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2 1 INTRODUCTION

Abstract:

A typical pattern observed in M/EEG recordings of Mild Cognitive Impairment (MCI) patients

progressing to Alzheimer’s disease is a continuous slowing of brain oscillatory activity. Definitions

of oscillatory slowing are imprecise, as they average across time and frequency bands, masking the

finer structure in the signal and potential reliable biomarkers of the disease.

Recent studies show that high averaged band power can result from transient increases in power,

termed ‘events’ or ‘bursts’. To better understand MEG oscillatory slowing in AD progression,

we analyzed features of high-power oscillatory events and their relationship to cognitive decline.

MEG resting-state oscillations were registered in age-matched patients with MCI who later convert

(CONV, N=41) or do not convert (NOCONV, N=44) to AD, in a period of 2.5 years. To distinguish

future CONV from NOCONV, we characterised the rate, duration, frequency span and power of

transient high-power events in the alpha and beta band in anterior cingulate (ACC) and precuneus

(PC).

Results revealed event-like patterns in resting-state power in both the alpha and beta-bands, how-

ever only beta-band features were predictive of conversion to AD, particularly in PC. Specifically,

compared to NOCONV, CONV had a lower number of beta events, along with lower power events

and a trend toward shorter duration events in PC (p < 0.05). Beta event durations were also

significantly shorter in ACC (p < 0.01). Further, this reduced expression of beta events in CONV

predicted lower values of mean relative beta power, increased probability of AD conversion, and

poorer cognitive performance.

Our work paves the way for reinterpreting M/EEG slowing and examining beta event features as

a new biomarker along the AD continuum, and a potential link to theories of inhibitory cogni-

tive control in neurodegeneration. These results may bring us closer to understanding the neural

mechanisms of the disease that help guide new therapies.

Keywords: transient high-power events, magnetoencephalography, Alzheimer’s Disease, computa-

tional neuroscience, mild cognitive impairment

1 Introduction1

According to the World Health Organization 2017 Alzheimer’s disease (AD), a leading cause of disability2

and dependency among older individuals worldwide, is expected to affect 130 million people by 2050.3

Despite intensive research efforts, disease-modifying human therapies are still lacking, since the link4

between amyloid-induced cellular damage and cognitive decline is incomplete (Maestú et al., 2021).5

Magnetoencephalography (MEG) has been an valuable technique to fill this gap, as it can directly capture6
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human neuronal processes, associated with the disease and cognition, with high temporal resolution (da7

Silva, 2013; Maestú et al., 2021).8

A typical pattern observed in M/EEG recordings of AD patients is a progressive slowing of brain oscillatory9

activity (Dauwels et al., 2011; Hsiao et al., 2013; Ishii et al., 2017; Jeong, 2004), typically characterised10

by an increase in low-frequency delta (0.5 – 4 Hz) and theta rhythms (4- 7 Hz), along with a decrease in11

higher frequency bands, alpha (8–12 Hz) and beta (12–30 Hz) rhythms. This oscillatory slowing initiates12

in early stages of the disease, such as Mild Cognitive Impairment (MCI) (Babiloni et al., 2004, 2009,13

2010; Dauwels et al., 2011; Jelic et al., 2000), and may even manifest before, in the subjective cognitive14

decline stage (Bruña et al., 2023; López-Sanz et al., 2016), progressing from anterior to posterior cortices15

and particularly in frontal and parietal regions, (Huang et al., 2000; Nakamura et al., 2018), in line with16

the onset of amyloid accumulation in the fronto-temporal association cortices (Bang et al., 2015; Cho17

et al., 2016; Wiesman et al., 2022). It has been shown that MCI patients who finally convert to AD18

exhibit a significant disruption (i.e., decrease in synchronisation (König et al., 2005; López-Sanz et al.,19

2017; Pusil, Dimitriadis, et al., 2019), as stated in the “X” model) between anterior cingulate cortex20

(ACC) and precuneus (PC), two regions typically associated with high amyloid deposition (Forsberg21

et al., 2008). As MEG oscillatory slowing accelerates, cognitive decline worsens producing alterations in22

memory processes and executive functions (Hoshi et al., 2022; Wiesman et al., 2022).23

Definitions of oscillatory slowing are imprecise, as they typically rely on methods based on a spectral24

decomposition followed by averaging across time, frequency bands, and often subjects. Such averaging25

can mask finer structure in the signal that may provide more reliable biomarkers of the disease and26

cognitive decline and help connect human biomarkers to the underlying neural mechanisms of the disease27

including possible connections to hyperexcitability as shown in animal models (Maestú et al., 2021;28

Stoiljkovic et al., 2018; Zott et al., 2019). In recent years, there has been a shift in spectral M/EEG29

methods, as many studies have shown that, in non-averaged data, brain oscillations often occur as30

transient increases in high spectral power, a phenomenon termed oscillatory “bursts” or “events” (Jones,31

2016; Lundqvist et al., 2024; van Ede et al., 2018). Quantifying transient changes in spectral activity32

requires new methods that consider temporal characteristics of spectral activity such as event rate,33

amplitude, duration, or frequency span (Shin et al., 2017). Such event-based methods have recently been34

applied in a growing body of M/EEG studies on the brain dynamics of cognitive processes (Kavanaugh35

et al., 2023, 2024; McKeon et al., 2023; Morris et al., 2023; Quinn et al., 2019; Shin et al., 2017), helping36

to establish neural correlates of cognitive behavior on a single trial level. Variability in oscillatory event37

parameters may represent a new set of explainable MEG biomarkers for AD, as it can reflect differences38

in circuit-level origins and provide insights into the underlying activity patterns and functions (Jones,39

2016; Lundqvist et al., 2024; M. A. Sherman et al., 2016).40
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4 2 METHODS

In this study we applied standard power spectral density (PSD) and event-based analysis methods to41

resting-state MEG from adults with MCI who later convert (CONV) or do not convert (NOCONV) to AD.42

Motivated by the findings of the AD continuum model described by (Pusil, López, et al., 2019) (namely43

the “X” model), we first hypothesized that averaged PSD slowing exhibits divergent effects in features44

of high-power transient spectral events. Second, we hypothesized that slowing-related effects in spectral45

event features would be associated to cognitive decline, as measured by a battery of neuropsychological46

tests in memory and executive functions in the MCI sample. We characterize MEG oscillatory slowing in47

terms of transient spectral event parameters in a MCI-to-AD longitudinal sample, taking the initial step48

towards the potential identification of biophysically principled biomarkers.49

2 Methods50

2.1 Subject recruitment and neuropsychological assessment51

Participants were recruited from Hospital Cĺınico Universitario San Carlos in Madrid, Spain. The study52

was approved by the Ethics Committee, and all participants provided written informed consent prior to53

participation. All participants were right-handed native Spanish speakers.54

The study sample included 85 subjects diagnosed with mild cognitive impairment (MCI). Initially, partic-55

ipants were screened according to the diagnostic criteria of the National Institute on Aging-Alzheimer’s56

Association (NIA-AA) (Albert et al., 2013) and underwent a comprehensive neuropsychological assess-57

ment as previously described (López-Sanz et al., 2016; Pusil, Dimitriadis, et al., 2019), along with a58

MEG recording. They were cognitively and clinically followed-up in a temporal interval of 2.5 years and59

then subdivided in two groups considering the criteria for probable Alzheimer’s disease (McKhann et al.,60

2011): 41 subjects with mild cognitive impairment who converted to AD (CONV), and 44 subjects with61

mild cognitive impairment (MCI) which did not convert to AD (NOCONV). Subjects in CONV and62

NOCONV group were matched by age, sex, and education years, as it is reported in reported in Table 1.63

The neuropsychological assessment included seven tests: four measures of memory recall, Immediate64

Logic Memory Units, Delayed Logic Memory Units, Immediate Logic Memory Themes and Delayed65

Logic Memory Themes (Wechsler Memory Scale,WMS-III) (Wechsler, 1955); one measure of working66

memory, Inverse Digits (WMS-III); one measure of cognitive flexibility, Trail Making Test-B (TMT-B)67

(Bowie & Harvey, 2006); two language measures, Semantic Fluency (Controlled oral Word Association68

Test, COWAT) (Benton et al., 1994) and Boston Naming Test (BNT) (Kaplan et al., 1983) ; and69

one global screening measure for cognitive impairment and dementia, the Clock-Drawing test (Agrell &70
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2.2 Magnetoencephalography data acquisition 5

Descriptives NO CONV Mean ± SD CONV Mean ± SD p value
Age 75.25 ± 5.36 75.39 ± 4.99 t (83), p = n.s.
Sex N= 44; 19 (m), 25 (f) N= 41; 17 (m), 24 (f) Xi (1), p = n.s.
Education years 9.89 ± 5.39 8.32 ± 4.30 t (71), p = n.s.
Immediate Logic
Memory Units

17.30 ± 12.61 10.89 ± 7.41 t (83), p = .01

Delayed Logic
Memory Units

7.64 ± 9.10 2.20 ± 4.08 t (83), p < .01

Immediate Logic
Memory Themes

10.60 ± 5.03 7.70 ± 3.83 t (83), p < .01

Delayed Logic
Memory Themes

4.86 ± 4.52 2.29 ± 2.47 t (83), p < .01

Inverse Digits 4.16 ± 1.79 4.15 ± 1.28 t (83), p = n.s.
Semantic Fluency 11.86 ± 3.56 11.15 ± 3.60 t (83), p = n.s.
Trail Making Test - B 211.15 ± 112.72 251.34 ± 108.15 t (83), p = n.s.
Boston Naming Test 46.45 ± 9.77 43.80 ± 8.74 t (83), p = n.s.
Clock-Drawing Test 5.43 ± 2.08 5.07 ± 2.26 t (83), p = n.s.

Table 1: Mean ± SD values of the demographic and neuropsychological characteristics for AD converters
(CONV) and NOCONV groups

Dehlin, 1998). Table 1 includes paired t-test and previously reported differences across groups (López-71

Sanz et al., 2016; Pusil, Dimitriadis, et al., 2019) .72

2.2 Magnetoencephalography data acquisition73

The dataset was acquired using a 306-channel (102 magnetometers and 204 gradiometers) Vectorview74

MEG system (Elekta AB, Stockholm, Sweden) placed inside a magnetically shielded room (Vacuum-75

Schmelze GmbH, Hanau, Germany) located at the Laboratory of Cognitive and Computational Neu-76

roscience (Madrid, Spain). MEG data consisted of 5 min eyes-closed resting-state recordings in a 6077

min session, with a sampling rate of 1000 Hz and an online [0.1 - 330] Hz anti-alias band-pass filter.78

To allow further analysis, including subject-specific source reconstruction, MEG recordings were com-79

plemented by MRI scans acquired within a month after the MEG session, which were recorded at the80

Hospital Universitario Cĺınico San Carlos (Madrid, Spain) using a 1.5 T General Electric MRI scanner81

with a high-resolution antenna and a homogenization PURE filter (fast spoiled gradient echo sequence,82

with parameters: repetition time/echo time/inversion time = 11.2/4.2/450 ms; flip angle = 12°; slice83

thickness = 1 mm; 256×256 matrix; field of view = 256 mm).84

The MEG recordings were preprocessed offline using a temporal-spatial filtering algorithm (tSSS) (Taulu85

& Hari, 2009) (Maxfilter Software v2.2, correlation limit of 0.9 and correlation window of 10 s) to86
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6 2 METHODS

eliminate magnetic noises and compensate for head movements during the recording. The continuous87

MEG data were imported into MATLAB (R2017b, Mathworks, Inc.) for pre-processing steps, carried88

out using the Fieldtrip Toolbox (Oostenveld et al., 2011) (https://www.fieldtriptoolbox.org/). Data89

were automatically scanned for ocular, muscle and jump artefacts using the Fieldtrip software. Artefacts90

were then visually confirmed by an MEG expert. The remaining artefact-free data were segmented91

into 4-s segments (epochs). An independent component analysis-based procedure was used to remove92

the heart magnetic field artefact. Source reconstruction was performed using minimum norm estimates93

(Hämäläinen & Ilmoniemi, 1994) with the software Brainstorm (Tadel et al., 2011). Current dipoles94

were constrained to be perpendicular to the individual’s cortical surface, to model the orientation of95

macro columns of pyramidal neurons (Tadel et al., 2011). Neural time series were finally averaged96

within regions of interest (ROI) of the Schaefer 100-17 network atlas (Schaefer et al., 2018). Two97

regions of interest were extracted for subsequent analysis: the anterior cingulate cortex (as the merge98

of left ACC and right ACC, corresponding to SalV entAttnB PFCmp 1 area of the mentioned atlas,99

respectively), and the precuneus (as the merge of left PC and right PC, corresponding to ContC pCun 1100

andDefaultA pCunPCC 1 area of the mentioned atlas), see Figure 1a. The data was band-pass filtered101

between 0.5 and 45 Hz (broadband), using FIR filtering.102

2.3 Power spectral density (PSD)103

We computed the power spectral density of each of the ROI time series by using the Welch’s periodogram104

method (Welch, 1967), with 1s window length and 50% overlap ratio. For each ROI signal, the normalised105

power was calculated by averaging the power spectral density obtained by each epoch and then normalising106

the value associated to each frequency by total power over the [1–30] Hz range (Figure 2).107

2.4 Time-Frequency Representations (TFRs) & Spectral Events Extraction108

During resting-state alpha and beta activity, periods of transient high power can be quantified over time109

in unaveraged data. We use a time-frequency-based algorithm as in Shin et al. (2017) to capture these110

bursts.111

Time-Frequency Representations (TFRs) were calculated using the MATLAB SpectralEvents Toolbox112

(find method = 1, as in Shin et al. (2017)) (https://github.com/jonescompneurolab/SpectralEvents).113

Each artefact-free 4-sec epoch was convolved with a 7-cycle Morlet wavelet. For all epochs, TFR across114

time and across each patient was calculated and finally averaged to obtain a representative TFR for each115
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2.4 Time-Frequency Representations (TFRs) & Spectral Events Extraction 7

Figure 1: a) Representation of the right side regions of interest using the Schaefer 100-17 network
atlas: SalV entAttnB PFCmp 1 (corresponding to ACC), ContC pCun 1 (corresponding to PC) and
DefaultA pCunPCC 1 (corresponding to PC); b) Example of resting-state beta activity from left-ACC
and detection of transient burst of high-power activity (events), using the frequency-based algorithm of
Shin et al. (2017). There are several possible features of such events that could contribute to increased
power averaged across time and frequency, including event number (rate), event duration, event frequency
span and event power

.

ROI (PC or ACC) and group (CONV or NOCONV) in the range [2-30] Hz.116

The bands of interest reflected the slowing effect typical of MCI (Bruña et al., 2023; Dauwels et al.,117

2011; López-Sanz et al., 2016) and observed in our sample and were chosen to be [5-10] Hz for alpha118

and [12-30Hz] for beta. (See also methods section 2.5 Statistical Analysis). More specifically, we defined119

alpha by determining the group averaged peak (GAP) frequency of 8Hz in PC and taking a range of GAP120

[-3, +2] Hz. This choice provides a more precise capture of alpha oscillations in the ageing population121

(Tröndle et al., 2023) and reflects the range of significant difference in both PC and ACC across groups122

in our sample (see results Figure 2 below). The [12-30]Hz beta band, which does not exhibit a clear123

GAP, was similarly chosen to include the areas of significant difference in our sample.124
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8 2 METHODS

Spectral Events were detected by first retrieving all local maxima in un-normalized TFR using imregional-125

max. For each subject and ROI, transient high-power events were defined as local maxima above a 6X126

factor of the median (FOM) threshold within a frequency band of interest, to be consistent with prior127

studies (Shin et al., 2017). Additionally, we tested the robustness of our analysis with 4X FOM and 8X128

FOM thresholds (see Supplementary Figure 2 and Supplementary Table 1 & 2). As reported, we had129

the most significant results for 6X FOM median threshold. The spectral event method applied (namely,130

find method=1 in the SpectralEvent Toolbox) allows for multiple, overlapping events to occur in a given131

suprathreshold region and does not guarantee the presence of within-band, suprathreshold activity in any132

given trial, see Figure 1b.133

Importantly, it was noticed that events detected in contralateral medial ROIs (especially in left ACC and134

right ACC) were in part mirrored across the midline due to the close proximity of neighbouring bilateral135

dipoles (this effect of spatial smearing in source reconstruction is explained in Supplementary Figure 1).136

To remove duplicated mirror events when two detected events shared the corresponding contralateral137

ROI, epoch, time and frequency, we rejected the one with lower amplitude.138

For each subject and ROI, spectral events were characterised by 4 key features: event number in a fixed139

time window (i.e. event rate), duration, frequency span (Fspan) and power (Power FOM) (see Figure140

1b). Event number was calculated by counting the number of events in the 4-second period of each141

epoch. Event power was calculated as the normalised FOM power value at each event maximum. Event142

duration and frequency span were calculated from the boundaries of the region containing power values143

greater than half the local maxima power, as the full-width-at-half-maximum in the time and frequency144

domain, respectively.145

2.5 Statistical analysis146

To determine frequency ranges that represent oscillatory slowing in our cohort, we tested for significant147

differences in average power spectral density between AD CONV and NOCONV for each selected ROI148

by performing a non-parametric statistical test (Maris & Oostenveld, 2007) in the frequency domain (see149

light grey window in Figure 2).150

In each frequency-band, we examined the relationship between event features and the averaged PSD using151

a linear regression analysis over all subjects. The regression β coefficients were calculated with a 95%152

CI and all p-values were corrected for multiple comparisons using the Benjamini–Hochberg (BH) step-up153

procedure (Benjamini & Hochberg, 1995) with a False Discovery Rate (Q) set at 0.05. Statistically154

significant p-values after BH correction are reported as ∗p < 0.05(Q = 0.05).155
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2.5 Statistical analysis 9

We also tested for group differences in spectral event features between CONV and NOCONV groups.156

High power spectral event features were detected in alpha and beta frequency bands for each resting157

state segment from four ROI’s (left and right ACC and PC, respectively). Event rates were averaged158

across epochs, and other features (duration, f-span, power) were averaged across all events, and then159

between hemispheres, within each subject. The final dataset consisted of 16 variables for each subject:160

four event features (averaged spectral event rate, duration, f-span and power); by two ROI’s (ACC,161

PC); by two frequency bands (alpha and beta). For each variable, t-tests were used to assess group162

differences in transient event features. The tests were conducted with a left tail for the beta band and a163

right tail for the alpha band. This approach was consistent with the observation that the average power164

spectra in the alpha band are higher for CONV compared to NOCONV, while the effect is reversed in the165

beta band. We hypothesized that differences in event features align with the directional trend observed166

in the averaged relative spectral power. All reported p-values were corrected for multiple comparisons167

across the number of tests applied using the Benjamini–Hochberg (BH) step-up procedure (Benjamini168

& Hochberg, 1995) with a False Discovery Rate (Q) set at 0.05. Statistically significant p-values after169

BH correction are reported as ∗ ∗ p < 0.05(Q = 0.05). Statistical tendencies are reported as significant170

if ∗p < 0.1. We computed effect size of the differences between groups with a robust variant of Cohen’s171

d (Algina et al., 2005).172

For event features where significant difference across groups were found, we examined the relationship173

between these features and AD conversion and cognitive performance.174

To assess the relationship with AD conversion, we fit beta event features from ACC and PC to a175

logistic regression model ( R glm() function, family = binomial argument) in order to predict each176

patient’s conversion label (CONV or NOCONV). The model’s output is the probability of the positive177

class (CONV group). We used a default 0.5 threshold value to transform the probability to a binary178

class. Thus, a subject is classified as class 1 (CONV) if the predicted probability is greater than or equal179

to 0.5, and class 0 if the probability is less than 0.5. The odds ratio in logistic regression is calculated180

by exponentiating the coefficient of the predictor variable. As an example, for predictor variable Number181

of events, if the coefficient is β = 0.58 the odds ratio is given by OR = e0.58 ≈ 1.79. This means that182

the likelihood of the predicted outcome (AD conversion), is approximately 1.79 times greater than the183

likelihood of the outcome not occurring (no conversion to AD). Every reduction of 1 unit in Number of184

events increases by 79% the odds of AD conversion (CONV group).185

To asses the relationship with cognitive performance, we calculated a Cognitive Performance Index and186

applied linear regression. Aiming to account for variability across the nine neuropsychological tests used,187

the Cognitive Performance Index was calculated by applying Principal Components Analysis (PCA) (R188
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10 3 RESULTS

princomp() function) to the neuropsychological testing dataset. As a first step, the data from each189

of the nine tests was z-scored to prevent biases due to different test scales. Additionally, the data190

were transformed so that for each test higher values correspond to better cognitive performance. Then,191

we extracted the first principal component, which explained at least 55% of variance. The projection of192

individual data onto the new axes (principal component) represent the Cognitive Performance Index values193

for each subject, and this projection is achieved through linear transformation using the eigenvectors of194

the covariance matrix. All eigenvectors had a positive load in the first component. A subject with higher195

values of this Cognitive Performance Index correspond to better cognitive performance.196

3 Results197

3.1 AD Converters (CONV) exhibit oscillatory slowing in average PSD198

Figure 2: Normalized power spectral density plots (mean ± SEM) for regions of interest in CONV and
NOCONV patients, in the range [2-30] Hz. Shaded grey areas represent statistically significant clusters
of differences between CONV and NOCONV groups (non-parametric statistical test).

We confirm a slowing effect in power spectral density in CONV subjects for all ROIs of interest in ACC199

and PC, as observed in prior studies (Pusil, Dimitriadis, et al., 2019). In averaged PSD, the CONV group200

shows a statistically significant cluster of decreased relative power in beta frequency band compared to201
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3.2 Resting-state alpha and beta emerge as transient high-power events 11

NOCONV (Figure 2, 17-30Hz ACC and 11-27Hz PC, blue underlines) and increased relative power in202

lower frequency bands (theta, low-alpha) (Figure 2, 5-7Hz ACC and 4-8Hz PC, red underlines). Based203

on our data, for all subsequent analyses, we utilized a [5-10] Hz alpha bands and [12-30] Hz beta-band204

(see Methods section 2.4 for further details).205

3.2 Resting-state alpha and beta emerge as transient high-power events206

Figure 3: Time-Frequency representations of spectral events in PC (a), and ACC (b) for non-converters
(NOCONV, left) and converters (CONV, right) groups. For each case, we show the representative
averaged broadband TFR (top), as well as three TFR related to randomly chosen trials for low-alpha
(middle), and beta (bottom) band.

The PSD plots of Figure 2 rely on Fourier analysis performed on averaged epochs of brain activity from207

the two different groups. As described previously, differences in averaged power across patient groups208

could emerge from several features in transient of high-power activity (i.e., events) in the unaveraged209

data.210

Visual inspection of time-frequency representations in Figure 3 shows that seemingly continuous high211

average power in the alpha and beta bands (top panels) is the result of the accumulation of transient212
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12 3 RESULTS

high power activity (’events’) across epochs of the unaveraged resting-state data (Figure 3 middle and213

bottom panels) for both groups.214

Figure 4: Diminished expression of event features in ACC and PC is associated with reduced mean power
spectral density (PSD). A) Regression analysis between alpha [5-10] Hz spectral events and averaged
alpha power. B) Regression analysis between beta [12-30] Hz spectral events and averaged beta power.
Statistically significant p-values after BH correction are reported as ∗p < 0.05(Q = 0.05).

As such, higher averaged power could be due to increased expression in several features, including a higher215

number of events (rate), longer duration events, increased frequency spans and or increased power of216

the event. To assess if these features contributed to averaged power in our sample, we performed a217

regression analysis between each feature and averaged alpha and beta power (Figure 4). Our results218

show a strong correlation with averaged power and each event features in the beta band (number:219

β = .28, R2 = .069, p− value = .0088; duration: β = .45, R2 = .192, p− value < .0001; max power:220

β = .41, R2 = .156, p − value = .0001, frequency span: β = −.29, R2 = .07, p − value = .0075).221

While similar relationships occurred between alpha event features and averaged alpha power, only alpha222

event frequency span significantly correlated with averaged alpha power after correction for multiple223

comparisons and the effect was weaker than in the beta band (frequency span: β = −.25, R2 = .05,224

p− value = .025).225
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3.3 Reduced beta event features as predictive biomarkers of AD conversion and cognitive decline 13

Freq. ROI Feature
CONV

Mean ± SD
NOCONV
Mean ± SD

t Stat p Cohen d

Low-alpha ACC Ev.rate 1.32 ± 0.25 1.30 ± 0.31 t(165) = 0.41 0.343 -0.12
[5-10] Hz Duration 419.6 ± 28.9 426.2 ± 32.3 t(168) = -1.40 0.918 0.17

Fspan 3.33 ± 0.39 3.24 ± 0.30 t(168) = 1.67 0.048 -0.26
Pow.FOM 8.39 ± 0.56 8.51 ± 0.94 t(144) = -1.02 0.844 0.04

PC Ev.rate 1.50 ± 0.34 1.50 ± 0.31 t(162) = 0.13 0.450 -0.08
Duration 432.5 ± 34.4 445.4 ± 51.4 t(153) = -1.93 0.972 0.18
Fspan 3.33 ± 0.41 3.44 ± 0.45 t(168) = -1.59 0.943 0.27
Pow.FOM 8.99 ± 1.00 9.19 ± 1.19 t(166) = -1.17 0.878 0.16

Beta ACC Ev.rate 4.84 ± 0.63 4.92 ± 0.69 t(168) = -0.77 0.222 0.11
[12-30] Hz Duration 158.3 ± 8.0 161.7 ± 7.3 t(164) = -2.93 0.002 ** 0.48

Fspan 8.32 ± 0.41 8.26 ± 0.36 t(161) = 1.01 0.844 -0.05
Pow.FOM 8.38 ± 0.51 8.43 ± 0.51 t(167) = -0.63 0.266 0.09

PC Ev.rate 4.94 ± 0.72 5.31 ± 0.82 t(167) = -3.10 0.001 ** 0.44
Duration 159.6 ± 9.4 163.3 ± 11.5 t(168) = -2.25 0.013 * 0.28
Fspan 8.54 ± 0.50 8.44 ± 0.43 t(161) = 1.42 0.921 -0.18
Pow.FOM 8.39 ± 0.46 8.78 ± 0.86 t(168) = -3.69 0.000 ** 0.50

Table 2: Statistical comparison of event features averaged for CONV and NOCONV groups in low-alpha
[5-10] Hz and beta [12-30] Hz frequency bands and x6 FOM. Significant differences after BH correction (
p < 0.05) are marked with the asterisk (**). Statistical tendency (p < 0.1) are marked with the asterisk
(*).
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14 3 RESULTS

Figure 5: Mean and distribution of event features for AD converters (CN) and non-converters (NC) in
alpha [5-10] Hz and beta [12-30] Hz frequency bands. T-test statistically significant p-values ( p < 0.05)
after BH correction are marked with the asterisk (**). Statistical tendency ( p < 0.1) are marked with
the asterisk (*).
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3.3 Reduced beta event features as predictive biomarkers of AD conversion and cognitive decline 15

3.3 Reduced beta event features as predictive biomarkers of AD conversion226

and cognitive decline227

Given the event like nature of alpha and beta, we next tested the hypothesis that the slowing observed228

differences across groups in averaged PSD power in Figure 2 was due to across group differences in229

event features, namely rate, power, duration and/or frequency-span. We found effects only in the beta230

band that were more prominent in PC, such that CONV had a lower mean rate of beta events, lower231

power events, and a trend to shorter duration beta events in PC. Shorter duration beta events were also232

present in ACC in the CONV group (Figure 5 and Table 2; rate in PC p − valueBH = .003, power in233

PC p − valueBH = .002, duration in PC p − valueBH = .051; duration in ACC p − valueBH = .01,234

see also Supplementary Figure 2 and Figure 3 for further summary statistics). Notably, the effect size235

for differences between CONV and NOCONV in these features are of medium size (Cohen d > 0.4), see236

Table 2).237

The fact that our method allows us to explain differences in beta band, but not in alpha band, could238

reflect the method’s sensitivity in the alpha band. Indeed, as shown in Figure 4, in this subject sample,239

individual alpha event features are not a strong predictor of averaged alpha power (see also Supplementary240

Tables 1 & 2 for analysis of other power thresholds) and the slowing effects in the alpha band may instead241

be due to a combination of transient event features and/or more stationary properties of the signal.242

To investigate the further predictive potential of resting-state beta event features as a biomarker for243

conversion from MCI to AD, we examined the association between beta event rate, duration, and max-244

imum power and the probability of AD conversion within a 2.5-year timeframe (See Figure 6A). The245

probability of conversion was calculated from a logistic regression (see Methods section 2.5). Consistent246

with the pooled results in Figure 5, lower beta event rates, shorter duration, and reduced event power are247

linearly associated with an increased probability of conversion. MCI subjects with fewer than 4.92 events248

in four seconds of resting-state data have 1.79 (95 %CI [1.1, 3.0]) times greater odds of converting to249

AD (R2
Nag = .10, p − value = .024). Those with event duration less than 159 ms have 1.06 (95 %CI250

[1.0, 1.1]) times greater odds of AD conversion (R2
Nag = .06, p − value = .008), and subjects whose251

events have maxima power (calculated as factors of median power) less than 8.41 have 2.01 (95 %CI252

[1.15, 3.76]) times greater odds of AD conversion (R2
Nag = .05, p− value = .019).253

Further examination of the relationship between beta event features and cognitive performance showed254

that, in the CONV group, a lower rate of beta events and lower power beta events were linearly associated255

with greater cognitive decline (Figure 6B, lower Cognitive Performance Index values, see Methods section256

2.5 Statistical Analysis) (β = .26, R2 = .07, p−value = .016 for number of events; β = .31, R2 = .10,257
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16 4 DISCUSSION

Figure 6: Diminished expression of beta event features in ACC and PC (number of events, duration,
maxima power) is associated with greater odds of future AD conversion, and reduced cognitive perfor-
mance. A) Logistic regression between beta event features and AD conversion within 2.5 years. B) Linear
regression between beta event features and Cognitive Performance Index separated by CONV (red) and
NOCONV (blue).

p − value = .0041 for maxima power). These relationships did not emerge for duration, nor appear in258

NOCONVs, suggesting beta event features and particularly beta event power (p− value = 0.0041) are259

predictive of cognitive decline only in MCI patients that will convert to AD withing 2.5 years.260

4 Discussion261

Resting-state M/EEG signals provide a powerful non-invasive method to examine human brain physiology262

associated with AD (Bruña et al., 2023; Hsiao et al., 2013; Ishii et al., 2017; López et al., 2020; López-263

Sanz et al., 2016). Oscillatory slowing has been associated with AD conversion based on PSD analysis264

that relies on signal averaging. Our study shows for the first time that in non-averaged data, resting265

state alpha and beta oscillations from ACC and PC are composed of transient high-power events. To266

explore how transient high power events relate to findings of slowing in PSD, we studied their properties267

in a sample of individuals diagnosed as MCI and characterized novel features of transient high-power268
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4.1 Consistency with prior studies examining beta, ageing and cognitive control 17

events that distinguish patients who later convert or do not convert to AD (i.e., CONV and NOCONV,269

respectively). Our analysis reveals a consistent pattern of a lower number of transient 12-30 Hz beta270

events, duration and power for CONV compared to NOCONV in PC, with the duration effect also271

occurring in AC. This diminished beta event expression in ACC and PC was associated with increased272

odds of future AD conversion and decreased cognitive performance in the CONV group. It is well known273

that PC and ACC are part of the default mode network, which has decreased metabolism in the early274

stages of the disease (Greicius et al., 2004) and it is closely involved with episodic memory processing (Liu275

et al., 2022). Our finding of reduced event-activation in CONV is predominantly found in precuneus, a276

ROI typically associated with deposition of amyloid-β in the early stages of the AD continuum (Forsberg277

et al., 2008).278

Overall, our results lay the foundation for further examination of beta event features as a novel biomarker279

for early AD diagnosis and a possible neurobiological measures of the effectiveness of preventative in-280

terventions. The more fine-grained description of slowing in unaveraged MEG data may also bring us281

closer to understanding the underlying neural mechanisms, and a more direct link to hyperexcitability as282

observed in animal models (Maestú et al., 2021; Zott et al., 2019), ultimately guiding new therapeutics283

in humans.284

4.1 Consistency with prior studies examining beta, ageing and cognitive con-285

trol286

Reductions in beta event expression yielded a lower PSD in the beta band [12-30] Hz averaged across287

trials, giving further insight into the underpinning of oscillatory slowing in AD (Bruña et al., 2023;288

Dauwels et al., 2011; Jelic et al., 2000). This trend is also consistent with a critical shift in beta activity289

at approximately 60 years of age in healthy patients (Brady et al., 2020; Power & Bardouille, 2021).290

Following this inflection point, resting-state relative source power, as well as beta event characteristics291

such as event rate, peak frequency, duration, peak power, etc., progressively begin to decline with age292

(Brady & Bardouille, 2022). Other studies have shown that averaged M/EEG spectral activity in the293

beta frequency range (13-30) Hz is a more powerful predictor of MCI-to-AD conversion than activity in294

other frequency bands, including in the slow alpha frequency range ((Gaubert et al., 2024; Poil et al.,295

2013). Thus, transient beta event features may be key factors in delineating differences and tracking the296

neurophysiology of healthy and pathological ageing.297

We found that reductions in beta event features were associated with global cognitive decline, as measured298

by an index based on a battery of neuropsychological tests. However, this effect is only significant in the299
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18 4 DISCUSSION

CONV group. MCIs who convert to AD 2.5 years later seem to be more reliant on beta event expression300

for cognitive robustness.301

Several studies have shown that beta events throughout the cortex are a signature of inhibitory control.302

In sensory cortex, beta event expression can be manipulated with attention (increasing in non-attentive303

states), and an increase in beta event rates is associated with a decrease in perceptual salience (Shin304

et al., 2017), a process predicted to be mediated by an increase in inhibitory neuron activity (Law et al.,305

2022). In motor cortex, increased beta event expression is associated with inhibited motor control and306

Parkinson’s disease (Yu et al., 2021), and in frontal cortex beta events are a signature of stopping of307

movement and long-term memory retrieval (Schmidt et al., 2019; Wessel, 2020). Conversely, reduction in308

beta event rates in frontal cortex has been explicitly linked to encoding and decoding in working memory309

processes, where they have been suggested as a mechanism for volitional control and memory content310

reactivation (Lundqvist et al., 2016, 2018; Spitzer & Haegens, 2017). Likewise, decreased posterior311

parietal beta oscillatory activity predicts episodic memory formation and retrieval (Griffiths, Mart́ın-312

Buro, Staresina, Hanslmayr, & Staudigl, 2021; Nyhus, 2018), and is correlated with enhanced memory313

performance (Griffiths, Mart́ın-Buro, Staresina, & Hanslmayr, 2021). Transcranial stimulation of the314

prefrontal cortex at beta (18 Hz) has been found to induce memory encoding impairments (Hanslmayr315

et al., 2014), and during posterior parietal cortex stimulation, lower prestimulus beta power predicts316

higher phosphene ratings, reflecting increased neural excitability (Samaha et al., 2017).317

The consistent relationship between beta event expression and inhibitory control in these myriad studies318

(Lundqvist et al., 2024) suggests that the ability to modulate beta events according to task demands is319

necessary for optimal function, and that the diminished resting state beta event expression and associated320

cognitive decline observed in the PC in CONV in our study may be directly related to lack of inhibitory321

cognitive control.322

4.2 Why are differences in alpha bursts not present?323

Despite the observation of significant across group differences in alpha band in the average PSD (Figure324

2), we did not find a significant relationship between transient [5-10] Hz alpha event features and averaged325

power, nor did we find a difference in event features between MCI patients who will convert to AD and326

those who will not, which is consistent with previous longitudinal studies of AD progression (Gaubert327

et al., 2024; Poil et al., 2013). This was true for several event detection thresholds (see Supplementary328

Figure 2 and Supplementary Tables 1 and 2 ).329

Since we did not find a relationship between spectral events in the lower 5-10 Hz alpha band and averaged330
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4.3 A mechanistic link between reduced beta event expression and hyperexcitability in CONV 19

alpha power in our sample, we did not examine the relationship to cognitive performance. In terms of331

components of slowing, other studies have found a relationship between bursts of slow activity (1-6 Hz)332

age and cognition in healthy adults, where older subjects and lower cognitive performance participants333

exhibited longer and slower events (Power et al., 2024).334

The lack of alpha event effects in our sample could reflect the sensitivity limitations of the spectral335

event detection method or indicate that, although the alpha band contains transient components, the336

differences between the two groups involve a combination of transient feature or more stationary features337

than transient ones. A slowed occipital alpha rhythm is a common biomarker of several neurological or338

psychiatric disorders (Hughes & Crunelli, 2005; Samson-Dollfus et al., 1997). According to the “thalamo-339

cortical (TC) hypothesis” (Klimesch et al., 2007; S. M. Sherman, 2001) slow cortical rhythms could be340

generated by TC cells in tonic, single spike, firing, or in arhythmic bursting mode. Hugues (2005) argued341

that a slowing effect when shifting from alpha to theta waves could arise from the hyperpolarization of342

the thalamo-cortical neuron population, resulting in a deceleration of high-threshold bursting (HT) in343

individual cells, which could translate to a shift from bursty alpha to more continuous slower theta range344

oscillations. Thus, in this cognitively impaired population, while we still detect some alpha bursting,345

Alzheimer’s disease-related mechanisms may be disrupting thalamo-cortical connections (Eustache et al.,346

2016) and slowing the thalamic bursting activity, making it more stationary.347

In the early stages of AD continuum, even before a mild cognitive impairment diagnosis, alpha disruption348

is a marker of cognitive decline (Babiloni et al., 2010; Bruña et al., 2023; Huang et al., 2000; López et al.,349

2020; López-Sanz et al., 2016). Still, when patients reach a more advanced stage of the disease, as it is350

mild cognitive impairment, beta band is more discriminant between AD converters and non-converters351

(Gaubert et al., 2024; Poil et al., 2013; Pusil, Dimitriadis, et al., 2019). Consequently, when measured352

in MCIs the spectral events method may not be sensitive to this transient-to-stationary shift in the alpha353

[5-10] Hz frequency band but can detect differences in the beta [12-30] Hz band.354

4.3 A mechanistic link between reduced beta event expression and hyperex-355

citability in CONV356

Animal studies have suggested Aβ-induced changes in E/I balance is a mechanism for hyperexcitability357

and cognitive decline in Alzheimer’s disease (Maestú et al., 2021). This notion has been supported358

by several computational neural modeling frameworks examining causal links between disease processes359

and increased neuron firing rates (Alexandersen et al., 2023; Cabral et al., 2014; de Haan et al., 2017;360

Hutt et al., 2023; Nakagawa et al., 2014; Stefanovski et al., 2019; Zimmermann et al., 2018), albeit361
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20 4 DISCUSSION

without explicit consideration of the biophysical generators of MEG current sources or of beta frequency362

oscillations.363

Modeling work by our group specifically designed to interpret the detailed cell and circuit origin of localized364

MEG (and EEG) current source signals (Neymotin et al., 2020) provides a hypothesized direct mechanistic365

link between beta event expression and hyperexcitability in CONV. Specifically, our prior modeling and366

cross-species empirical studies suggested neocortical beta events are generated by bursts of exogenous367

thalamocortical drive that targets excitatory synapses on the proximal and distal dendrites of pyramidal368

neurons in deep and superficial neocortical layers, such that the distal drive is stronger and last a beta369

period (i.e. ≈ 50ms) (Jones et al., 2009; M. A. Sherman et al., 2016). This thalamic burst drive induces370

current flow in pyramidal neuron dendrites that generates MEG beta event waveform characteristics371

consistent with those observed experimentally in sensory, motor and frontal cortices (Bonaiuto et al.,372

2021; M. A. Sherman et al., 2016), and when occurring rhythmically can produce multiple beta cycles373

and/or a complex of alpha and beta activity (Jones et al., 2009). Follow-up studies predicted further374

that the thalamic drive inducing a beta event also activates inhibitory neurons in supragranular layers,375

providing a causal mechanism for beta-associated inhibitory control (Law et al., 2022; Shin et al., 2017).376

Together with our current findings that CONV have reduced beta expression (namely lower event rates,377

power and duration), these prior studies suggest CONV have a reduction in thalamocortical burst drive378

to cortex, which in turn recruits less cortical inhibitory neuron activity leading to hyperexcitability.379

Such a decrease in inhibitory activity could contribute to the observation of diminished Gabaeric terminals380

on cortical neurons near amyloid plaques, in addition to the toxic effects of amyloid oligomers on inhibitory381

terminals (Alexandersen et al., 2023; Garcia-Marin et al., 2009), particularly in PC which exhibits Aβ382

deposition in the early stages of AD. The predicted reduction in thalamic bursting is also synergistic383

with studies showing thalamic atrophy and reduced inhibitory thalamic tone (Abuhassan et al., 2014;384

Forno et al., 2023), as inhibition from the thalamic reticular nucleus is known to be a driver of rebound385

bursting mechanisms in thalamic relay cells (Destexhe & Sejnowski, 2002). Moreover, decreases in386

thalamocortical drive are consistent with theories of thalamocortical dysrhythmia (Llinás et al., 1999)387

and could contribute to loss of cortical signal complexity and biophysical heterogeneity (Szul et al., 2023)388

occurring with the disease and thought to be an important homeostatic control mechanisms capable of389

bolstering the network’s resilience to perturbations, such as the toxic effects of amyloid (Dauwels et al.,390

2011; Hutt et al., 2023).391
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4.3 A mechanistic link between reduced beta event expression and hyperexcitability in CONV 21

Supplementary Material392

“Mirror” events393

The MEG activity of medial regions is characterized by the presence of synchronized, contralateral, spu-394

rious mirror events (see TFRs in Figure S1). This phenomenon is caused by the limited resolution of395

MEG/volume conduction. When using the MNE dipole-constrained source reconstruction method, these396

duplicated events are noticeable because they are characterized by a mutual inversion of the time series.397

We performed a removal step of duplicated mirror events: when two detected events shared the same398

(but contralateral) ROI, epoch, time and frequency, we discarded the one with lower amplitude.399

400

Figure 1: Example of mirror event in left ACC and right ACC due to spatial smearing in source recon-
struction. The events considered at the end of the detection process were the left one in the case1, and
the right one in the case2, due to their amplitudes.
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22 4 DISCUSSION

Event threshold analysis401

Figure 2: Average relationship between power cutoff FOM and correlation of mean power with percentage
of area above cutoff. a) Analysis over events selected in alpha frequency [5-10] Hz and visualisation of
6X threshold (red line). b) Analysis over events selected in beta frequency [12-30] Hz and visualisation
of 6X threshold (red line).
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4.3 A mechanistic link between reduced beta event expression and hyperexcitability in CONV 23

Freq. ROI Feature t-Stat p-value
BH adjusted
p-value

Cohen d

Low alpha [5-10] Hz ACC Ev. Rate 1,705 0,045 0,18 -0,226
Duration -2,084 0,981 0,993 0,258
Fspan 1,484 0,07 0,203 -0,126
Pow.FOM -1,11 0,866 0,993 0,078

PC Ev. Rate 1,113 0,134 0,267 -0,188
Duration -2,507 0,993 0,993 0,376
Fspan -1,453 0,926 0,993 0,267
Pow.FOM -1,221 0,888 0,993 0,16

Beta [12-30] Hz ACC Ev. Rate 1,716 0,956 0,993 -0,217
Duration -2,67 0,004 0,033 ** 0,383
Fspan 1,241 0,892 0,993 -0,086
Pow.FOM -1,438 0,076 0,203 0,224

PC Ev. Rate -1,183 0,119 0,267 0,194
Duration -2,37 0,009 0,05 * 0,336
Fspan 2,213 0,986 0,993 -0,358
Pow.FOM -3,744 0 0,002 ** 0,561

Table 1: Statistical comparison for x4 FOM of event features mean averaged for CONV and NOCONV
groups in low-alpha [5-10] Hz and beta [12-30] Hz frequency bands. Significant differences ( p < 0.05)
are marked with the asterisk (**). Statistical tendency ( p < 0.1) is marked with the asterisk (*).

Freq. ROI Feature t-Stat p-value
BH adjusted
p-value

Cohen d

Low alpha [5-10] Hz ACC Ev. Rate -0,497 0,69 0,91 -0,077
Duration 0,679 0,249 0,639 -0,247
Fspan 0,082 0,467 0,91 0,037
Pow.FOM -0,33 0,629 0,91 -0,029

PC Ev. Rate -0,585 0,72 0,91 0,078
Duration -0,959 0,831 0,91 0,047
Fspan -1,052 0,853 0,91 0,164
Pow.FOM -0,804 0,789 0,91 0,162

Beta [12-30] Hz ACC Ev. Rate -0,585 0,28 0,639 0,095
Duration -1,831 0,034 0,138 0,287
Fspan 0,295 0,616 0,91 -0,007
Pow.FOM -0,973 0,166 0,531 0,083

PC Ev. Rate -3,446 0 0,003 ** 0,466
Duration -2,221 0,014 0,074 * 0,317
Fspan 1,721 0,956 0,956 -0,22
Pow.FOM -3,602 0 0,003 ** 0,498

Table 2: Statistical comparison for x8 FOM of event features mean averaged for CONV and NOCONV
groups in low-alpha [5-10] Hz and beta [12-30] Hz frequency bands. Significant differences ( p < 0.05)
are marked with the asterisk (**). Statistical tendency ( p < 0.1) is marked with the asterisk (*).
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24 4 DISCUSSION

Figure 3: Probability density plots for each event features in low-alpha [5-10] Hz band for 4 seconds
trials.
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4.3 A mechanistic link between reduced beta event expression and hyperexcitability in CONV 25

Figure 4: Probability density plots for each event features in beta [12-30] Hz band for 4 seconds trials.
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González, V., Gómez, C., & Shigihara, Y. (2022). Distinctive effects of executive dysfunction and491

loss of learning/memory abilities on resting-state brain activity. Sci. Rep., 12(1), 3459.492

Hsiao, F.-J., Wang, Y.-J., Yan, S.-H., Chen, W.-T., & Lin, Y.-Y. (2013). Altered oscillation and synchro-493

nization of default-mode network activity in mild alzheimer’s disease compared to mild cognitive494

impairment: An electrophysiological study. PLoS One, 8(7), e68792.495

Huang, C., Wahlund, L., Dierks, T., Julin, P., Winblad, B., & Jelic, V. (2000). Discrimination of496

alzheimer’s disease and mild cognitive impairment by equivalent EEG sources: A cross-sectional497

and longitudinal study. Clin. Neurophysiol., 111(11), 1961–1967.498

Hughes, S. W., & Crunelli, V. (2005). Thalamic mechanisms of EEG alpha rhythms and their pathological499

implications. Neuroscientist, 11(4), 357–372.500

Hutt, A., Rich, S., Valiante, T. A., & Lefebvre, J. (2023). Intrinsic neural diversity quenches the dynamic501

volatility of neural networks. Proc. Natl. Acad. Sci. U. S. A., 120(28), e2218841120.502

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.09.13.24313611doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.13.24313611


REFERENCES 29

Ishii, R., Canuet, L., Aoki, Y., Hata, M., Iwase, M., Ikeda, S., Nishida, K., & Ikeda, M. (2017). Healthy503

and pathological brain aging: From the perspective of oscillations, functional connectivity, and504

signal complexity. Neuropsychobiology, 75(4), 151–161.505

Jelic, V., Johansson, S. E., Almkvist, O., Shigeta, M., Julin, P., Nordberg, A., Winblad, B., & Wahlund,506

L. O. (2000). Quantitative electroencephalography in mild cognitive impairment: Longitudinal507

changes and possible prediction of alzheimer’s disease. Neurobiology of aging, 21(4), 533–540.508

Jeong, J. (2004). Eeg dynamics in patients with alzheimer’s disease. Clinical neurophysiology, 115(7),509

1490–1505.510

Jones, S. R. (2016). When brain rhythms aren’t ’rhythmic’: Implication for their mechanisms and meaning.511

Curr. Opin. Neurobiol., 40, 72–80.512

Jones, S. R., Pritchett, D. L., Sikora, M. A., Stufflebeam, S. M., Hämäläinen, M., & Moore, C. I.513
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López-Sanz, D., Bruña, R., Garcés, P., Camara, C., Serrano, N., Rodŕıguez-Rojo, I. C., Delgado, M. L.,543
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