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Abstract  

 

Background: Medication-related harm has a significant impact on global healthcare costs and patient 

outcomes, accounting for deaths in 4.3 per 1000 patients. Generative artificial intelligence (GenAI) has 

emerged as a promising tool in mitigating risks of medication-related harm. In particular, large language 

models (LLMs) and well-developed generative adversarial networks (GANs) showing promise for 

healthcare related tasks. This review aims to explore the scope and effectiveness of generative AI in 

reducing medication-related harm, identifying existing development and challenges in research. 

 

Methods: We searched for peer reviewed articles in PubMed, Web of Science, Embase, and Scopus 

for literature published from January 2012 to February 2024. We included studies focusing on the 

development or application of generative AI in mitigating risk for medication-related harm during the 

entire medication use process. We excluded studies using traditional AI methods only, those unrelated 

to healthcare settings, or concerning non-prescribed medication uses such as supplements. Extracted 

variables included study characteristics, AI model specifics and performance, application settings, and 

any patient outcome evaluated.  

 

Findings: A total of 2203 articles were identified, and 14 met the criteria for inclusion into final review. 

We found that generative AI and large language models were used in a few key applications: drug-drug 

interaction identification and prediction; clinical decision support and pharmacovigilance. While the 

performance and utility of these models varied, they generally showed promise in areas like early 

identification and classification of adverse drug events and support in decision-making for medication 

management. However, no studies tested these models prospectively, suggesting a need for further 

investigation into the integration and real-world application of generative AI tools to improve patient 

safety and healthcare outcomes effectively. 

 

Interpretation: Generative AI shows promise in mitigating medication-related harms, but there are gaps 

in research rigor and ethical considerations. Future research should focus on creation of high-quality, 

task-specific benchmarking datasets for medication safety and real-world implementation outcomes. 
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Introduction 

 

Medication-related harm poses significant health and economic burden globally. The global prevalence 

of medication related harm was 12%, of which 15% was severe and fatal, causing a mortality rate of up 

4.3 per 1000 patients.1 In contrast, cardiovascular deaths caused by ischemic heart disease accounted 

for 1.09 deaths per 1000 patients.2 The economic burden of medication-related harm is estimated at 

$30.1 billion and 79 billion euros in United States and Europe respectively.3  Medication-related harm, 

also termed as adverse drug events (ADEs) include preventable or non-preventable harm caused by 

interventions related to medication use.4 Preventable medication error can occur at any step from the 

physician prescribing medications to the patient receiving the medication. In turn, ADEs are under active 

surveillance during healthcare delivery to patients with health systems or pharmacovigilance activities.  

 

 

Figure 1. Archetypical care delivery process and potential points of error.  

 

Advances in artificial intelligence (AI), digitization of health records, and accessibility to electronic 

patient records have been shown to reduce the occurrence, duration, and severity of ADEs.5-7 An AI-

powered system has been reported to reduce inpatient prescribing error by up to 20%.8 However, 

traditional predictive models are still limited by the lack of in-depth clinical reasoning, poor 

interoperability in electronic health record systems (EHRs), difficulty in detecting rare events or 

interactions, and paucity of models that leverage unstructured data. Based on existing system, 

overlooked ADEs would lead to significant healthcare complications while trivial or clinical insignificant 

effects are over emphasized leading to healthcare administrative burden. Thus, with significant 

promises to address such unbalanced issue, generative AI (GenAI) and large language models (LLMs) 

may enable novel approaches previously unfeasible with conventional methods. For instance, 

preliminary studies have explored the potential of ChatGPT to recognize adverse drug reactions9, 

pharmacovigilance signal detection10, and automated medication chart review.11,12  

 

This systematic review summarizes the breadth and depth of existing literature on how generative AI 

have been utilized to reduce ADEs and highlights areas for future investigation.  

 

Concepts Definitions 

Medication related harm The harm caused by medication if taken incorrectly, monitored insufficiently or as the 

result of an error, accident or communication problem. 13 

Adverse drug event Any injury resulting from medical interventions related to a drug. This includes both 

adverse drug reactions in which no error occurred and complications resulting from 

medication errors.14 

Pharmacovigilance  The science and activities relating to the detection, assessment, understanding and 

prevention of adverse effects or any other drug-related problem.15 
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Generative artificial intelligence Generative AI: Deep-learning based AI techniques that can be used to create or 

produce various types of new contents, including text, images, audio, and videos, 

based on patterns learnt from training data. This includes foundation models and large 

language models.  

Table 1. Key concepts and definitions 

 

Methods  

Search Strategy and Selection Criteria  

This systematic review was conducted according to PRISMA guidelines.16 We searched PubMed, Web 

of Science, Embase, and Scopus to identify studies published between 1st January 2012 to 18th 

February 2024, related to application of generative AI in reducing medication related harm. Details of 

the search terms are provided in [Supplement III].  

 

Studies were included if they were published in English, described the development or application of 

generative AI in mitigating potential medication related harms in the care delivery process (Figure 1), 

and were peer-reviewed original research, review and viewpoints, structured reviews of the literature 

reported in accordance with PRISMA guidelines, conference abstracts, case reports. We excluded 

studies that utilized solely predictive modeling approaches or investigated ADEs related to dietary 

supplements or use of medication not prescribed for the individual.  

 

Based on these criteria, abstracts were screened for eligibility by two independent reviewers using a 

standardized tool. If no exclusion criteria were apparent in the abstract, it was included for manuscript 

review. Full-text manuscripts were conducted by two independent reviewers. Studies that did not meet 

the selection criteria were excluded at this stage. In cases of discrepancy between reviewers, eligibility 

was determined by a third reviewer. 

 

Data Analysis  

We used a standardized form to extract pertinent information, including study characteristics, model 

details, application setting, outcome measures, findings, and reported challenges and limitations 

[Supplement IV]. We did not perform a critical appraisal of study quality as our primary objective is to 

characterise the scope of research in this field, identify research trends and gaps. The wide range of 

study designs and outcomes also precluded the application of a uniform quality assessment criterion.  

 

Role of funding source 

There was no funding source for this study.  

 

Results 

 

The search yielded 2203 articles from all databases, with 1734 remaining after removing duplicates. 

After applying inclusion and exclusion criteria, 14 articles were eligible for this review.  
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Figure 1: PRISMA flow diagram17  

 

Study Characteristics 

 

Studies evaluated the performance of GenAI models for various applications, as summarized in Table 

2. Four studies focused on the identification, classification, or prediction of drug-drug interactions 

(DDI).18-21 Three studies assessed the performance and utility of GenAI as decision support tools in 

benzodiazepine deprescribing22, aid dosing calculation of crushed tablets23 and provision of drug 

information24. Majority of studies focused on the application of GenAI in adverse event monitoring from 

specific drug classes and enhancing pharmacovigilance processes. Study designs were predominantly 

observational and cross-sectional. None of the studies tested models prospectively in their respective 

Records identified from*: 
Databases (n = 2203) 
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Duplicate records removed  
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(n = 1734 ) 

Records excluded** 
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settings of application. The proposed applications of GenAI were broadly distributed across clinical 

(community, inpatient care) and public health settings.  

 

Domain Task (n) Disease / Medication Class (n) Model Details 

Drug-Drug 

Interaction  

Identification / 

Classification (3) 

 

Non-specific (3) 

 

 

 

Screen medical prescriptions for established 

drug-drug interactions and classify degree 

of severity based on existing evidence  

Predict unknown drug-drug interactions  

Prediction (1) Non-specific (1) 

Adverse 

Drug Event  

Identification / 

Classification (6)  

 

Hypothyroidism (1) , drugs of 

abuse (1) , migraine (1) , non-

specific (3)  

Signal detection, severity classification in 

post-marketing surveillance  

 

Information Extraction and 

Summarization  (1) 

Non-specific (1) Extract and summarize information for food-

drug interaction from 

Decision Support (2)  Benzodiazepine (1) ; non-

specific (1)  

Screen for prescriptions eligible for 

benzodiazepine deprescribing; dose 

calculation for crushed tablets   

Education  Text Generation (1)  Non-specific (1)  Answer enquiries collected from a 

pharmacovigilance centre  

Table 2: Summary of studies included in review  

 

Dataset Characteristics 

 

Pharmacovigilance tasks often used public health databases, including FDA Adverse Event Reporting 

System (FAERS) Public Dashboard25, Health Canada ADR reporting dashboard26 , China Food and 

Drug Adminstration27. Various datasets were used for named entity recognition tasks in ADE detection, 

such as user-generated content from web platforms (Medicitalia28, WebMD29) and open or restricted 

access datasets (CoNLL200330, BioCreative V CDR31, n2c232). Models built for DDI prediction utilized 

closed-source or in-house datasets such as DrugBank24,33. Testing datasets are often accrued from 

prior published studies, such as drug-drug interaction and deprescribing case scenarios22,34 with one 

study using an in-house retrospective cohort of medication prescriptions.19 

 

Model Types 

 

Proprietary LLMs featured frequently in the reviewed studies, including various versions of ChatGPT 

and Google Bard. Studies used simple prompts or iterative prompting to generate responses on 

pretrained LLMs. None of the studies reported the use of additional techniques to enhance model 

performance, such as retrieval augmented generation or fine-tuning.  

 

Custom-developed models adopt iterations of generative adversarial networks (GAN) and variational 

autoencoders (VAE) in the studies reviewed. The GTCACS35 approach was a three-step approach to 

better identify discussion topics from social media texts. GAN achieved dimensionality reduction, 

keyword clustering and summarization. DeepSAVE36, a deep learning framework used an enriched VAE 
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for dimensionality reduction through parsimonious modelling of events captured on social media 

platform. In one study, BART (Bidirectional and Auto-Regressive Transformers) fine-tuned with a small 

amount of ADR-specific named entities (few-shot learning) was adapted to allow automated 

identification of diverse ADEs using small volumes of annotated data.37 GAN was adapted in 

DGANDDI21 into a graph attention network that encode drug attributes. DGANDDI was capable of 

binary and multi-class prediction tasks for drug-drug interactions using an enhanced and augmented 

multi-dimensional dataset generated by GAN. In a similar fashion, GAN was used to generate artificial 

features to augment data distribution in an imbalanced spontaneous reporting dataset.27  

 

Table 3: Types of generative models and data characteristics   

 

Model Performance  

 

For tasks that assist clinical decision making, reference standards include information from knowledge 

databases e.g. Lexicomp and expert opinion (healthcare providers or pharmacologists). Most 

commonly reported metrics include accuracy, sensitivity, specificity, F-1 statistic, precision, recall, AUC 

and AUPRC. Bespoke metrics include qualitative assessment of model responses by human experts, 

graded on Likert scales for quality, completeness or satisfaction. One study used ChatGPT-4 for 

qualitative evaluation of model performance, performed in parallel with human expert evaluation.38  

 

Drug-Drug Interaction Classification and Prediction18-21  

 

In prediction of potential drug interaction pairs, GAN-based models achieved high accuracy rate. GANs 

are generative models that learn from the distribution of data or images to create large, realistic 

synthetic data.39 DGANDDI outperformed baseline methods in both binary and multi-class DDI 

prediction tasks. In binary prediction, it achieved an accuracy of 96.10%, AUPR of 99.27%, and AUROC 

of 99.26%. In the multi-class prediction task, DGANDDI attained an accuracy of 95.89%, AUPR of 

97.29%, and AUROC of 99.97%.  

 

Generative Model    Type(s) of Data Input  Training Datasets (if 

used)  

Performance Metrics  

Large Language Models 

(ChatGPT-3.5, ChatGPT-4, Bing 

AI, Google Bard) 

Structured, 

unstructured and 

combination of both 

structured and 

unstructured data   

Studies did not use any 

training datasets (zero-

shot inference)  

 

Accuracy, Sensitivity, Specificity, 

Negative Predictive Value, 

Positive Predictive Value, 

readability, cohen’s kappa, F-1 

statistic, Precision, Recall 

Generative Adversarial Network  Unstructured and 

combination of both 

structured and 

unstructured  

Spontaneous ADR reports 

from pharmacovigilance 

centres, DrugBank, 

WebMD  

Accuracy, AUPR, AUROC, 

Macro-F1, Precision, Recall, 

ROUGE, Likert Scale for 

qualitative human expert 

evaluation  
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Proprietary LLMs were used to classify DDIs. One study compared the performance of different LLMs 

including Microsoft Bing AI, ChatGPT-3.5 and ChatGPT-4 and Google Bard.18 When Micromedex was 

used as the reference standard, accuracy of LLMs ranged between 0.469 to 0.788, with Microsoft Bing 

AI demonstrating the best performance. Sensitivity was comparable across all LLMs, but specificity was 

significantly lower for ChatGPT-3.5 and ChatGPT-4. In another study, the Google Bard was used to 

screen prescriptions for drug-drug interactions, demonstrated low degree of agreement with predictions 

from Lexicomp.19 There was a nil to slight agreement between interaction risk rating (κ=0.01), severity 

rating (κ=0.02), and reliability (κ =-0.02). Conversely, ChatGPT (version not reported) was found to be 

highly accurate in identifying drug-drug interactions in 39 out of 40 DDI pairs tested. When prompted to 

explain its answer, ChatGPT produced responses that was highly readable. 

 

Decision Support22-24 

 

In decision support applications, a study leveraging GPT-4 for benzodiazepine deprescribing reported 

high degree of overall agreement between LLM and human expert in identifying cases eligible for 

deprescribing.22 Agreement on four different deprescribing criteria was varied, ranging 74.7% to 91.3% 

(lack of indication: κ = .352, P < .001; prolonged use: κ = .088, P = .280; safety concerns: κ = .123, P 

= .006; incorrect dosage: κ = .264, P = .001). Qualitative analysis of  GPT-4 responses found that up to 

22% were ambiguous, generic and contained inconsistencies. Another study introduced a web-based 

calculator developed to guide dosing calculation, particularly in paediatric care where such errors are 

prevalent.23 The authors used ChatGPT (version not reported) and Visual Studio to write the underlying 

HTML code for dose division calculations and webpage interface creation. The webpage’s reliability 

and feasibility were then assessed using retrospective data and validated questionnaires, scoring 88.38 

on the System Usability Scale. Accuracy and reproducibility of the calculator was not evaluated.  

 

In the provision of pharmacovigilance related enquiries, ChatGPT-4 responses was compared against 

responses by pharmacovigilance specialists. The median score (IQR) of the ChatGPT's responses on 

a 10-point Likert scale was 4.8 (3–7.3), with a specific focus on drug causality scoring lower at 3.7 (3–

6.3), and information on medication and proper use scoring slightly better at 5 (3.2–8.3). The authors 

conclude that chatbot's responses were generally not acceptable, especially in terms of precision and 

clinical relevance.  

 

Pharmacovigilance27,35-37,40  

 

For signal detection and ADR classification, studies used generative AI for training data augmentation 

and dimension reduction. These models e.g. GTCACS outperformed non GenAI methods on internal 

validity measures. The DeepSAVE model, which uses a VAE approach, was tested on a dataset 

comprising of 104 million user search queries and 800 events. DeepSAVE outperformed existing 

methods (e.g. disproportionality analysis, DA atop Event Mention Classifier) with the highest F-measure 

across all validation datasets. A GAN-based classification model developed to automatically evaluate 
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risk categories of drugs during post-marking surveillance demonstrated highest accuracy of 97.9% 

when compared against existing models.  

 

In one study, authors demonstrated few-shot learning with LightNER and BART, the ADR recognition 

performance in low-resource datasets significantly improved. For instance, the LightNER model fine-

tuned using the N2C2 dataset, achieved an F1-score of 61.42%, indicating the model's effective transfer 

of task knowledge from rich-resource to low-resource settings. GPT-3 was used in another study to 

generate a comprehensive lexicon of drug abuse synonyms from social media sources. Coupled with 

automated API queries and simple automated filters (e.g. google filters), the proposed method yielded 

precision of 0.859  and 0.770, recall of 0.431 and 0.395 for alprazolam and fentanyl respectively.  

 

LLM was harnessed to improve efficiency of pharmacovigilance process in one study, where authors 

used  iterative prompting of GPT-4 to review and summarize food effects on drugs from drug review 

documents. Final draft summaries generated by GPT-4 were rated by FDA professionals, with 85% 

rated as factually consistent with reference summaries. This showcases GPT-4's potential to aid in 

faster and more reliable drug assessment processes. 

 

Discussion  

 

As healthcare systems increasingly prioritize patient safety, the integration of AI has the potential to 

enhance the detection and prevention of ADEs, and, by extension, reduce the substantial economic 

cost. Our scoping review revealed three key applications of GenAI in the literature to date: identification 

and prediction of drug-drug interactions, provision of decision support in medication management, and 

automation of pharmacovigilance activities.  

 

Effectiveness of Generative AI in Enhancing Safety 

 

Drug-drug interactions make up nearly 3% of all hospital admissions and account for up to 5% of all 

inpatient medication errors.41 Harmful DDIs are often only reported from post-marketing surveillance 

activities, rather than at the clinical trial stage.42 Our review included studies that predict potential DDIs 

pre-clinically. Performance of models augmented by GAN outperforms those trained using traditionally 

augmented data using a fraction of the original training dataset.43,44 GAN can be a useful tool in 

enhancing prediction accuracy where data is limited. On the other hand, LLMs demonstrated variable 

performance in screening DDIs from prescriptions. Studies frequently used simple prompting strategies 

to elucidate response from LLMs, with no additional techniques used to provide contextual knowledge 

or reduce incorrect responses (or “hallucinations”). Methods such as retrieval augmented generation 

(RAG) or fine-tuning may allow LLMs to tailor responses to specified tasks through provision of 

contextual knowledge (e.g. drug-drug interaction database).45,46 The advantage of such techniques 

have been shown in other clinical tasks, including differential diagnosis47, evidenced-based decision 
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support46,48 and patient chart review49. These techniques however, may rely on well-curated, clinically 

adjudicated drug-drug interaction datasets that are not often freely available.  

 

As decision support tools, studies adopting LLMs are mainly exploratory in nature. We found a wide 

range of tasks and purposes (e.g. prescription review, dosage calculation, and answering medication 

enquiry). These broad applications are enabled by generalist properties of large language models.50 

LLMs demonstrate capacity to perform tasks with little to no task-specific training, also known as “zero-

shot” or “few-shots” learning. In the context of reducing medication harm, LLMs may simulate clinical 

reasoning and inferential skills across diverse medical disciplines, drug classes and user settings 

without the need for explicit training. For instance, an LLM trained to screen prescriptions for 

inappropriate benzodiazepine use may be adapted easily to screen for inappropriate drug use in elderly 

patients. In addition, LLMs are well poised as medical chatbots, given their text generation capabilities 

demonstrating high degree of fluency, empathy, and personalization, even outperforming clinicians.51 

These explorations, however, highlight existing challenges to clinical adoption of LLMs. While studies 

to date are in research phase and no exploration in terms of auto-piloting or co-piloting as modes of 

clinical integration. Accuracy, reliability and consistency of LLM responses using general purpose LLMs 

such as ChatGPT precludes its autonomous use in clinical settings.  

 

A promising area of LLM application in enhancing efficiency and impact is in ADE monitoring and 

pharmacovigilance, where GenAI tools may enhance timeliness and accuracy of ADR detection from 

specific medication classes. Our review has shown that GenAI enhanced accuracy of signal detection, 

disease and drug entity recognition over conventional natural language processing tools. LLMs are able 

to handle a wide breadth of data sources (i.e. electronic health records, online databases, and social 

media platform), facilitating the detection of rare events and offering a generalist capability that is 

essential for continuous learning and adaptation.52 Automation of specific tasks in pharmacovigilance 

that is traditionally resource-intensive is a potential avenue for productivity gain with the use of GenAI 

models.53  

 

Clinical Implications  

 

In our review, we are unable to provide conclusive evidence that GenAI will reduce medication-related 

harms when applied in clinical settings. Along the continuum of medication use process, GenAI models 

were actually only adopted for highly selective domains and tasks. While a comprehensive review or 

metrics of medication-related tasks across multiple domains or tasks across different GenAI models 

have yet to be concluded. In other words, current generative AI in research are still applied as narrow 

based AI focused on specific task, yet to be explored or achieve their “generative” potential for 

medication safety. Non-generative AI models was evaluated in another review, where 78 articles 

described the application of AI in reducing ADEs.54 A variety of AI techniques were described including 

neural networks and tree-based algorithms in predicting potential ADEs and enhancing early detection. 
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Utilizing diverse data sources like genetic information and electronic health records, these AI models 

aimed to inform clinical decisions on safe prescribing and medication management.  

 

Instead of applying generative AI models in tasks that mandate deterministic outputs, we propose that 

LLMs can be adopted in ways to reduce cognitive workload for healthcare professionals. Healthcare 

professionals work with high volumes of multi-modal patient data and are required to pay attention to 

details, synthesize information and make clinical decisions in real time. High cognitive load pose risk 

for burnout and medical errors.55 For example, LLMs can be used to analyse and reduce alert burden 

in electronic medical records, in medication incident analysis, and summarization in a similar fashion to 

discharge notes generation.12,56 In a study published after we completed literature search, LLMs were 

used in a co-pilot system to extract key named entities of online submitted prescriptions and assembly 

into coherent instructions.57 This system was shown to reduce near-miss events and improved the 

efficiency of pharmacy operations in a large-scale online pharmacy. Finally, LLMs can be leveraged 

upon as a tool in patient education and engagement thereby enhancing patient access to critical 

medication related information.58 

 

A critical evaluation of studies included in our review revealed a lack of adherence to reporting 

guidelines for AI studies. We did not perform a quality review of the studies in view of the scoping nature 

of this review and diverse hypotheses of studies included. Checklists and reporting guidelines such as 

the MI-CLAIM for transparent model reporting59, TRIPOD+AI checklist for comprehensive reporting of 

predictive models60 and DECIDE-AI checklist for early stage clinical evaluation of AI-based decision 

support tools61 should be adopted in future studies. However, there is still lack of validated reporting 

tools for LLM-based AI model, though initial efforts have been made to create LLM-specific 

frameworks.62 Evaluation or discussions on model fairness, bias and other ethical considerations such 

as data privacy were also found to be lacking in the included studies.  

 

Limitations 

 

Our study has several limitations. The heterogeneity across studies regarding application, GenAI tools 

used and setting prevented a formal assessment of predictive validity for different AI models. Diversity 

of training and testing datasets used precludes generalizability of findings across different demographic 

groups. Patient outcomes were not reported in all studies, limiting any conclusions about the role of 

GenAI and its impact on patient outcomes. We limited our review to only peer reviewed articles. We 

acknowledge that the field of generative AI and LLM is rapidly evolving and a large number of studies 

may still be in the preprint stage or archived. 

 

Blueprint for Future Studies 

 

Future research should focus on developing and benchmarking generative AI models against 

established healthcare standards to further validate their performance and cost-effectiveness to ensure 
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their safe integration into clinical practice. There is a need to develop expert curated, high quality 

training datasets with diverse representation from different geographical, ethnic and social groups. Such 

datasets, when shared, can facilitate and accelerate training of GenAI models adapted for different 

applications in the medication use process. For example, an expert annotated dataset of incident 

reports can be used to fine-tune an LLM-based model to predict risk for medication incidents.63 Other 

areas of high interest include the use of LLMs for real-time monitoring of drug safety and the exploration 

of GAN the synthetic generation of training data, which can help overcome the limitations posed by rare 

ADE occurrences. 

 

Conclusion 

 

GenAI and LLMs demonstrate potential in enhancing medication safety and reducing medication-

related harm. Published studies reveal potential areas for successful future implementation. However, 

the current areas that have been addressed are targeted at only some of the key safety issues of 

medication safety today.  Moreover, research rigor and comprehensive ethical evaluation is lacking in 

the studies to date. Future studies should address gaps in lack of high-quality datasets specific for 

medication safety tasks. Continuous update of this review is warranted given the burgeoning nature of 

this field.  

 
Contributors  

NL, JCLO and CM conceptualized and designed the systematic review. JCLO, CM, NN, KB, NYTT, LJ 

and QX performed article screening and data extraction. RR, DWB, DSWT contributed to the first draft 

of the report with input from NL. All authors had full access to all the data in the study and had final 

responsibility for the decision to submit for publication. 

 
Declaration of Interest  

We declare no competing interests.  

 
References  
 
1. WHO Integrated Health Services MWH. Global burden of preventable medication-related 
harm in health care: a systematic review. Geneva: World Health Organization. 2023;Licence: CC BY-
NC-SA 3.0 IGO. 
2. M V, GA M, JV T, V F, GA R. The Global Burden of Cardiovascular Diseases and Risk: A 
Compass for Future Health. Journal of the American College of Cardiology. 12/20/2022 
2022;80(25)doi:10.1016/j.jacc.2022.11.005 
3. H LL, PJ P. Twenty-First Century Global ADR Management: A Need for Clarification, 
Redesign, and Coordinated Action. Therapeutic innovation & regulatory science. 2023 Jan 
2023;57(1)doi:10.1007/s43441-022-00443-8 
4. DW B, DJ C, N L, et al. Incidence of adverse drug events and potential adverse drug events. 
Implications for prevention. ADE Prevention Study Group. JAMA. 07/05/1995 1995;274(1) 
5. DW B, D L, A S, et al. The potential of artificial intelligence to improve patient safety: a 
scoping review. NPJ digital medicine. 03/19/2021 2021;4(1)doi:10.1038/s41746-021-00423-6 
6. C G, M B, B M, P R, F M, P T. Accessing Artificial Intelligence for Clinical Decision-Making. 
Frontiers in digital health. 06/25/2021 2021;3doi:10.3389/fdgth.2021.645232 
7. A C, O A. Role of Artificial Intelligence in Patient Safety Outcomes: Systematic Literature 
Review. JMIR medical informatics. 07/24/2020 2020;8(7)doi:10.2196/18599 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.09.13.24313606doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.13.24313606
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

8. JC S, Q C, JC D, DM R, KB J, RA M. Evaluation of a Novel System to Enhance Clinicians' 
Recognition of Preadmission Adverse Drug Reactions. Applied clinical informatics. 2018 Apr 
2018;9(2)doi:10.1055/s-0038-1646963 
9. X H, D E, X L, Y Y, J Q, Z L. Evaluating the performance of ChatGPT in clinical pharmacy: A 
comparative study of ChatGPT and clinical pharmacists. British journal of clinical pharmacology. 2024 
Jan 2024;90(1)doi:10.1111/bcp.15896 
10. X W, X X, Z L, W T. Bidirectional Encoder Representations from Transformers-like large 
language models in patient safety and pharmacovigilance: A comprehensive assessment of causal 
inference implications. Experimental biology and medicine (Maywood, NJ). 2023 Nov 
2023;248(21)doi:10.1177/15353702231215895 
11. D R, P P, R K, H K, C V, Y W. Effectiveness of ChatGPT in clinical pharmacy and the role of 
artificial intelligence in medication therapy management. Journal of the American Pharmacists 
Association : JAPhA. 2024 Mar-Apr 2024;64(2)doi:10.1016/j.japh.2023.11.023 
12. Ong JCL, Jin L, Elangovan K, et al. Development and Testing of a Novel Large Language 
Model-Based Clinical Decision Support Systems for Medication Safety in 12 Clinical Specialties. 
2024/01/29 2024; 
13. Medication Without Harm - Global Patient Safety Challenge on Medication Safety. Geneva: 
World Health Organization LCB-N-SI. https://iris.who.int/bitstream/handle/10665/255263/WHO-HIS-
SDS-2017.6-eng.pdf?sequence=1 
14. DW B, DL B, MB VV, J S, L L. Relationship between medication errors and adverse drug 
events. Journal of general internal medicine. 1995 Apr 1995;10(4)doi:10.1007/BF02600255 
15. L H, AC vG. Pharmacovigilance: methods, recent developments and future perspectives. 
European journal of clinical pharmacology. 2008 Aug 2008;64(8)doi:10.1007/s00228-008-0475-9 
16. MJ P, JE M, PM B, et al. The PRISMA 2020 statement: an updated guideline for reporting 
systematic reviews. BMJ (Clinical research ed). 03/29/2021 2021;372doi:10.1136/bmj.n71 
17. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated 
guideline for reporting systematic reviews. 2021-03-29 2021;doi:10.1136/bmj.n71 
18. FY A-A, M Z, L G, R A-F, AN B. Evaluating the Sensitivity, Specificity, and Accuracy of 
ChatGPT-3.5, ChatGPT-4, Bing AI, and Bard Against Conventional Drug-Drug Interactions Clinical 
Tools. Drug, healthcare and patient safety. 09/20/2023 2023;15doi:10.2147/DHPS.S425858 
19. DM S, SS S, HB A, AM S, MA M. Screening the Drug-Drug Interactions Between 
Antimicrobials and Other Prescribed Medications Using Google Bard and Lexicomp® Online™ 
Database. Cureus. 09/09/2023 2023;15(9)doi:10.7759/cureus.44961 
20. A J, N P, S S, S M, JK B, H M. The Capability of ChatGPT in Predicting and Explaining 
Common Drug-Drug Interactions. Cureus. 03/17/2023 2023;15(3)doi:10.7759/cureus.36272 
21. H Y, K L, J S. DGANDDI: Double Generative Adversarial Networks for Drug-Drug Interaction 
Prediction. IEEE/ACM transactions on computational biology and bioinformatics. 2023 May-Jun 
2023;20(3)doi:10.1109/TCBB.2022.3219883 
22. I B, D B, M D, et al. Clinical decision-making in benzodiazepine deprescribing by healthcare 
providers vs. AI-assisted approach. British journal of clinical pharmacology. 2024 Mar 
2024;90(3)doi:10.1111/bcp.15963 
23. J S, M R, TM PK, V P, SH C. Dose 4 You: Dose Division Calculator-A Tool to Reduce 
Calculation Errors. Hospital pharmacy. 2024 Apr 2024;59(2)doi:10.1177/00185787231207757 
24. F M, W S, C dC, et al. Will artificial intelligence chatbots replace clinical pharmacologists? An 
exploratory study in clinical practice. European journal of clinical pharmacology. 2023 Oct 
2023;79(10)doi:10.1007/s00228-023-03547-8 
25. @US_FDA. FDA Adverse Event Reporting System (FAERS) Public Dashboard | FDA. 2024; 
26. Canada H. Adverse Reaction Database - Canada.ca. 2009-09-24 2009; 
27. J W, G F, Z L, P H, Y Z, W H. Evaluating Drug Risk Using GAN and SMOTE Based on 
CFDA's Spontaneous Reporting Data. Journal of healthcare engineering. 08/27/2021 
2021;2021doi:10.1155/2021/6033860 
28. Consulti medici e specialisti online: più informati, più sani! @medicitalia. 
https://www.medicitalia.it 
29. WebMD. Drugs & Medications; Topramax. https://reviewswebmdcom/drugs/drugreview-
14494-topamax-oral. 2024; 
30. Erik F. Tjong Kim Sang FDM. Introduction to the CoNLL-2003 shared task | Proceedings of 
the seventh conference on Natural language learning at HLT-NAACL 2003 - Volume 4. Proceedings of 
the seventh conference on Natural language learning at HLT-NAACL. 2003;4 May:142–147. 
doi:https://doi.org/10.3115/1119176.1119195 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.09.13.24313606doi: medRxiv preprint 

https://iris.who.int/bitstream/handle/10665/255263/WHO-HIS-SDS-2017.6-eng.pdf?sequence=1
https://iris.who.int/bitstream/handle/10665/255263/WHO-HIS-SDS-2017.6-eng.pdf?sequence=1
https://www.medicitalia.it/
https://reviewswebmdcom/drugs/drugreview-14494-topamax-oral
https://reviewswebmdcom/drugs/drugreview-14494-topamax-oral
https://doi.org/10.3115/1119176.1119195
https://doi.org/10.1101/2024.09.13.24313606
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

31. J L, Y S, RJ J, et al. BioCreative V CDR task corpus: a resource for chemical disease relation 
extraction. Database : the journal of biological databases and curation. 05/09/2016 
2016;2016doi:10.1093/database/baw068 
32. S H, Y W, F S, O U. The 2019 National Natural language processing (NLP) Clinical 
Challenges (n2c2)/Open Health NLP (OHNLP) shared task on clinical concept normalization for 
clinical records. Journal of the American Medical Informatics Association : JAMIA. 10/01/2020 
2020;27(10)doi:10.1093/jamia/ocaa106 
33. Online D. DrugBank Online | Database for Drug and Drug Target Info. 2024; 
34. AS B, MA S, A A, EA G, J B, D F. Prevalence and Determinants of Multimorbidity, 
Polypharmacy, and Potentially Inappropriate Medication Use in the Older Outpatients: Findings from 
EuroAgeism H2020 ESR7 Project in Ethiopia. Pharmaceuticals (Basel, Switzerland). 08/25/2021 
2021;14(9)doi:10.3390/ph14090844 
35. GraniGiorgio, LenziAndrea, VelardiPaola. Supporting Personalized Health Care With Social 
Media Analytics: An Application to Hypothyroidism. research-article. 2021-10-15 2021;doi:4 
36. F. Ahmad AA, B. Kitchens, D. Adjeroh and D. Zeng. Deep Learning for Adverse Event 
Detection From Web Search. IEEE Transactions on Knowledge and Data Engineering. 
2022;34(6):2681-2695.  
37. Chang C-H, National Sun Yat-sen University DoIM, Kaohsiung,Taiwan, Chang F-Y, Hwang S-
Y, Yang CC, Drexel University CoCaI, Philadelphia,USA. Prompting for Few-shot Adverse Drug 
Reaction Recognition from Online Reviews. IEEE Computer Society; 2023:168-175. 
38. Y S, P R, J W, et al. Leveraging GPT-4 for food effect summarization to enhance product-
specific guidance development via iterative prompting. Journal of biomedical informatics. 2023 Dec 
2023;148doi:10.1016/j.jbi.2023.104533 
39. A A, A A. Generative adversarial networks and synthetic patient data: current challenges and 
future perspectives. Future healthcare journal. 2022 Jul 2022;9(2)doi:10.7861/fhj.2022-0013 
40. KA C, RB A. Using GPT-3 to Build a Lexicon of Drugs of Abuse Synonyms for Social Media 
Pharmacovigilance. Biomolecules. 02/18/2023 2023;13(2)doi:10.3390/biom13020387 
41. LL L, DW B, DJ C, et al. Systems analysis of adverse drug events. ADE Prevention Study 
Group. JAMA. 07/05/1995 1995;274(1) 
42. Lu Y, Shen D, Pietsch M, et al. A novel algorithm for analyzing drug-drug interactions from 
MEDLINE literature. OriginalPaper. Scientific Reports. 2015-11-27 2015;5(1):1-10. 
doi:doi:10.1038/srep17357 
43. AA V, FF G, YJ K, et al. Deploying deep learning models on unseen medical imaging using 
adversarial domain adaptation. PloS one. 10/14/2022 2022;17(10)doi:10.1371/journal.pone.0273262 
44. AJ SK, RS C, JG C, et al. Evaluation of Generative Adversarial Networks for High-Resolution 
Synthetic Image Generation of Circumpapillary Optical Coherence Tomography Images for 
Glaucoma. JAMA ophthalmology. 10/01/2022 2022;140(10)doi:10.1001/jamaophthalmol.2022.3375 
45. C Z, R S, A C, et al. Almanac - Retrieval-Augmented Language Models for Clinical Medicine. 
NEJM AI. 2024 Feb 2024;1(2)doi:10.1056/aioa2300068 
46. Ke Y, Jin L, Elangovan K, et al. Development and Testing of Retrieval Augmented Generation 
in Large Language Models -- A Case Study Report. 2024/01/29 2024; 
47. S R, A R, J N, et al. A retrieval-augmented chatbot based on GPT-4 provides appropriate 
differential diagnosis in gastrointestinal radiology: a proof of concept study. European radiology 
experimental. 05/17/2024 2024;8(1)doi:10.1186/s41747-024-00457-x 
48. S K, M G, M A, A A, LS C, DL S. Optimization of hepatological clinical guidelines interpretation 
by large language models: a retrieval augmented generation-based framework. NPJ digital medicine. 
04/23/2024 2024;7(1)doi:10.1038/s41746-024-01091-y 
49. Vaid Aea. Using fine-tuned large language models to parse clinical notes in musculoskeletal 
pain disorders. The Lancet Digital Health. 2024;5(12):e855 - e858.  
50. Tu T, Azizi S, Driess D, et al. Towards Generalist Biomedical AI. research-article. 2024-02-22 
2024;doi:10.1056/AIoa2300138 
51. IA B, YV Z, D G, et al. Comparison of Ophthalmologist and Large Language Model Chatbot 
Responses to Online Patient Eye Care Questions. JAMA network open. 08/01/2023 
2023;6(8)doi:10.1001/jamanetworkopen.2023.30320 
52. M M, O B, ZSH A, et al. Foundation models for generalist medical artificial intelligence. 
Nature. 2023 Apr 2023;616(7956)doi:10.1038/s41586-023-05881-4 
53. M S, J P, P Y, et al. The Use of Artificial Intelligence in Pharmacovigilance: A Systematic 
Review of the Literature. Pharmaceutical medicine. 2022 Oct 2022;36(5)doi:10.1007/s40290-022-
00441-z 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.09.13.24313606doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.13.24313606
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

54. A S, W S, MG A, et al. Key use cases for artificial intelligence to reduce the frequency of 
adverse drug events: a scoping review. The Lancet Digital health. 2022 Feb 
2022;4(2)doi:10.1016/S2589-7500(21)00229-6 
55. DE E, SN G, S N, et al. Evaluating and reducing cognitive load should be a priority for 
machine learning in healthcare. Nature medicine. 2022 Jul 2022;28(7)doi:10.1038/s41591-022-
01833-z 
56. D VV, C VU, L B, et al. Adapted large language models can outperform medical experts in 
clinical text summarization. Nature medicine. 2024 Apr 2024;30(4)doi:10.1038/s41591-024-02855-5 
57. C P, J L, R V, V G, E W, M B. Large language models for preventing medication direction 
errors in online pharmacies. Nature medicine. 04/25/2024 2024;doi:10.1038/s41591-024-02933-8 
58. Yang R, Tan, TF  ,   Lu, W  ,   Thirunavukarasu, AJ  ,   Ting, DSW  ,   Liu, N  . Large language 
models in health care: development, applications, and challenges  . . Health Care Sci  2023;2:255  –  
263.  
59. B N, G Q, BK B-J, et al. Minimum information about clinical artificial intelligence modeling: the 
MI-CLAIM checklist. Nature medicine. 2020 Sep 2020;26(9)doi:10.1038/s41591-020-1041-y 
60. GS C, KGM M, P D, et al. TRIPOD+AI statement: updated guidance for reporting clinical 
prediction models that use regression or machine learning methods. BMJ (Clinical research ed). 
04/16/2024 2024;385doi:10.1136/bmj-2023-078378 
61. B V, M N, B C, et al. Reporting guideline for the early-stage clinical evaluation of decision 
support systems driven by artificial intelligence: DECIDE-AI. Nature medicine. 2022 May 
2022;28(5)doi:10.1038/s41591-022-01772-9 
62. Ning Y, Teixayavong S, Shang Y, et al. Generative Artificial Intelligence in Healthcare: Ethical 
Considerations and Assessment Checklist. 2023/11/02 2023; 
63. ZSY W, N W, J L, S U. A large dataset of annotated incident reports on medication errors. 
Scientific data. 02/29/2024 2024;11(1)doi:10.1038/s41597-024-03036-2 
64. Rights of the Individual. 2023; 
65. Organization TWH. Regulation and Prequalification: What is Pharmacovigilance? Accessed 
20 Feb 2024,  
 
 
 
 
 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.09.13.24313606doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.13.24313606
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

Supplement I - Preferred Reporting Items for Systematic reviews and Meta-Analyses extension 
for Scoping Reviews (PRISMA-ScR) Checklist 
 

SECTION ITEM PRISMA-ScR CHECKLIST ITEM 
REPORTED 
ON PAGE # 

TITLE 

Title 1 Identify the report as a scoping review. 1 

ABSTRACT 

Structured 
summary 

2 

Provide a structured summary that includes (as 
applicable): background, objectives, eligibility 
criteria, sources of evidence, charting methods, 
results, and conclusions that relate to the review 
questions and objectives. 

2 

INTRODUCTION 

Rationale 3 

Describe the rationale for the review in the context 
of what is already known. Explain why the review 
questions/objectives lend themselves to a scoping 
review approach. 

3,4 

Objectives 4 

Provide an explicit statement of the questions and 
objectives being addressed with reference to their 
key elements (e.g., population or participants, 
concepts, and context) or other relevant key 
elements used to conceptualize the review 
questions and/or objectives. 

3,4, 
supplement 

METHODS 

Protocol and 
registration 

5 

Indicate whether a review protocol exists; state if 
and where it can be accessed (e.g., a Web 
address); and if available, provide registration 
information, including the registration number. 

NA 

Eligibility criteria 6 

Specify characteristics of the sources of evidence 
used as eligibility criteria (e.g., years considered, 
language, and publication status), and provide a 
rationale. 

5 

Information 
sources* 

7 

Describe all information sources in the search (e.g., 
databases with dates of coverage and contact with 
authors to identify additional sources), as well as 
the date the most recent search was executed. 

4 

Search 8 
Present the full electronic search strategy for at 
least 1 database, including any limits used, such 
that it could be repeated. 

Supplement 

Selection of 
sources of 
evidence† 

9 
State the process for selecting sources of evidence 
(i.e., screening and eligibility) included in the 
scoping review. 

5 

Data charting 
process‡ 

10 

Describe the methods of charting data from the 
included sources of evidence (e.g., calibrated 
forms or forms that have been tested by the team 
before their use, and whether data charting was 
done independently or in duplicate) and any 
processes for obtaining and confirming data from 
investigators. 

5 

Data items 11 
List and define all variables for which data were 
sought and any assumptions and simplifications 
made. 

Supplement 

Critical appraisal 
of individual 
sources of 
evidence§ 

12 

If done, provide a rationale for conducting a critical 
appraisal of included sources of evidence; describe 
the methods used and how this information was 
used in any data synthesis (if appropriate). 

NA 

Synthesis of 
results 

13 
Describe the methods of handling and summarizing 
the data that were charted. 

5 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.09.13.24313606doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.13.24313606
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

SECTION ITEM PRISMA-ScR CHECKLIST ITEM 
REPORTED 
ON PAGE # 

RESULTS 

Selection of 
sources of 
evidence 

14 

Give numbers of sources of evidence screened, 
assessed for eligibility, and included in the review, 
with reasons for exclusions at each stage, ideally 
using a flow diagram. 

6 

Characteristics of 
sources of 
evidence 

15 
For each source of evidence, present 
characteristics for which data were charted and 
provide the citations. 

6 

Critical appraisal 
within sources of 
evidence 

16 
If done, present data on critical appraisal of 
included sources of evidence (see item 12). 

6 – 9  

Results of 
individual sources 
of evidence 

17 
For each included source of evidence, present the 
relevant data that were charted that relate to the 
review questions and objectives. 

6 – 9 

Synthesis of 
results 

18 
Summarize and/or present the charting results as 
they relate to the review questions and objectives. 

6 – 9  

DISCUSSION 

Summary of 
evidence 

19 

Summarize the main results (including an overview 
of concepts, themes, and types of evidence 
available), link to the review questions and 
objectives, and consider the relevance to key 
groups. 

9 – 12  

Limitations 20 
Discuss the limitations of the scoping review 
process. 

12 

Conclusions 21 
Provide a general interpretation of the results with 
respect to the review questions and objectives, as 
well as potential implications and/or next steps. 

12 

FUNDING 

Funding 22 

Describe sources of funding for the included 
sources of evidence, as well as sources of funding 
for the scoping review. Describe the role of the 
funders of the scoping review. 

12 
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Supplement II - Population, Concept and Contexts (PCC) for the scoping review 
 

Population  Healthcare professionals who prescribe, dispense or administer 
medications to patients; patient/medication safety groups within 
health systems responsible for monitoring, design, development 
and implementation of patient / medication safety initiatives; groups 
or health agencies who carry out pharmacovigilance activities*; 
patients who are the recipients of medication prescriptions. 

Concept  Generative AI: Deep-learning based AI techniques that can be 
used to create or produce various types of new contents, including 
text, images, audio, and videos, based on patterns learnt from 
training data.64 

Medication Safety: The freedom from harm (both preventable and 
unpreventable) that arise from medication use.  

Context  Refers to a broad range of healthcare settings including provision 
of direct clinical care, healthcare administration and operations and 
public or commercial groups with medication safety as an agenda. 
This includes settings where medication is prescribed, dispensed, 
administered to patients and monitored for safety indicators.  

*Pharmacovigilance is defined as the science and activities relating to the detection, assessment, 
understanding and prevention of adverse effects or any other medicine/vaccine related problem65. 
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Supplement III - Search Strategy 

 
 Advanced Search Query Syntax 

Component PubMed Web of Science  Embase Scopus  

Generative 
AI and 

Large 
Language 
Models  

("Generative AI "[tiab]) 
OR("Generative artificial 

intelligence "[tiab]) OR 
("Large language"[tiab]) 
OR ("GPT-* "[tiab]) OR 

("Variational 
Autoencoder"[tiab]) OR 
("generative 
adversarial"[tiab]) OR 

("GAN "[tiab]) OR 
("GANs"[tiab]) OR ("bard 
"[tiab]) OR ("stable 

diffusion "[tiab]) OR 
("midjourney "[tiab]) OR 
("dall-e "[tiab]) OR 

("Variational 
Autoencoders"[tiab]) OR 
("Variational Auto-

encoder"[tiab]) OR 
("Variational Auto-
encoders"[tiab]) OR 

("Variational Auto 
encoder"[tiab]) OR 
("Variational Auto 

encoders"[tiab]) OR 
("BART"[tiab]) OR 
("GLaM"[tiab]) OR 

("LaMDA"[tiab]) OR 
("PaLM"[tiab]) OR 
(“Gemini*[tiab] OR 

(“Mistral*[tiab] OR 
(“Mixtral*[tiab] OR  
("LLaMA"[tiab]) OR (“Med-

PaLM”[tiab] OR “Med-
LLM”[tiab]) 
 

 

TS=(("Generative AI 
") OR 

("Generative 
artificial 
intelligence") OR 

("Large language 
Model") OR 
("GPT-*") OR 
("Variational 

Autoencoder") 
OR ("generative 
adversarial") 

OR ("GAN") OR 
("bing") 
OR ("bard") OR 

("stable 
diffusion") OR 
("midjourney") OR 

("dall-e") OR 
("Variational 
Autoencoders") 

OR 
("Variational Auto-
encoder") 

OR ("XLNet") OR 
("BART") OR 
("GLaM") OR 

("LaMDA") OR 
("PaLM") OR 
("YaLM") OR 

("LLaMA") OR 
(“Gemini”) OR 
(“Mistral”) OR 

(“Mixtral”) OR 
("LLaMA") OR 
(“Med-PaLM”) OR 

(“Med-LLM”)) 
 
 

('generative ai':ab OR 
'generative artificial 

intelligence':ab OR 'large 
language':ab OR 'gpt':ab 
OR 'generative 

adversarial':ab OR 'gan':ab 
OR 'gans':ab OR 'bard':ab 
OR 'stable diffusion':ab OR 
'midjourney':ab OR 'dall-

e':ab OR 'variational 
autoencoder':ab OR 
'variational auto-

encoder':ab OR 'language 
model':ab OR 'machine 
learning':ab OR 'deep 

learning':ab OR 'artificial 
intelligence':ab OR 
'xlnet':ab OR 'bart':ab OR 

'glam':ab OR 'lamda':ab 
OR 'palm':ab OR 'yalm':ab 
OR 'llama':ab OR “gemini” 

OR “mistral” OR “mixtral” 
OR “LLaMa” OR “med-
PaLM” OR “Med-LLM”)  

TITLE-ABS-
KEY("Generative AI "OR 

"Generative artificial 
intelligence "OR "Large 
language"OR "GPT-* 

"OR "Variational 
Autoencoder” OR 
"generative adversarial" 
OR "GAN "OR "GANs" 

OR "bard "OR "stable 
diffusion "OR 
"midjourney "OR "dall-e 

"OR "Variational 
Autoencoders "OR 
"Variational Auto-

encoder "OR "Variational 
Auto-encoders "OR 
"Variational Auto 

encoder "OR "Variational 
Auto encoders" OR  
"XLNet" OR 

"BART"OR 
"GLaM" OR 
"LaMDA" OR 

"PaLM" OR 
"YaLM" OR 
"LLaMA" OR “Gemini” 

OR “Mistral” OR 
“Mixtral” OR "LLaMA"  
OR “Med-PaLM” OR 

“Med-LLM”) 
 
 

 AND AND AND AND 

Adverse 

Drug 
Reactions 
(ADRs) 

"Pharmacovigilence"[Mesh] 

OR "Incident reporting 
[tiab]" OR "Adverse Drug 
Reaction Reporting 

Systems"[Mesh] OR 
"pharmacovigilance" [tiab] 
OR "Drug toxicit*"[tiab] OR 

"Side effect"[tiab] OR 
"Adverse drug event*"[tiab] 
OR "Adverse drug 

reaction*"[tiab] OR "Drug-
Related Side Effects and 
Adverse Reactions"[Mesh] 

OR "Overdose*"[tiab] OR 
"Drug overdose"[MeSH] 
OR 

"Contraindication*"[tiab] 
OR "Poison*"[tiab] OR 
"Drug Eruptions"[Mesh] OR 
"Drug 

Hypersensitivity"[Mesh] OR 
"Drug Hypersensitivity 
Syndrome"[Mesh] OR 

"drug reaction*"[tiab] OR 
"adverse drug*"[tiab] OR 
"drug hypersensitivit*"[tiab] 

TITLE-ABS-KEY 

"Pharmacovigilance" 
OR "Drug Incident 
reporting" OR 

"Adverse Drug 
Reaction Reporting" 
OR "Drug Side 

effect" OR "Adverse 
drug event" OR 
"Adverse drug 

reaction" OR 
"Contraindication" 
OR "Drug Eruption" 

OR "Drug 
Hypersensitivity" 

TS=(("Pharmacovigilance") 

OR ("Drug Incident 
reporting") OR ("Adverse 
Drug Reaction Reporting") 

OR ("Drug Side effect") 
OR ("Adverse drug event") 
OR ("Adverse drug 

reaction") OR 
("Contraindication") OR 
("Drug Eruption") OR 

("Drug Hypersensitivity")) 

pharmacovigilance':ab 

OR 'adverse drug 
reaction':ab OR 
'hypersensitivity':ab 
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Drug 
Interactions  

"Drug Interactions"[Mesh] 
OR drug interaction*[tiab] 

OR pharmacokinetic 
interactions[tiab] OR 
pharmacodynamic 

interactions[tiab]) 

TITLE-ABS-KEY 
"Drug Interaction” 

OR 
“Pharmacokinetic 
interaction” OR 

“pharmacodynamic 
interactions” OR 
“Drug-Drug 

Interaction”  

TS=(("Drug Interaction”) 
OR (“Pharmacokinetic 

interaction”) OR 
(“pharmacodynamic 
interactions”) OR (“Drug-

Drug Interaction”)) 

(“drug interaction”:ab) 

Medication 
Use 
Process   

"Medication Errors"[Mesh] 
OR medication error*[tiab] 
OR "Prescription 

Errors"[Mesh] OR 
prescribing errors[tiab] OR 
prescription errors[tiab] OR 

“Contraindications, 
Drug”[Mesh] OR “omission 
error[tiab]” OR “Medication 

Reconciliation”[Mesh] OR 
medication 
reconciliation[tiab] OR drug 

reconciliation[tiab] OR 
“Polypharmacy” [Mesh] OR 
“deprescribing” [Mesh] OR 

“deprescribe*[tiab] OR 
dispensing error[tiab] OR 
administration error[tiab] 

OR transcribing error[tiab] 
OR transcription error[tiab]  

TITLE-ABS-KEY 
"Medication Error” 
OR "Prescription 

Errors" OR 
“Contraindications” 
OR “Medication 

Reconciliation” OR 
“Polypharmacy” OR 
“Deprescribing” OR 

“Dispensing error” 
OR “Administration 
error” OR 

“transcription error”   

TS=(("Medication Error”) 
OR  
("Prescription Error") OR 

(“Prescribing Error”) OR  
(“Contraindications”) OR 
(“Medication 

Reconciliation”) OR 
(“Polypharmacy”) OR 
(“Deprescribing”) OR 

(“Dispensing error”) OR 
(“Administration error”) OR 
(“transcription error”)) 

(“Medication error”:ab) 
OR (“deprescription”:ab) 
OR “(transcription 

error”:ab) 
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Patient 
Compliance 

/ 
Adherence  

“Medication 
adherence”[Mesh] OR 

adherence[tiab] OR 
“Patient compliance”[Mesh] 
OR Medication 

persistence[tiab] OR drug 
persistence[tiab] OR drug 
adherence[tiab] OR drug 

compliance[tiab] OR 
“treatment refusal”[Mesh] 
OR remote monitoring[tiab] 

OR remote sensing[tiab] 

TITLE-ABS-KEY 
“Medication 

adherence” OR 
“Medication 
compliance” OR 

Medication 
persistence”  

TS=((“Medication 
adherence”) OR 

(“Medication compliance”) 
OR (“Medication 
persistence”))  

(“medication 
compliance”:ab)  

Patient / 
HCP 

Education  

“Patient education as 
topic”[Mesh] OR 

medication 
counselling[tiab] OR drug 
counselling[tiab] OR 

“health education”[Mesh] 
OR patient interview[tiab] 

TITLE-ABS-KEY 
“Patient education” 

OR “Medication 
counselling” OR 
“Drug counselling” 

OR “health 
education” OR 
“patient interview” 

TS=((“Patient education”) 
OR (“Medication 

counselling”) OR (“Drug 
counselling”) OR (“health 
education”) OR (“patient 

interview”)) 

((“patient education”) 
AND ((“drug therapy”) 

OR “prescription”)) 
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Supplement IV - Data abstraction variables  
 

Article Details  Title  
Author List  
Year of Publication  
Journal  

Study Characteristics  Study design (Model development, observational, review)  
Dataset characteristics (source e.g. electronic health records, online 
database, sample size, image or structured data or unstructured 
data) 
Patient group (specific disease state, medication class, public health)  
Comparator (control group) if any  

AI model details  Type of model used (including tools used, software or specific 
algorithms)  
Model application (classification, prediction, decision support)  

Application area and setting  Medication use process setting (ambulatory, inpatient, clinical trial)  
Safety domain (ADR, drug interaction etc)  
Mode of model implementation (trailed or proposed) (autonomous, 
hybrid or fully human in the loop)  

Outcome measures  Key performance metrics for AI model (Validation and external 
testing if any)  
Key outcome measure study (patient related outcome) if any  

Findings Reported model performance  
Reported patient outcome measure if any  
(reported values and confidence intervals or SD if any)  

Discussion  Challenges and limitations  

Others Any other relevant remakrs  
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