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Abstract

Purpose

Prediction of Ectasia Screening Index (ESI), an estimator provided by the Casia2 for
identifying keratoconus, from raw Optical Coherence Tomography (OCT) data with
Convolutional Neural Networks (CNN).

Methods

Three CNN architectures (ResNet18, DenseNet121 and EfficientNetB0) were employed
to predict the ESI. Mean Absolute Error (MAE) was used as the performance metric
for predicting the ESI by the adapted CNN models on the test set. Scans with an ESI
value higher than a certain threshold were classified as Keratoconus, while the remaining
scans were classified as Not Keratoconus. The models’ performance was evaluated using
metrics such as accuracy, sensitivity, specificity, Positive Predictive Value (PPV) and
F1 score on data collected from patients examined at the eye clinic of the Homburg
University Hospital. The raw data from the Casia2 device, in 3dv format, was converted
into 16 images per examination of one eye. For the training, validation and testing
phases, 3689, 1050 and 1078 scans (3dv files) were selected, respectively.

Results

In the prediction of the ESI, the MAE values for the adapted ResNet18, DenseNet121
and EfficientNetB0, rounded to two decimal places, were 7.15, 6.64 and 5.86, respectively.
In the classification task, the three networks yielded an accuracy of 94.80%, 95.27%
and 95.83%, respectively; a sensitivity of 92.07%, 94.64% and 94.17%, respectively; a
specificity of 96.61%, 95.69% and 96.92%, respectively; a PPV of 94.72%, 93.55% and
95.28%, respectively; and a F1 score of 93.38%, 94.09% and 94.72%, respectively.

Conclusions

Our results show that the prediction of keratokonus based on the ESI values estimated
from raw data outperforms previous approaches using processed data. Adapted Effi-
cientNetB0 outperformed both the other adapted models and those in state-of-the-art
studies, with the highest accuracy and F1 score.
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Introduction 1

Keratoconus describes a disorder of the eye characterised by a cone-shaped cornea with 2

thinning and steepening, which typically affects both eyes of a patient with varying 3

degrees of severity and occurs in both males and females [1]. Keratoconus affects about 4

1 in every 2000 individuals in the general population [2]. 5

There are two main types of corneal imaging: corneal topography and corneal 6

tomography. In corneal topography, the shape of the anterior part of the cornea is 7

shown but in corneal tomography a three-dimensional image of the whole cornea is 8

shown. Optical Coherence Tomography (OCT) is a corneal tomography technique that 9

assesses the delay of reflected infrared light from the anterior segment by comparing it 10

to a reference reflection. This tomography technique is classified into two types: Fourier 11

domain, which uses a stationary mirror and time domain, which adjusts the position 12

of a reference mirror. Another corneal tomography technique is Scheimpflug imaging 13

where a rotating camera is used to produce cross-sectional images [3]. 14

Artificial Intelligence (AI) enables machines to perform tasks associated with human 15

cognition like writing, speaking and seeing. AI can be used in medical specialties dealing 16

with image analysis like ophthalmology. Machine learning is a subset of AI that enables 17

the machine to learn in order to develop its performance. Deep learning, a specialised 18

branch of machine learning, improves the effectiveness of motion recognition, image and 19

speech [4]. 20

In this study, the neural networks were used to predict the ESI of a given scan 21

automatically. This approach is a regression task since the output of the networks is a 22

numerical value. Also, the scans were classified into two classes, Keratoconus and Not 23

Keratoconus. The Keratoconus class represents ectasia and the Not Keratoconus class 24

indicates suspicion of ectasia or no ectasia pattern. This approach has an advantage over 25

other approaches where the output is discrete and belongs to a class. With this approach, 26

if two scans are in the Keratoconus class, the severity of ectasia can be compared between 27

them by comparing the predicted ESI provided by the model. 28

In general, data can be utilised as preprocessed data or as raw data. Preprocessed 29

data is altered by software and the details of these modifications may not always be 30

transparent. Moreover, changes in software versions can lead to variations in how data 31

is preprocessed and affect the consistency of results. In contrast, raw data remains 32

unaltered by external software. Therefore, raw data retains its original form across 33

different software versions. This stability in raw data can offer a more consistent and 34

reliable foundation for analysis and model training. To the best of our knowledge, it is the 35

first time that raw OCT data is used for a regression task to predict ESI for the purpose 36

of keratoconus diagnosis. Below we briefly review the current neural network-based 37

approaches to automatically identify keratoconus. 38

State of the art 39

Zhang et al. [5] explored keratoconus diagnosis by employing the CorNet model. The 40

model was trained and evaluated with a dataset of 1786 raw data from the Corvis ST 41

(Oculus, Wetzlar, Germany). Corvis ST is a non-contact device that measures corneal 42

biomechanics by recording dynamic deformation following a rapid air-puff excitation. 43

Keratoconus was diagnosed by using clinical signs such as stromal thinning, Fleischer’s 44

ring and a central K-value greater than 47 dioptres, in addition to other indicators. 45

The CorNet model achieved an accuracy of 92.13%, sensitivity of 92.49%, specificity of 46

91.54%, PPV of 94.77% and an F1 score of 93.62% on the validation set. 47

Ruiwei Feng et al. [6] introduced a deep learning method named KerNet for identifying 48

keratoconus and sub-clinical keratoconus using raw data from the Pentacam HR system 49

(Oculus, GmbH, Wetzlar, Germany). This system includes a rotating Scheimpflug 50

September 11, 2024 2/11

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.09.13.24313607doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.13.24313607
http://creativecommons.org/licenses/by/4.0/


camera, which gathers three-dimensional data of the cornea, and a software which is 51

designed to analyse and display the data. The corneal data, exported from the Pentacam 52

HR system, comprised five numerical matrices for each sample. These matrices were 53

considered as five two-dimensional image slices, representing the front and back surface 54

curvatures, the front and back surface elevations and the pachymetry of the eye. 854 55

samples were used as dataset. KerNet employed a specialised architecture with five 56

branches to handle the matrices individually as input to identify features, which are 57

subsequently combined for prediction. The model achieved an accuracy of 94.74%, with 58

a sensitivity of 93.71%, Positive Predictive Value (PPV) of 94.10% and an F1 score of 59

93.89%. 60

Schatterburg et al. [7] introduced a plan for using convolutional neural networks 61

(CNNs) for keratoconus diagnosis based on ESI from data of the SS-1000 Casia OCT 62

Imaging System. The dataset sourced from over 1900 patients and included three- 63

dimensional OCT images of both the anterior and posterior cornea, together with 64

parameters calculated by the Casia software. However, the study did not include 65

evaluation metrics. 66

Fassbind et al. [8] focused on identifying abnormalities such as keratoconus by 67

employing CorNeXt as a CNN model. In this study, cornea topography maps from 68

Casia2 anterior OCT device were used. The used CorNeXt model is based on the 69

ConvNeXt [9] CNN architecture. To employ ConvNeXt for corneal disease classification, 70

modifications to the architecture were implemented. Measurements of axial refractive 71

power, as well as the elevation of the cornea’s front and back surfaces and its thickness 72

were taken from the scan for every individual cornea and five related maps were created 73

and displayed as grayscale images. ConvNeXt was adapted to include all cornea data 74

by stacking these maps into a five-channel pseudo-image. The dataset included a total 75

of 2182 scans (1552 scans for training, 388 scans for validation and 242 scans for test). 76

The model achieved a sensitivity of 98.46% and a specificity of 91.96% in distinguishing 77

healthy from pathological corneas. For the labeled class of keratoconus, it reached 78

92.56% accuracy, 84.07% sensitivity, 100% specificity and a 91.34% F1 score. 79

Materials and methods 80

Convolutional neural network 81

Artificial neural networks mimic the brain’s processes through nodes and connections. 82

Nodes receive input and send output by processing the input through an activation 83

function, and connections have adjustable weights, which are determined during training 84

and thus allow the network to learn [10]. Activation functions model the way neural 85

electrical signals are passed on to the following neuron [11]. These functions (such as the 86

Sigmoid function, the rectified linear unit and the hyperbolic tangent) add nonlinearity 87

to neural networks [12]. If a network lacks activation functions, its output remains 88

a linear combination of the input regardless of the number of layers; therefore, the 89

intermediate layers become ineffective in contributing to the network’s output. The 90

activation function is located between two layers in a neural network with several layers. 91

A loss function is employed to quantify the difference between the true (observed) values 92

and the values predicted by the model. Intricated optimisers are usually used to with the 93

goal of adapt the model parameters such that the difference between true and predicted 94

outcomes is minimised. Both loss functions and optimisers guide the neural network in 95

learning and adapting to achieve the expected outcomes [11]. However, they are loosely 96

inspired from natural neurons and allow to model functions of arbitrary complexity. 97

Convolutional Neural Networks (CNNs), as a specific form of neural network, are 98

designed for example for image data [13]. CNNs are designed based on the principles of 99
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visual perception, where artificial neurons simulate the behavior of biological neurons 100

and convolution kernels detect different features like receptors [11]. In a convolutional 101

layer, kernels defined by their width, height and a set of weights are applied to the input 102

images to generate feature maps [13]. 103

Quality criteria 104

In this study, Mean Square Error (MSE) is used as a loss function for the regression task. 105

MSE is a derivable criterion and having a derivable criterion is essential for gradient 106

descent algorithms, which are used universally to adjust weights in neural networks 107

during training. MSE is defined as Eq (1), where N signifies the number of actual values, 108

which is equivalent to the number of predicted values; yi represents the actual value at 109

position i and ŷi represents the predicted value at the same position [14]. 110

MSE =
1

N

N∑
i=1

|yi − ŷi|2 (1)

To compare the performance of different prediction models, Mean Absolute Error 111

(MAE) is used, as this measures the average absolute difference between the actual values 112

and the predicted values by the model [11]. Eq (2) illustrates the MAE computation, 113

where N, yi and ŷi retain the same meanings as in Eq (1) [14]. 114

MAE =
1

N

N∑
i=1

|yi − ŷi| (2)

Key metrics for evaluating a binary classifier are derived from the four entries in the 115

confusion matrix. They are crucial for assessing the classifier’s performance. True positive 116

(TP) signifies the count of correctly classified positive samples, such as images with 117

keratoconus correctly identified as having keratoconus. True negative (TN) represents 118

the count of correctly classified negative samples, like images without keratoconus 119

correctly identified as not having keratoconus. False positive (FP) refers to the count of 120

samples that have been incorrectly classified as positive, i.e. in our case, images without 121

keratoconus mistakenly identified as having keratoconus. False negative (FN) indicates 122

the count of samples that have been incorrectly classified as negative, such as images 123

with keratoconus incorrectly identified as not having keratoconus. Table 1 shows the 124

confusion matrix. 125

Table 1. Confusion matrix

Actual class
Predicted class

Positive Negative
Positive TP FN
Negative FP TN

In this study, the metrics below are used to assess how effectively the models classify 126

the data into two different categories [15]. 127

Accuracy measures the proportion of correctly classified samples out of the total number 128

of samples in the test dataset. Accuracy is calculated as [15] 129

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Sensitivity is the proportion of correctly identified positive samples out of all actual 130

positive samples, calculated as [15] 131

Sensitivity =
TP

TP + FN
(4)
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Specificity measures the proportion of correctly classified negative samples out of all 132

samples classified as negative [15]: 133

Specificity =
TN

TN + FP
(5)

Positive Predictive Value (PPV) is defined as the proportion of correctly classified 134

samples relative to all samples predicted to belong to the positive class [15]: 135

PPV =
TP

TP + FP
(6)

136

As we are using a threshold on the estimated ESI, a high sensitivity or specificity can be 137

trivially achieved at the cost of a useless low value of the respective other metric. The 138

F1-score finds a balance between these two metrics. The F1 score is defined as [15] 139

F1 = 2× PPV × Sensitivity

PPV + Sensitivity
, (7)

Furthermore, the F1 score has an advantage when dealing with imbalanced datasets, 140

where one class significantly outnumbers the other. In such cases, metrics like accuracy, 141

sensitivity and specificity may not effectively measure how well the model distinguishes 142

between classes. Therefore, the F1 score can be used because it provides a more balanced 143

evaluation of the model’s performance. 144

The Receiver Operating Characteristic (ROC) curve was analysed to find the best 145

trade-off between sensitivity and specificity for predictions by identifying the optimal 146

threshold, which is the point that maximises the difference between the true positive 147

rate (sensitivity) and the false positive rate (1-specificity). Following this, predicted ESI 148

values were classified into positive and negative classes based on the optimal threshold to 149

compute the confusion matrix values. Predicted ESI values that are equal to or exceed 150

the threshold are considered as Keratoconus which indicate the presence of ectasia and 151

those below the threshold are categorised as Not Keratoconus which indicate suspicion 152

of ectasia or no ectasia pattern. 153

Data 154

In this study, the data were obtained from patients examined at the eye clinic of the 155

Homburg University Hospital, between February 01, 2021 and September 01, 2023. The 156

data were anonymised at the source and were transferred to us for further processing on 157

October 02, 2023. We were freed from the requirement for ethics approval for the data 158

by the ethics committee of the Saarland medical council (registration number 157/21). 159

Age and sex were not considered important. The Cornea/Anterior Segment OCT Casia2 160

from Tomey Corporation, made in Japan, was used for data acquisition from patients. 161

This device uses optical coherence tomography with a 1310 nm wavelength laser to 162

measure different parameters like corneal thickness, the depth from anterior surface of 163

the cornea to the anterior surface of the crystalline lens and the depth from the posterior 164

surface of the cornea to the anterior surface of the crystalline lens. The scan range is 165

13 mm in depth and 16 mm in diameter. Casia2 produces raw data after measurement 166

which has the format of 3dv. The Casia2 device has two modes available: ‘Anterior 167

Segment mode,’ which offers features like the corneal map, and ‘Lens mode,’ which 168

provides lens biometry. In Anterior Segment mode, high-sensitivity measurements of 169

the cornea, angle and intraocular lens can be performed, although it does not allow 170

visualisation of the posterior lens. Conversely, Lens mode provides a simultaneous view 171

of the entire area from the cornea to the posterior lens, however with slightly reduced 172
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sensitivity for the cornea. For the detection of keratoconus, the Anterior Segment mode 173

was selected. Each 3dv file related to the corneal map is 36.6 MB in size. For each 3dv 174

file there is an xpf file that contains metadata about the measurement, including the 175

examined eye (left or right), date and time of the examination and the exam protocol 176

name. For each measurement, the ESI is stored in a csv file, which can be exported 177

from the Casia2 software. Ectasia screening identifies keratoconus by independently 178

analysing the shapes of the anterior and posterior cornea. The final diagnosis is based 179

on the results from both assessments. For the anterior cornea, the evaluation focuses on 180

spherical, asymmetry and regular astigmatism components of Fourier analysis. For the 181

posterior cornea, the evaluation focuses on the steepest point of instantaneous power, as 182

well as the asymmetry, regular and higher-order irregular astigmatism components of 183

Fourier analysis. If the analysis area is insufficient for either cornea, the result for that 184

cornea will be marked as ‘N/A’. The final diagnosis is determined by the higher score 185

from either assessment; if both are ‘N/A’, the final result will also be ‘N/A’. If the ESI 186

result ranges from 0 to 4, no ectasia pattern is detected. If the the ESI result is between 187

5 and 29 suggests a suspicion of ectasia and a result between 30 and 95 indicates clinical 188

ectasia. 189

We used a Python [16] script to extract 16 images from raw data (3dv file) which 190

originally were stored in a 16-bit unsigned integer format. Each image, with a resolution 191

of 800 pixels in width and 1464 pixels in height, was then saved as a grayscale PNG file. 192

Fig 1 shows a series of 16 resized images, where the height has been reduced to one-third 193

of the original dimension by using a Python script to better represent the realistic shape 194

of the eye. The image preprocessing involved cropping 25% from both the left and right 195

sides to exclude unnecessary eyelid areas and 60% from the bottom to remove regions 196

that did not cover the cornea. After that, the images were resized to a dimension of 197

224Ö224 pixels. 198

Fig 1. Scaled images of a left eye with an ESI of 0

Experimental design and implementation 199

Since CNNs are suited for detecting objects within images [13], three models (ResNet18, 200

DenseNet121 and EfficientNetB0) were selected based on their performance in the field. 201

ResNet was examined on ImageNet and CIFAR-10 [17], DenseNet was tested on CIFAR- 202

10, CIFAR-100, SVHN and ImageNet [18] and EfficientNet was evaluated on ImageNet 203

and transfer learning datasets, including CIFAR-10, CIFAR-100, Birdsnap, Stanford 204

Cars, Flowers, FGVC Aircraft, Oxford-IIIT Pets and Food-101 [19]. 205

ResNet18 is a variant of the residual network architecture. In residual networks, 206

shortcut connections are used to bypass one or more layers and implement identity 207

mapping which allow their outputs to be summed with the outputs of the intermediate 208

layers [17]. DenseNet121 belongs to the dense convolutional network series. In this type 209

of neural networks, all layers are connected directly with each other which allow them 210

to receive additional inputs from preceding layers and propagate their feature maps 211

to subsequent layers. Unlike residual networks, features are concatenated rather than 212

summed before being forwarded to the subsequent layer [18]. EfficientNetB0 is part of 213

the EfficientNet series. In EfficientNet, the depth, width and resolution of the network 214

are uniformly scaled by a specific set of scaling coefficients [19]. 215

All CNN models were trained from scratch using Python and the PyTorch library [20] 216

on a system equipped with an 11th Gen Intel(R) Core(TM) i7-11700@2.5 GHz processor, 217

32 GB of RAM and a 64-bit operating system with an x64-based processor. The training 218

proceeded for 100 epochs, during which the validation MSE became stable. The data 219

were divided into disjoint training, validation and test datasets to ensure that the models 220
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were trained on one subset, evaluated on another to detect overfitting (where the model 221

fails to apply its learned patterns from training data to unseen data [21]) and finally 222

tested on a separate unseen subset to assess their ability to perform on new data. The 223

batch sizes for the training, validation and test sets were set to 64. From a total of 15457 224

3dv files, 5817 were selected for training, validation and testing. The files not chosen 225

were excluded due to defects on the cornea, such as keratoplasty. During the training 226

phase, 3689 scans (stored as 3dv file) were used. This represents approximately 63.4% 227

of the total dataset. Similarly, the validation phase involved 1050 scans (accounting for 228

around 18% of the total) and the testing phase consisted of 1078 scans (accounting for 229

18.5% of the total). 230

Table 2 presents the distribution of 3dv files which were used for training, validation 231

and testing. The data set is categorised based on ESI, with a threshold of 30, as 232

determined by Casia2. An ESI of 30 or greater indicates the Keratoconus class, which 233

signifies clinical ectasia. An ESI below 30 classifies the files as Not Keratoconus class, 234

indicating either a suspicion of ectasia or no ectasia pattern detected. 235

Table 2. Data set distribution of 3dv files and classes

Data set Total Keratoconus class Not Keratoconus class
Train 3689 1486 (40%) 2203 (60%)
Validation 1050 405 (39%) 645 (61%)
Test 1078 429 (40%) 649 (60%)

Every set of 16 images from a single 3dv file was stacked together. These stacked 236

images were fed into the models, with the first convolutional layer modified to accept a 237

16-channel input. The fully connected layer for the output was also modified to produce 238

a single output. Additionally, an extra fully connected layer was included to process 239

the combined features which integrates one feature from the model and two features 240

representing the eye parameters (encoded as a tensor: [1, 0] for the right eye and [0, 1] for 241

the left eye). Each ESI value was used as the label for a set of 16 stacked images in the 242

adapted CNN models. For the training process, the MSE was used as the loss function 243

to minimise prediction errors. Adam is a favoured optimiser for training deep neural 244

networks due to its quicker convergence compared to stochastic gradient descent [22]. 245

Based on [22], AdamW converges faster and generalises better than Adam. In the 246

experiments, the model parameters were optimised using the AdamW optimiser with a 247

learning rate of 0.01 and a weight decay of 0.05. Moreover, a scheduler was implemented 248

to adjust the learning rate on a plateau, with a reduction factor of 0.1 and a patience of 249

10 epochs. 250

Fig 2 illustrates the workflow for predicting ESI by using adapted CNN models. 251

Fig 2. Diagram of the workflow for predicting ESI

Results 252

Table 3 presents the MAE and MSE values, rounded to two decimal places, derived 253

from the evaluation of adapted ResNet18, DenseNet121 and EfficientNetB0 on the test 254

dataset. 255

Table 3. Test set MAE and MSE performance of adapted CNN architectures

CNN architecture MAE MSE
Adapted ResNet18 7.15 122.04
Adapted DenseNet121 6.64 110.33
Adapted EfficientNetB0 5.86 101.05
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Fig 3 shows kernel density estimates (KDEs) of errors between predicted and actual 256

ESIs for adapted ResNet18, EfficientNetB0 and DenseNet121. These KDE plots represent 257

the distribution of errors, where the error is determined by subtracting the actual ESI 258

from the predicted ESI. 259

Fig 3. Kernel density estimates of errors between predicted and actual ESIs for
different models

Table 4 provides a summary of the frequency of errors within specified error ranges 260

for the adapted CNN architectures. 261

Table 4. Frequency of errors for CNN architectures within specified ranges
CNN architecture Error range

below -10 -10 to -5 -5 to -2 -2 to 0 0 to 2 2 to 5 5 to 10 above 10
Adapted ResNet18 124 87 74 232 133 134 134 160
Adapted DenseNet121 107 100 62 142 267 138 121 141
Adapted EfficientNetB0 86 113 89 147 298 149 86 110

Fig 4 illustrates the correlation between actual ESIs and model predictions for adapted 262

ResNet18, DenseNet121 and EfficientNetB0, respectively. 263

Fig 4. Correlation between actual ESIs and model predictions for different models

Table 5 summarises the confusion matrices for each of the CNN architectures tested. 264

Table 5. Confusion matrices of CNN architectures

CNN architecture Actual class Predicted class
Keratoconus Not Keratoconus

Adapted ResNet18
Keratoconus 395 34

Not Keratoconus 22 627

Adapted DenseNet121
Keratoconus 406 23

Not Keratoconus 28 621

Adapted EfficientNetB0
Keratoconus 404 25

Not Keratoconus 20 629

Table 6 presents a comparison of classification performance metrics for adapted 265

ResNet18, DenseNet121 and EfficientNetB0 (rounded to four decimal places) with three 266

models of CorNet [5], KerNet [6] and CorNeXt [8] on the test set. 267

Table 6. Evaluation metrics for CNN models
CNN Architecture Metrics

Accuracy Sensitivity Specificity PPV F1 Score
Adapted ResNet18 0.9480 0.9207 0.9661 0.9472 0.9338
Adapted DenseNet121 0.9527 0.9464 0.9569 0.9355 0.9409
Adapted EfficientNetB0 0.9583 0.9417 0.9692 0.9528 0.9472
CorNet [5] 0.9213 0.9249 0.9154 0.9477 0.9362
KerNet [6] 0.9474 0.9371 None 0.9410 0.9389
CorNeXt [8] 0.9256 0.8407 1 None 0.9134

The optimal thresholds (rounded to two decimal places) for the adapted ResNet18, 268

DenseNet121 and EfficientNetB0 were 26.03, 30.61 and 33.23, respectively. 269
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Discussion 270

This study explored the use of three deep neural network architectures (ResNet18, 271

DenseNet121 and EfficientNetB0) for predicting the ESI by using raw data from the 272

Casia2. 273

Based on the performance metrics presented in the Table 3, the adapted EfficientNetB0 274

showed the best performance in predicting ESIs on the test dataset. According to Fig 275

3, the peak around 0 indicates that most predictions from all three models (Adapted 276

ResNet18, DenseNet121, and EfficientNetB0) are very close to the actual ESI values. 277

Also, the plots are centered around zero, which indicates that the errors are symmetrically 278

distributed on either side of the zero error line. Moreover, the adapted EfficientNetB0 279

model has the highest peak, which indicates that it has the highest proportion of 280

predictions with smaller errors compared to the other two models. Additionally, all 281

models show very low densities of extreme errors (far from zero) which is consistent with 282

Fig 4. According to Table 6, the adapted EfficientNetB0 achieved higher accuracy and 283

F1 score in distinguishing between Keratoconus and Not Keratoconus classes compared 284

to the two other adapted models and the CorNet, KerNet and CorNeXt models. The 285

higher accuracy and F1 score rates observed for adapted EfficientNetB0 emphasises the 286

potential of this deep learning model in distinguishing between Keratoconus and Not 287

Keratoconus classes based on the raw data from Casia2. 288

Future research could explore the applicability of other deep learning architectures 289

beyond the ones evaluated in this study to further enhance performance metrics. 290

Conclusion 291

To the best of our knowledge, this study is the first to use raw OCT data from the 292

Casia2 to predict the ESI. In conclusion, adapted EfficientNetB0 outperformed the 293

adapted ResNet18, adapted DenseNet121 and the models in state-of-the-art studies 294

in distinguishing between Keratoconus and Not Keratoconus classes. This highlights 295

the effectiveness of this deep learning model in improving diagnostic accuracy and F1 296

score based on raw data from Casia2 and suggests its significant potential for enhancing 297

ophthalmological evaluations. 298
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