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Abstract 9 

Background 10 

Impaired brain glucose metabolism is a preclinical feature of neurodegenerative diseases such as 11 

Alzheimer’s disease (AD). Infections may promote AD-related pathology. Therefore, we investigated the 12 

interplay between infections and APOE4, a strong genetic risk factor for AD. 13 

Methods 14 

We analyzed data on 1,509 participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 15 

database using multivariate linear regression models. The outcomes were rank-16 

normalized hypometabolic convergence index (HCI), statistical regions of interest (SROI) for AD, and mild 17 

cognitive impairment (MCI). Marginal mean estimates for infections, stratified by APOE4 carrier status, 18 

were then computed.  19 

Results 20 

Prior infections were associated with greater HCI [β=0.15, 95% CI: 0.03, 0.27, p=0.01]. The combined 21 

effects of infections and APOE4 carriers on HCI levels were significantly greater than either variable 22 
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alone. Among APOE4 carriers, the estimated marginal mean was 0.62, rising to 0.77, with infections 23 

(p<0.001), indicating an interaction effect. Carriers with multiple infections showed greater 24 

hypometabolism (higher HCI), with an estimate of 0.44 (p=0.01) compared to 0.11 (p=0.08) for those 25 

with a single infection, revealing a dose-response relationship. The estimates for the association of 26 

infections with SROI AD and SROI MCI were β=-0.01 (p=0.02) and β=-0.01 (p=0.04), respectively. 27 

Conclusion 28 

Our findings suggest that infections and APOE4 jointly contribute to brain glucose hypometabolism and 29 

AD pathology, supporting a “multi-hit” mechanism in AD development. 30 

 31 
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1 Introduction 35 

Alzheimer's disease (AD) is a slowly developing neurodegenerative disorder that is clinically manifested 36 

as dementia.
1
 The current figure for the AD burden in older adults in the United States is 6.7 million, and 37 

it is poised to rise to 13.8 million by 2060.
2
 The preclinical stage of AD can last many years without 38 

obvious signs of dementia.
3
 It is crucial to better understand this preclinical stage to develop successful 39 

AD prevention.
4
 Common preclinical features of AD include toxic protein depositions, neuronal 40 

apoptosis, and reduction in hippocampal volume (brain shrinkage), and brain glucose 41 

hypometabolism.
5,6

 The brain glucose hypometabolism is observed long before the occurrence of overt 42 

symptoms in AD and is partly due to mitochondrial dysfunction.
7
  Measuring glucose utilization in the 43 

brain using positron emission tomography (PET) and 18F-fluorodeoxyglucose (FDG) allows for 44 

convenient examination of hypometabolic patterns in the brain.
8 

Brain scans based on FDG PET can 45 
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effectively detect around 90% of AD-specific metabolic patterns, such as those in the parieto-temporal, 46 

frontal, and posterior cingulate regions.
9 

47 

A large genetic component drives AD (60-80%), and the entire spectrum of the disease can develop over  48 

15-25 years.
10  

Genetic variations in the APOE gene could single-handedly account for a large part of the 49 

risk related to AD in old age.
11 

On the other hand, addressing modifiable risk factors could reduce or 50 

delay up to 40% of dementia risk.
12 

Therefore, by focusing on the modifiable risk factors, a substantial 51 

part of the AD burden could be alleviated at the population level.
13 

Prevention of certain infections can 52 

reduce the risk of chronic diseases, including neurological deficits.
14–16

 Accumulating evidence suggests 53 

that infections could be a significant risk factor for AD that may also facilitate the development of AD 54 

pathology at the preclinical stage, though the exact mechanism is unclear and might involve a direct 55 

detrimental impact of infection-related factors as well as indirect effects of compromised immunity.
17–20

  56 

The connection between infections and AD and related pathology may also be influenced by genetic 57 

factors.
18,21,22

 There are also indications that infections can contribute to brain hypometabolism, one of 58 

the earliest features of AD pathology; however, research on this topic is scarce.
23

 Here we explore how 59 

infectious diseases may influence brain glucose metabolism in presence and absence of APOE4, the 60 

strongest genetic risk factor for AD, in participants of the Alzheimer’s Disease Neuroimaging Initiative 61 

(ADNI).   62 

 63 

2 Materials and Methods 64 

2.1 Study Population 65 

ADNI is a multi-center observational study that began in 2004 under the supervision of Michael W. 66 

Weiner. The study recruited individuals within the 55-90 years age range, and enrollment in this cohort 67 

occurs in different phases, with previous participants continuing to be in the study and new participants 68 
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being recruited. To compare and gain knowledge about dementia, this database maintains and updates 69 

demographic, phenotypic, biomarker, and genetic data gathered from participants with normal 70 

cognition, AD, and other forms of cognitive impairment. The availability of such a wide variety of 71 

biomarkers provides sufficient information to learn about the evolution and pathology driving AD.
24

 72 

More details regarding the study design and objectives can be accessed here 73 

(https://adni.loni.usc.edu/study-design/). Broadly, ADNI seeks to integrate information from 74 

biomarkers, cognitive measures, and brain scans to improve AD diagnosis and treatment.
25

  Brain scans 75 

were primarily collected to learn about the structural and metabolic functions of the brain, serving as a 76 

standard for differentiating the pathological changes seen in AD from those in normal aging.
26

  77 

2.2 Predictors: Infections and APOE4 78 

Prior infections were determined by combining information from medical history, baseline symptoms, 79 

initial health assessment, and adverse effects datasets. The details of the selected subset of infections 80 

included in the final dataset are illustrated in Supplementary Fig 1. Medical history information was 81 

collected during the screening visit using a questionnaire. Non-harmonious disease names were 82 

uniformly labeled for analytical purposes. Duplicated participant information having the same infection 83 

and diagnosis date, as well as any infections lacking a diagnosis date, were subsequently excluded. 84 

Covariates such as age, sex, education, race, marriage status, and APOE4 information were retrieved 85 

from the ADNIMERGE file.  86 

The APOE4 carrier status was identified from DNA extracted by Cogenics from a 3 ml aliquot of EDTA 87 

blood extracted from participants during their screening visit.
27

 Anti-diabetic medications were 88 

extracted (list provided in the S2 File) using the Anatomical Therapeutic Chemical (ATC) classification 89 

system coding (https://www.who.int/tools/atc-ddd-toolkit/atc-classification). Information regarding 90 
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smoking and alcohol usage was obtained from the medical history file. Finally, we retained infections 91 

that only preceded the HCI measurements.  92 

2.3 Outcomes: Brain glucose hypometabolism, AD, and MCI  93 

Multiple PET scanners were used to capture brain images based on a standard protocol.
28

 Measures 94 

were taken to correct for the related discrepancies.
29

 The details regarding the PET scan and related 95 

protocols can be viewed elsewhere (https://adni.loni.usc.edu/methods/pet-analysis-method/pet-96 

analysis/).  The generated raw PET data are centrally stored at the Laboratory of Neuroimaging (LONI) at 97 

the USC Mark and Mary Stevens Neuroimaging and Informatics Institute of the University of California.
30

  98 

We retrieved the processed study outcomes from the BAIPETNMRCFDG dataset 99 

(https://adni.bitbucket.io/reference/baipetnmrc.html). The main outcome of interest was the 100 

hypometabolic convergence index (HCI), developed to reflect AD-specific hypometabolism across 101 

regions of the brain by computing voxel-wise z-scores from FDG-PET brain images. Higher HCI values 102 

correspond to lower levels of metabolism in the brain.
31

  103 

Additionally, we examined the associations for infections with statistical regions of interest (SROI) 104 

corresponding to AD and Mild Cognitive Impairment (MCI). SROI associations might provide additional 105 

insights into the cerebral metabolic rate for glucose (CMRgl) decline in these brain regions, helping to 106 

understand the disease-specific pathology they represent.
32

 The Statistical Parametric Mapping (SPM) 107 

software was used to generate the HCI and SROI scores.
32,33

 The work of Landau et al. provides further 108 

details on the generation and development of regions of interest in the ADNI cohort.
34

 A decline in FDG-109 

PET Region of Interest (ROI) values suggests a pathological brain damage and may contribute to the 110 

progression of dementia.
33

  111 

2.4 Statistical Analysis  112 
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R version 4.3.2 was used for the data linking and statistical analysis.
35

  We analyzed the dataset with full 113 

covariate and outcome information, without performing any imputations. The ggplot2 package was 114 

used to create variable distribution plots.
36

 The leptokurtic HCI readings were normalized during the 115 

RNomni package.
37

 Multivariate linear regression models were conducted for all specified outcomes 116 

separately. Age, education, and allele dosages of APOE ε4   were analyzed as continuous variables. 117 

Infections, AD, and diabetes medications were coded as a binary variable (yes or no). Marriage, smoking, 118 

and alcohol use were coded as Ever or Never. We explored models with a full set and a reduced set of 119 

covariates. The parsimonious model (the best explanatory model) was determined using the Akaike 120 

Information Criterion (AIC) in the MuMin package.
38

 A two-sided p-value less than 0.05 was considered 121 

to support our hypothesis.  122 

A Random Forest-based model was used to rank the significant variables according to their contributions 123 

to the best model.
39

 The effect modification for infections with HCI by APOE4 carrier status was assessed 124 

by visualizing with the rockchalk package.
40

 Marginal mean estimates were calculated to show the 125 

interaction effects for the infections across categories of APOE4 and sex.  126 

2.5 Ethics Approval 127 

The Institutional Review Board of Duke University Health System issued approval for this study (Protocol 128 

IDs Pro00109279 and Pro00105389). This publication includes only secondary analyses of existing data 129 

available from ADNI, and does not include identifiable human data. Written informed consent for ADNI 130 

participants was obtained by the ADNI in accordance with the local legislation and ADNI requirements. 131 

ADNI studies follow Good Clinical Practices guidelines, the Declaration of Helsinki, and United States 132 

regulations (U.S. 21 CFR Part 50 and Part 56).  133 

 134 

3 Results 135 
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3.1 Participant Characteristics 136 

The final sample included information on 1,509 participants after data linking (Supplementary Fig 2). As 137 

shown in Table 1, the average age among participants was 73.3 years, with an average education 138 

duration of 16.0 years (IQR 14.0-18.0). Over 96% of respondents reported being ever married, and 55.8% 139 

were males. There was a relatively lower representation of non-white individuals, totaling 116 (7.6%) in 140 

the sample. Percentage of individuals with a history of smoking and alcohol use was 27.1% and 3.3%, 141 

respectively. Of these, 215 individuals accounting for 14.2% of the total sample size, reported having 142 

infections. The median interval between biomarker assessment and infections was 8.4 (IQR: 3.5 - 28.3). 143 

Median HCI was 12.59, and the IQR was 8.4 - 19.3.  144 

Fig 1 shows the distributions of the original HCI and rank-normalized HCI and also a scatterplot of their 145 

relationship. For AD and MCI participants, the mean SROI values were 1.15 and 1.03, respectively. About 146 

3% of participants with diabetes were on medication, and 18.3% had an AD diagnosis. Peptic ulcer 147 

disease (PUD) (n=152), urinary tract infection (UTI) (n=146), and pneumonia (n=102) were the most 148 

frequent among the selected infections. Supplementary Fig 3 shows the difference in the distribution of 149 

HCI values for individuals with infections, AD, and APOE4. The median HCI value among individuals with 150 

infections was 13.64, while it was lower (12.48) for those without infections. It was also seen that the 151 

HCI had a modest positive correlation with APOE4 (Supplementary Fig 4). 152 

 153 

Table 1. Demographic and clinical characteristics of the study population 154 

Variable Mean/Median /Frequency SD/IQR Range 

Age (Years)
 #
 73.3 7.2 55.0-91.4 

Male (%) 843 (55.8%)   

Education (Years)
 #
                      16.0 14.0-18.0 4.0-20.0 
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Marriage Status    

Ever                                             1455 (96.4%)   

Never                                            54 (3.5%)   

Race    

White                                             1393 (92.3%)   

 Other                                             116 (7.6%)   

Smoking (Ever) 409 (27.1%)   

Alcohol (Ever) 50 (3.3%)   

Infections (Yes) 215 (14.2%)   

Time duration (Years)
 #@

  8.4 3.5-28.3 0.03-86.7 

HCI
 #

 12.59                         8.4-19.3 2.3-55.2 

SROI AD 1.15 0.08 0.8-1.38 

SROI MCI 1.03 0.10 0.7-1.35 

APOE4
$
    

0 813 (53.8%)   

1 544 (36.0%)   

2 152 (10.0%)   

Diabetes (Yes) 43 (2.8%)   

AD  277 (18.3%)   

Note. Data are presented as mean ± standard deviation (SD) or percentage (%) for continuous and 

categorical variables, respectively;
 #

Variables with skewed distributions are presented as median and IQR. 
$ 

Frequencies in the analyzed sample. 
@

Time from Infection to HCI measurements. 

 155 
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 156 

Fig 1. Distribution of HCI and normalized HCI with scatterplot showing their relationship 157 

 158 

3.2 Association of Infections and Other Predictors with the HCI 159 

Supplementary Table 1 shows the regression estimates for all the predictors in the multivariate linear 160 

regression full model for HCI outcome. Marriage status, education, smoking, alcohol, and diabetes 161 

medication use were not significant predictors of HCI. Table 2 presents the results of the reduced model, 162 

which best describes the model variance. AD status predicted the strongest reduction in brain 163 

metabolism [β = 1.04, 95% CI 0.92-1.15, p<0.001], followed by age [β = 0.01, 95% CI 0.01-0.02, p<0.001] 164 

and APOE4 carrier status [β = 0.32, 0.25-0.38, p<0.001]. Higher variable relevance is indicated by higher 165 

values of %INCMSE and INCNodepurity (Supplementary Table 2). The regression coefficient for 166 

infections was 0.15 [95% CI 0.02- 0.27, p=0.01]. Males and white people were at higher risk of having 167 

elevated HCI values. Smoking history was the only non-significant predictor retained in the reduced 168 

model. The adjusted R-squared from the reduced model was 26.9%. Males had higher median HCI 169 

values.  170 
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In the sex-stratified analysis evaluating the effects of infections versus non-infections, males generally 171 

demonstrated relatively higher HCI values (Supplementary Table 3). The difference in normalized 172 

marginal means between all groups was statistically significant (p<0.001). The combined effects of 173 

infections and APOE4 carrier status on HCI levels are shown in Fig 2. This was significantly greater than 174 

the effects of either variable alone. Supplementary Table 4 clarifies these results. Specifically, for 175 

individuals without infections and APOE4 carrier status, the estimated marginal mean was 0.03 (p=0.53). 176 

However, this increased significantly to 0.18 (p<0.001) for APOE4 non-carriers in the presence of 177 

infections. Notably, among APOE4 carriers, the estimated marginal mean was substantially higher at 178 

0.62, and this value rose to 0.77 with infections (p<0.001), confirming an interaction between the two 179 

factors.  180 

This interaction was further demonstrated in the additional analysis (Supplementary Table 5 and Fig 3), 181 

indicating that carriers who experienced multiple infections exhibited greater hypometabolism. Among 182 

individuals with more than one prior infection (n=23), the estimate was significantly higher at 0.44 183 

(p=0.01) compared to those with a single infection, which was 0.11 (p=0.08), revealing a dose-response 184 

relationship. 185 

Table 2. Regression estimates for predictors in the reduced multivariate linear regression model for HCI 186 

outcome 187 

Variables Estimates 95% CI P 

AD (Yes)   1.04 0.92, 1.15 <0.001
***

 

APOE4 0.32 0.25, 0.38 <0.001
***

 

Age 0.01 0.01, 0.02 <0.001
***

 

Infections (Yes) 0.15 0.02, 0.27 0.01
*
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Race (White) 0.25 0.09, 0.42 0.002
**

 

Sex (Male) 0.17 0.09, 0.26 <0.001
***

 

Smoking (Yes) 0.08 -0.01, 0.18 0.085 

                      Note. 
*
p<0.05; 

**
p<0.01; 

***
p<0.001. 188 

 189 

 190 

                                          Fig 2. Joint effect of APOE4 and history of infections on HCI 191 

 192 

 193 

 194 
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 195 

                  Fig 3. Brain hypometabolism by APOE4 carrier status and frequency of infections  196 

 197 

3.3 Association of Infections and Other Predictors with the SROI AD 198 

Supplementary Table 6 provides regression estimates for all the factors investigated for SROI AD. 199 

Marriage, race, smoking, and alcohol history were not significant predictors of AD-specific 200 

hypometabolism. In the reduced model shown in Table 3, AD was associated with increased region-201 

specific hypometabolism (regression coefficient: -0.08, p<0.001). The use of diabetes medications was 202 

associated with decreased brain metabolism (-0.03, p=0.02). Similar to previous regression, an increase 203 

in APOE4 alleles was a strong risk factor for hypometabolism (-0.02, p<0.001). Male gender showed 204 

greater hypometabolism (-0.01, p<0.01). Although education was linked to a better metabolic pattern, 205 

this relationship was not profound. Age-specific decreases were not as notable as those observed in HCI 206 
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(-0.003, p<0.001). While statistically significant, the effect estimate for previous infections was lower for 207 

AD (-0.01, p=0.02). These variables collectively predicted 26.8% of the variance in SROI AD. 208 

Table 3. Regression estimates for predictors in the reduced multivariate linear regression model for SROI 209 

AD outcome 210 

Variables Estimates 95% CI P 

AD (Yes)   -0.08 -0.09, -0.07 <0.001
***

 

APOE4 -0.02 -0.03, -0.02 <0.001
***

 

Age -0.003 -0.003, -0.002 <0.001
***

 

Diabetes Medication -0.03 -0.05, -0.004 0.02
*
 

Education 0.001 0.00, 0.002 0.04
*
 

Infections (Yes) -0.01 -0.02, -0.001 0.02
*
 

Sex (Male) -0.01 -0.02, -0.003 0.00
**

 

Smoking (Yes) -0.01 -0.02, 0.001 0.11 

                      Note. 
*
p<0.05; 

**
p<0.01; 

***
p<0.001. 211 

 212 

3.4 Association of Infections and Other Predictors with the SROI MCI 213 

The results of the SROI MCI regression (full model) is presented in the Supplementary Table 7. Generally, 214 

the estimates were closer to the SROI AD than HCI. Among the variables that best explained the model 215 

(Table 4), AD, APOE4, and diabetes medications had the largest effect estimates.  216 

Sex and use of diabetic medications had a marginally greater impact on the MCI region than on the AD 217 

region. However, race and education were not identified as significant predictors. Infections were 218 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.13.24313582doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.13.24313582
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 

 

associated with a -0.01 reduction in regional metabolism (p=0.04). The percentage of variation explained 219 

by the model for the SROI MCI was also the highest (28.8%) of the three investigated outcomes.  220 

Table 4. Regression estimates for predictors in the reduced multivariate linear regression model for SROI 221 

MCI outcome 222 

Variables Estimates 95% CI P 

AD (Yes)   -0.09 -0.10, -0.08 <0.001
***

 

APOE4 -0.02 -0.03, -0.02 <0.001
***

 

Age -0.004 -0.01, -0.003 <0.001
***

 

Diabetes Medication (Yes) -0.04 -0.06, -0.01 0.01
**

 

Infections (Yes) -0.01 -0.03, -0.0005 0.04
*
 

Sex (Male) -0.02 -0.03, -0.01 <0.001
***

 

Smoking (Yes) -0.01 -0.02, 0.003 0.15 

                    Note. 
*
p<0.05; 

**
p<0.01; 

***
p<0.001. 223 

 224 

4 Discussion 225 

Results of our study suggest that infections and APOE4 can jointly significantly affect brain glucose 226 

metabolism, specifically promote hypometabolism, as measured by the increased values of HCI. A 227 

history of infections in this ADNI sample corresponds to a greater hypometabolism, specifically a 0.15 228 

unit increase in rank normalized HCI. However, this estimate rose to 0.44 in the presence of multiple 229 

infections. Model inclusion of established confounders such as age, sex, race, and education did not 230 

diminish these findings. We also adjusted for AD status, which was more prevalent in the group with no 231 
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infections and associated with reduced brain metabolism. Adjusting for AD status and APOE4 was 232 

necessary to reveal the genuine association of previous infections. Additionally, previous infections were 233 

significantly associated with regional brain metabolism specific to AD and MCI in our data.  234 

Our findings agree with previous research suggesting that infections may negatively impact brain 235 

metabolism.
16,41–43

 Infectious diseases, including those addressed in this study, have been previously 236 

linked to AD in other data.
22,44–46

  Our recent paper that used Health and Retirement Study (HRS) data 237 

reported associations between AD and various infectious (viral, bacterial, fungal), suggesting that 238 

compromised immunity may play a role in AD etiology.
20

 The connection between infections and brain 239 

hypometabolism may also involve pathological immune responses. Some research provides indirect 240 

support to this idea by linking brain hypometabolism to microglia activation.
47–49

  241 

Determining the onset time of infection is a major challenge in AD research. Furthermore, the causal 242 

inferences are obscured by the fact that individuals with AD often grapple with a variety of infections 243 

due to declining immunity, leading to elevated antimicrobial markers.
16

  Pathogens have a high affinity 244 

to the central nervous system and brain tissue and could  affect cognition.
50

 Given that brain 245 

hypometabolism is an early sign of AD, our findings suggest that infections could potentially trigger this 246 

process.
51

 However, the progression of hypometabolism  may also depend upon the combination of 247 

other risk factors.
52

  Infections can affect the brain through multiple pathways, both directly and 248 

indirectly, particularly when the blood-brain barrier is breached.
53,54

 Infections propagated through the 249 

respiratory route can also reach the brain relatively easily.
50,55

 However, upon reaching the brain, 250 

different infectious agents employ their preferred mechanisms, such as latent activation and the 251 

initiation of inflammation, as seen in the case of the  Herpes virus.
56

  Pathogen invasion into the brain 252 

leads to chronic inflammation, which can compromise the blood-brain barrier.
42

 There are distinct 253 

differences in inflammatory pathways noted across specific pathogens.
19,57

 Age-related changes could 254 

exacerbate these pathological processes even further.
58

 Strom and colleagues have also demonstrated 255 
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that brain hypometabolism correlates with tau pathology and neurodegeneration in crucial dementia-256 

specific regions within the ADNI dataset.
59

 These mechanisms could potentially explain a significant 257 

portion of the biological processes leading up to hypometabolism. 258 

Studies on the relationship between APOE4 and brain metabolism have produced contrasting 259 

findings.
59–63

 In their recently published work, Fortea and colleagues found that simply being 260 

homozygous for APOE4 is sufficient, in most cases, to guarantee an AD diagnosis.
64

 In our analysis, the 261 

increase in APOE4 allele was associated with all three outcomes and showed compounding effects with 262 

infections and their burden. Even in patients with a single APOE4 variant, which is usually not considered 263 

a significant increase in risk compared to homozygous carriers, the presence of infections increases the 264 

risk of hypometabolism to nearly the same level as in homozygous APOE4 carriers. One possibility is that 265 

the observed effect is due to accelerated neuroinflammation arising from the presence of both risk 266 

factors.
65 

Risk factors for AD tend to cluster in individuals with APOE risk alleles, including a reduction in 267 

brain metabolism.
66

 Amyloid-beta and Tau deposition are higher in APOE4 carriers.
67

 APOE4 can also 268 

accelerate brain degeneration through non-overlapping pathways independent of amyloid deposition 269 

and Tau pathology.
68–70

 APOE4 alleles both promote and resist infections, depending on the type of 270 

infection.
71

 Researchers suggest that APOE4 polymorphisms result in increased lipid production
72

 and 271 

blood-brain barrier loss
73

, which could facilitate a conducive environment for pathogens.
74

 Supporting 272 

evidence from the Northern Manhattan Study showed that the effect-modifying relationship between 273 

APOE4 and infectious burden was correlated with decreased cognition.
75 

The influence of APOE4 on AD 274 

remains incompletely understood, although it is known to engage in intricate interactions with other risk 275 

factors for AD, such as age.
76,77

 However, in stark contrast to these findings, a study reported that the 276 

effects of APOE4 on cognition are AD-specific. It singles out the cause of cognitive decline as the 277 

interaction between APOE4 and amyloid beta in the hippocampus.
78

  278 
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Our study revealed that diabetes medication was the third-biggest risk factor for AD and MCI-specific 279 

brain metabolism, but not for the HCI measure. Previous studies indeed demonstrated that diabetes 280 

increases the risk for MCI and AD.
79,80  

Individuals with diabetes and AD often share common biological 281 

pathways.
81

 Most prominent among these are low-grade chronic inflammation and insulin resistance.
82  

282 

Sex differences in mechanisms related to AD warrant in-depth study. Usually, females are susceptible to 283 

AD and early brain hypometabolism compared to males.
83,84

 On exposure to prior infections, women are 284 

also, particularly at higher risk for reduced hippocampal volume.
19 

Males overall had a higher HCI value 285 

than females in our sample. It is important to note that males with infections had a slightly higher mean 286 

age. But this alone cannot explain the gender difference. Importantly, there was no difference in the 287 

increase in marginal means due to infections for both sexes. An earlier study reported that brain 288 

hypometabolism increased in men after 70 years of age, while this was not seen in females in a normal 289 

brain.
85

 However, the applicability of this finding in the AD context needs confirmation. Some participant 290 

characteristics in ADNI may differ from the general population due to voluntary recruitment. Variations 291 

in the distribution of AD risk factors among genders might also contribute to this finding.
86,87 

292 

Given that AD is not curable, prevention stands as the most viable option at present. Vaccinations may 293 

potentially alleviate dementia risk. Influenza vaccines, in particular, are among the candidates 294 

demonstrating this preventive potential.
4,79 

However, personal genetics could play a role in determining 295 

the efficacy and effectiveness of vaccinations. Recent research has revealed that individuals carrying a 296 

polymorphism in the NECTIN2 gene exhibit a decreased susceptibility to AD when compared to non-297 

carriers, when receiving vaccinations for pneumonia and flu.
22

 298 

The availability of medical history information and longitudinally standardized FDG PET measurements 299 

were important strengths of our study.  We were also able to demonstrate the temporality of 300 

association, which was rarely described in earlier human studies.
88

 There were a couple of study 301 
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limitations. Of these, the most important is that the medical history is questionnaire-based, suggesting 302 

that recall bias may exist and lead to an incorrect exposure classification. Currently, the representation of 303 

high-risk groups, such as Afro-American and Hispanic individuals, is limited in the ADNI database, which 304 

has constrained the evaluation of the effect modification role of race in relation to infections and brain 305 

hypometabolism.
89

 In this work, we did not specifically explore the heterogeneity in infections and the 306 

brain metabolism relationship. However, previous AD studies indicate that there could be subgroups that 307 

may be differentially vulnerable.
90–92

 There may also be a cohort effect, wherein the frequency of 308 

infections observed within this group may not accurately fit the current disease landscape. We 309 

recommend validating the findings in large cohorts with robust information on prior infections. 310 

 311 

5 Conclusion 312 

This study found that infections and APOE4 jointly promoted brain glucose hypometabolism in older 313 

ADNI participants. In individuals with a history of infections who were also carriers of one APOE4 allele, 314 

the degree of brain glucose hypometabolism was nearly that seen in APOE4 homozygotes without prior 315 

infections.  We conclude that prior infections may contribute to AD pathology in synergy with APOE4, 316 

thus playing a part in the “multi-hit” mechanism of AD development. 317 

 318 

Data Availability 319 
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(adni.loni.usc.edu). The ADNI database contains anonymized patient information, making it a secure 321 

data repository.  322 

Funding 323 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.13.24313582doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.13.24313582
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 

 

This research was supported by the National Institutes of Health's National Institute on Aging (NIA/NIH) 324 

grants R01AG076019 and R01AG062623. This content is solely the responsibility of the authors and does 325 

not necessarily represent the official views of the NIA/NIH. 326 

 327 

Abbreviations 328 

AD Alzheimer’s disease 

AIC Akaike Information Criterion 

APOE Apolipoprotein E 

Aβ Amyloid βeta 

FDG 18F-fluorodeoxyglucose 

GxE Gene-environment interaction 

GWAS Genome-wide association studies 

HSV Herpes Simplex Virus 

%INCMSE Percent Increase in Mean Squared error 

IQR Interquartile Range 

PET Positron Emission Tomography 

pTau Phosphorylated Tau 

SD Standard Deviation 

SNP Single Nucleotide Polymorphism 

SROI Statistical Region of Interest 

NECTIN2 Nectin Cell Adhesion Molecule 2 (gene)  

PUD Peptic Ulcer Disease 

UTI Urinary Tract Infection 
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