacts are tested, (3) SR + RT People who self-report and people who
are randomly tested, (4) SR + RT + CT People who self-report, identified high-risk
contacts, low-risk symptomatic contacts as well as people who are randomly sampled
from the population are tested. Note that there are 40 employees in an office and 400
people in a neighbourhood on average (see Supplementary Material Section S1.2
so the following fractions translate to 2(10), 6(30), and 10(50) contacts identified at the
office (neighbourhood) on average per individual. SR - Self Reported, CT - Contact
Tracing, RT - Random Testing

3 Results 239

3.1 Infection curves for different values of λS 240

We ran simulations for three different λS values - 0.3, 0.4, and 0.5 - in the absence of any 241

public health interventions. A comparison of the infection curves for the three chosen 242

values of λS — 0.3, 0.4, and 0.5 is presented in Fig. S4 in Appendix S2. Upon analyzing 243

the results of these simulations, we chose λS = 0.5 for all our further experiments to 244

ensure that around 60− 70% of the population is infected by the end of the epidemic. 245

We do not analyse these experiments further since it is not in the scope of the current 246

work. 247
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3.2 A comparison between different public health response sce- 248

narios given 500 daily tests 249

We model different public health response scenarios given a fixed number of 500 daily 250

tests. We choose 500 daily tests since this was similar to the maximum number of daily 251

tests (per 100,000 people) that were available in Pune during the second wave (Feb-May 252

2021) [48]. For the scenarios when contact tracing is active, we set fO and fN to be equal 253

to 0.1 and 0.02 respectively which means that on average, 4 colleagues and 8 neighbours 254

are identified as contacts of each positively tested person. 255

The left column of Fig. 2 shows the evolution of the Test Positivity Rate (TPR) 256

across different public health response scenarios. It is evident that contact tracing 257

effectively reduces the Test Positivity Rate (TPR). Whenever the contact tracing 258

intervention is active, self-reported symptomatic individuals, high-risk contacts, and 259

low-risk symptomatic contacts have an equal priority to get tested. Since the number 260

of daily tests is fixed, a significant fraction of the tests are used on high-risk contacts 261

who are not necessarily infected, and this brings down the TPR. Random testing has 262

no effect on the TPR in the initial days of the epidemic. This is because the number 263

of daily tests available is fixed and given the priority order, there are barely any tests 264

left for random testing. If the number of daily tests is increased, a larger fraction of 265

tests will be used for random testing (see Fig. S15 in Appendix S8 ) which will lead to a 266

reduction in the TPR. The absence of the random testing intervention has a significant 267

effect on metrics at the end of the epidemic, where a second smaller peak in TPR is 268

observed. During this period, only a tiny fraction of people remain infected, and the 269

pool of people susceptible to COVID-19 but infected by some other flu-like illness also 270

reduces (as the susceptible population reduces). Thus, there is a high chance that a 271

majority of the people getting tested are symptomatic, which in turn increases the TPR. 272

This result suggests that increases in TPR after an observed epidemic peak declines [19] 273

may be simply due to this reason. When random testing is active, a majority of tests are 274

used for random testing at the end of the epidemic, reducing TPR and mitigating this 275

effect, as shown in the respective panels in Fig. 2. However, we note that this reduction 276

in TPR is purely “cosmetic” in the sense that it has no impact on health outcomes (see 277

Fig. S5 in Appendix S4). Note that our TPR values are significantly higher as compared 278
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to actual reported values in Pune city (see Fig. S12 in Appendix S6). This is because we 279

are only analyzing a population contained within a single hypothetical ward. There is 280

no migration of people between different wards and hence, it is easier to identify and 281

test people with symptoms as well as trace contacts. The right panel of Fig. 2 shows 282

that contact tracing effectively reduces the Case Fatality Rate (CFR). 283

Fig 2. The left and right panels show the evolution of the Test Positivity Rate (TPR)
and the Case Fatality Rate (CFR) respectively, for different public health response
scenarios given a fixed number of 500 daily tests. The plots show an average of the
metrics taken over 30 individual simulation runs. Furthermore, each metric curve is
smoothed over using a 7-day rolling average.

The left column of Fig. 3 compares the evolution between the actual number of 284

infected people (or the number of true infections) and TPR. There is an indication of a 285

weak phase relationship as both of these curves rise and fall together. The second peak 286

in TPR for the SR and SR + CT scenarios is due to the absence of random testing as 287

mentioned above. The right panel of Fig. 3 compares the evolution of the rate of change 288

of true infections with the rate of change of TPR. The stars denote the corresponding 289

days on which this rate goes to 0 or the days on which the infection or TPR curves peak. 290

The TPR peaks slightly before the infection for all the public health response scenarios 291

considered. Moreover, for all scenarios, the rate of change of TPR always peaks before 292
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the rate of change of the number of true infections and subsequently the true infection 293

peak (given by the location of the red star). This result suggests that the rate of change 294

in TPR is a promising indicator for the peak of the actual number of infections. In the 295

absence of random testing, the rate of change of TPR shows a small peak at the end of 296

the epidemic which is a manifestation of the second peak in TPR. A similar analysis 297

comparing the evolution of the number of true infections and the Case Fatality Rate 298

(CFR) is shown in Fig. S10 in Appendix S5. For all the public health response scenarios, 299

the CFR peaks after the infection curve and thus, the CFR metric cannot be used to 300

forecast the peak of the infection curve. Nevertheless, the peak of the infection curve 301

occurs between the peak of the rate of change of TPR and the CFR and thus these two 302

metrics together can be used to estimate the state of the epidemic. 303

Fig 3. The left panel shows a comparison between the metric TPR (solid blue line)
with the number of true infections (dashed red line) for different public health responses.
The right panel shows a comparison between the rate of change of metric TPR (solid
blue line) with the rate of change of the number of true infections (dashed red line) for
different public health responses. The stars denote the days on which the rate of change
of true infections or the metric TPR goes to 0 or in other words, the days on which the
infection and the TPR curves peak. All the plots correspond to a 7-day rolling average.
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3.3 A comparison between different number of daily tests given 304

a fixed public health response (SR+CT+RT). 305

In this experiment, we vary the number of daily tests given a fixed public health response 306

(SR + RT + CT). fO and fN , the fraction of identified contacts at the office and 307

neighbourhood, are set to 0.1 and 0.02 respectively. Fig. S6 in Appendix S4 shows the 308

evolution of the number of true infections and the number of cumulative deaths for 309

different numbers of daily tests. It is observed that the number of true infections and 310

the number of cumulative deaths decrease with an increase in the number of daily tests. 311

However this decrease is not linear as both these quantities saturate after a subsequent 312

increase in the number of daily tests. Fig. 4 depicts the evolution of the Test Positivity 313

Rate (TPR) and the Case Fatality Rate (CFR). Both these metrics show a reduction as 314

the number of daily tests are increased. The TPR reduces simply because as the number 315

of tests are increased, the fraction of positive tests reduces while the reduction in CFR 316

is a consequence of the reduction in the number of deaths. However, this reduction is 317

non-linear in both the cases. Even after a 7-fold increase in the number of tests from 318

100 to 700, the peak of the TPR only reduces roughly by a factor of half, suggesting 319

that increasing testing with the aim to reduce TPR may not be very effective. As the 320

number of tests increase seven-fold, the peak of the TPR curve drops by ∼ 40% and 321

the peak of the infection curve also drops by roughly the same amount. However, the 322

CFR drops by ∼ 90% while the number of cumulative deaths reduces by ∼ 25%. Thus, 323

the change in TPR roughly correlates with the change in the number of true infections 324

but the change in CFR is not reflected proportionally by the change in the number of 325

cumulative deaths. 326

The left panel of Fig. 5 shows that we observe a consistent phase relationship between 327

TPR and the number of true infections. As shown before, the peak of the rate of change 328

of TPR is seen slightly before the peak of rate of change of number of true infections and 329

much before the peak of the infection curve itself (given by the location of the red star). 330

This again indicates that the rate of change of TPR is an excellent metric for forecasting 331

the peak in the number of true infections. As observed earlier, the peak of the CFR 332

occurs after the peak of the number of true infections (see Fig. S11 in Appendix S5). 333
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Fig 4. Evolution of the Test Positivity Rate (left) and the Case Fatality Rate (right)
for different number of available daily tests, given a fixed public health response - SR +
CT + RT. All plots correspond to a 7-day rolling average.

Fig 5. The left panel shows a comparison between the number of true infections
(dashed red line) and the TPR (solid blue line) and the right panel compares the rate of
change of the number of true infections (dashed red line) with the rate of change of
TPR (solid blue line) for different numbers of daily tests given a fixed public health
response - SR + RT + CT. The stars denote the days on which the corresponding rates
go to 0 or the days on which the infection and the TPR curves peak. All the plots
correspond to a 7-day rolling average.

3.4 A comparison between different efficiencies of contact tracing 334

In this section, we explore the isolated effects of the “efficiency” of contact tracing. We 335

simulate a fixed public health response - SR + CT and vary the values of fO and fN - (i) 336
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(0.05, 0.025), (ii) (0.15, 0.075), and (iii) (0.25, 0.125), given a fixed number of 500 daily 337

tests. These respective scenarios are labelled as low, medium and high and these labels 338

characterize the efficiency of contact tracing and thus, the number of contacts identified 339

for each positively tested person. Fig. S7 in Appendix S4 shows the evolution of the 340

number of true infections and the number of cumulative deaths for all three contact 341

tracing efficiencies. Since the infection wave does not end even after 200 days, we extend 342

our simulation time to 400 days. 343

The left column of Fig. 6 shows that increasing the efficiency of contact tracing 344

reduces the peak of the TPR, but increases the spread of the TPR curve. For example, 345

when the contact tracing efficiency is high, TPR shows a gradual decline and only 346

reduces to about 75% of its maximum value even after 400 days. The reasons for this are 347

twofold; (i) the length of the epidemic itself is extended, and (ii) increasing the efficiency 348

increases the number of identified contacts and a significant fraction of tests are utilized 349

on testing them, leaving a constant symptomatic pool of people within the testing queue 350

who will get tested positive. Thus, in this case, TPR does not capture the dynamics of 351

the epidemic as the TPR curve reflects the positivity of those in the queue rather than 352

the current state of the epidemic curve. The second peak in TPR is due to the absence 353

of random testing, as explained above. 354

Fig. 6 shows that the reduction in CFR and TPR is not linear with an increase in the 355

efficiency of contact tracing and both metrics exhibits a threshold-like behaviour. This is 356

evident from the fact that increasing the contact tracing efficiency from medium to high 357

has negligible effect on either CFR or TPR. However, the health outcomes do not show 358

a similar trend and are markedly different. As the contact tracing efficiency is increased 359

from low to high, the peak of the infection curve drops by ∼ 70% and the total number 360

of deaths drops by ∼ 35%. The metrics do not show a proportionate reduction as the 361

TPR only drops by ∼ 20% and the CFR drops by ∼ 50%. Thus its difficult to draw any 362

inferences about the state of the epidemic and health outcomes just from changes in 363

CFR and TPR when the efficiency of contact tracing changes. 364

Our analysis on the phase relationships yield similar results as earlier (see Fig. 7); 365

the peak of the rate of change of TPR happens much before the peak of the epidemic 366

given by the location of the red star, and thus the rate of change of TPR can forecast 367

the peak of the epidemic. 368
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Fig 6. Evolution of the Test Positivity Rate (left) and the Case Fatality Rate (right)
for different efficiencies of contact tracing, given a fixed public health response - SR +
CT and a fixed number of 500 daily tests. All plots correspond to a 7-day rolling
average. Note that the CFR is only plotted till day 200 since it shows a lot of
fluctuations in the days beyond that (see Appendix S5).

3.5 Phase relationships when testing is unconstrained by number 369

of tests 370

In all our experiments described above, it is observed that almost all the available daily 371

tests are used up throughout the duration of the epidemic (see Fig. S16 in Appendix 372

S8). As a result, the number of positive tests and the test positivity rate are always 373

in phase with each other, as the number of positive tests is an integer multiple of the 374

test positivity rate if all available tests are used up (given that each test has a 100% 375

specificity and 100% sensitivity). To compare the phase relationships between different 376

quantities when the test positivity rate is not in phase with the number of positive tests, 377

we explore three scenarios with excessive number of available daily tests - 1500, 2000 378

and 2500, with SR being the only active public health response. We make these choices 379

to mimic the situation in Pune city during the second wave of COVID-19 (March-May 380

2021) when testing was not constrained by availability of tests, but contact tracing was 381

no longer conducted due to the very large number of infections. Moreover, to ensure 382

that testing starts early, we increase the number of randomly infected seed individuals 383

to 1000. 384

Fig. 8 shows that in this scenario, the rise in TPR leads the rise in the number of 385

identified cases. This is due to the fact that a lower fraction of the daily tests get used 386

up when the number of available daily tests is increased (see Fig. S17 in Appendix S8) 387

and the number of positive tests and TPR is no longer in phase. Furthermore, the daily 388

October 1, 2024 19/31

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.09.13.24313615doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.13.24313615
http://creativecommons.org/licenses/by/4.0/


Fig 7. The left panel shows a comparison between the number of true infections given
(dashed red line) and the TPR (solid blue line) while the right panel compares the rate
of change of number of true infections (dashed red line) with the rate of change of TPR
(solid blue line) for different efficiencies of contact response keeping a fixed public health
response - SR + CT and a fixed number of 500 daily tests. The stars denote the days
on which the infection and the TPR curves peak or the days when the corresponding
rates go to 0. All the plots correspond to a 7-day rolling average.

identified cases closely tracks the rise of actual number of cases, which means that the 389

rapidly increasing TPR is a good predictor of increasing number of actual infections. 390

Fig. 8 shows that the number of positive tests peaks before the number of true infections 391

in all three scenarios, making it a good indicator of the peak of the epidemic curve. 392

For all three scenarios, the TPR is so high because only people with symptoms who 393

self-report are getting tested, so there is no contact tracing or random testing. As 394

described before in subsection 2.2, symptomatic people who self-report are divided into 395

two pools - (i) People who are infected with COVID-19 and (ii) People who are infected 396

with influenza-like illnesses (ILIs) and show similar symptoms but are still susceptible 397

to COVID. The test positivity rate is a reflection of the fraction of people who are 398

tested from each pool. Figure Fig. S18 in Appendix S8 shows a comparison between the 399

number of positive tests versus the number of people with ILIs who are tested for all the 400

three excess test scenarios. For the first case with 1500 tests, the peak of the number 401

of people with ILIs who are tested occurs after the infection peak when the number 402

of positive tests is also on the decline. Thus, during this period, there is a significant 403
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reduction in TPR as a modest fraction of the testing pool is made up of people with 404

ILIs. However, as sufficient tests become available during the decline of the epidemic, a 405

majority of persons with ILIs are tested at the same time and they rapidly fall out of 406

the testing pool. Thus, TPR starts rising again producing a second peak in the TPR 407

curve. This is similar to the second peak in TPR produced in the absence of random 408

testing (see subsection 3.2). As the number of tests is increased to 2000, the number of 409

tested people with ILIs is almost in-phase with the number of positive tests and again 410

falls rapidly after the peak. Thus we see a smaller dip in the TPR curve. For the case 411

with the highest number of tests, the two quantities are exactly in phase with each other 412

and thus TPR does not show a dip and a subsequent second peak. 413

Fig 8. The left panel shows a comparison of the relationship between the Test
Positivity Rate (dashed red line) and the number of positive tests (solid blue line). The
right panel compares the number of true infections (dashed red line) with the number of
positive tests (solid blue line) for different numbers of daily tests given a fixed public
health response - SR.

3.6 A comparison of phase relationships between Rt and the 414

epidemic 415

Effective Reproduction Number, or Rt has been used by several public health systems 416

to judge the state of the epidemic and guide public health response. To examine the 417

fidelity of Rt estimated using surveillance data in capturing the growth and decay phase 418
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Fig 9. Plot showing the relationship between Rt (dashed red line) and the rate of
change of true infections per day (solid blue line) for (left) different number of daily
tests and (right) different public health scenarios. The shaded red regions around the
dashed lines depict the 90% confidence intervals of Rt. The horizontal grey dotted line
indicates Rt = 1. The vertical dotted grey line indicates the peak of true infections.

of the epidemic, we plot Rt estimated using EpiEstim against number of infections. The 419

value of Rt is expected to indicate whether the epidemic is post its peak. We find that 420

in all scenarios (Fig. 9), Rt dips below 1 just before the infection peak. This is true 421

even in cases where positive cases and infected are not in phase (see Appendix S7). We 422

note that in cases where contact tracing is not active, Rt produces a secondary peak 423

close to the end of the epidemic (albeit with large uncertainty), which might indicate 424

the beginning of another wave. Thus, caution must be employed while using the value of 425

Rt, particularly at the end of an epidemic wave when contact tracing was not employed. 426

Furthermore, the estimates of Rt when contact tracing is active are more precise and 427

have much smaller confidence intervals even at the end of the epidemic when very few 428

cases are present. 429
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4 Discussion and conclusion 430

Public health decision making during an epidemic is based on data obtained from 431

surveillance. The sucess of such decisions in controlling health outcomes relies on the 432

fidelity of the surveillance data in representing the actual epidemic, especially when a 433

majority of the cases go unidentified. While metrics derived from surveillance data such 434

as TPR and CFR have been used [14–16] during the recent COVID-19 epidemic, their 435

actual utility has not been tested in a systematic manner. Thus, the main goal of our 436

work was to use agent-based modelling as a principled approach to both designing and 437

testing such metrics. Put in another way, our work aimed to “construct” the behavior 438

and relationships between different metrics such as TPR and CFR over an epidemic wave 439

and examine how different public health responses lead to different behaviors of such 440

metrics. This constructivist approach allows for a more nuanced use and interpretation 441

of such metrics. 442

For instance, our results show that regardless of the type of public health response 443

being active, a TPR-threshold based intervention will be activated too late (if curbing 444

the rise of infections is the aim), and the rate of change of TPR better captures the 445

growth phase of the epidemic in all scenarios that we examined. In extreme cases such as 446

Fig. 8 and Fig. 9, a threshold based approach may keep the intervention active for much 447

longer than is necessary to control infection spread, leading to inefficiencies in usage of 448

scarce resources and unnecessary loss of economic output (in case lockdowns are used). 449

Furthermore, the peak rate of change of TPR occurs just before the epidemic itself peaks, 450

providing a way to estimate future requirements for healthcare infrastructure. Our 451

results also show that CFR tends to peak when the epidemic is already on the decline – 452

even if CFR is assigned based on the date of identification of the infected person rather 453

than date of death – and in some cases has no clear peak at all, making it problematic 454

as a metric for decision making. Our results suggest that Rt is also a reliable metric in 455

predicting the epidemic peak, but may falsely indicate a rise in infections (i.e, a second 456

wave) at the end of the epidemic wave. Thus, confidence intervals associated with the 457

estimated Rt must be taken into account at all times. 458

Our results suggest that using such metrics as a way to compare between cities or 459

administrative wards is again problematic since different places may adopt different 460
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public health responses and with different efficiencies. Indeed, better contact tracing 461

leads to higher mean TPR in our simulations which may lead to the false impression 462

that the epidemic is more prevalent or that current contact tracing efficiency is poor. 463

Furthermore, metrics such as TPR and CFR do not scale linearly with the number of 464

true infections or deaths and thus care must be taken while utilizing TPR or CFR to 465

make inferences about likely health outcomes. 466

While we present an extensive set of public health scenarios, we do not expect our 467

results to be directly applicable to all real world scenarios. One of the main limitations 468

is that we consider an isolated population with no import/export of infections from 469

external sources. This makes the public health response unusually efficient in identifying 470

infections and leads to very high values of TPR. We also speculate that this may be one 471

of the reasons why we are unable to simulate the phase difference between the number 472

of identified infections and metrics such as TPR. Furthermore, we do not account for 473

differential delays in testing, test sensitivity and specificity, reinfections, and transmission 474

through non-airborne medium. We also do not account for pharmaceutical interventions 475

such as medicines, vaccines and antibody therapy and non-pharmaceutical interventions 476

such as lock downs. However, the aim of our work was to develop a principled approach 477

to constructing observed epidemic curves, and thus such enhancements are left to future 478

work. 479

Our results show potential to assist public health professionals in decision making 480

during future epidemics. Through extensive simulations of epidemics and public health 481

responses, we provide modelling evidence to support the use of some metrics for decision 482

making. 483
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