1 APOE4 and Infectious Diseases Jointly Contribute to Brain Glucose Hypometabolism, a Biomarker of

2 Alzheimer's Pathology: New Findings from the ADNI

- 3 Aravind Lathika Rajendrakumar^{1*}, Konstantin G. Arbeev¹, Olivia Bagley¹, Matt Duan¹, Anatoliy I. Yashin¹,
- 4 Svetlana Ukraintseva^{1*}, for the Alzheimer's Disease Neuroimaging Initiative

5 Author's Affiliation

- 6 1. Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, North
- 7 Carolina, United States of America
- 8

9 Abstract

10 Background

11 Impaired brain glucose metabolism is a preclinical feature of neurodegenerative diseases such as

12 Alzheimer's disease (AD). Infections may promote AD-related pathology. Therefore, we investigated the

13 interplay between infections and *APOE4*, a strong genetic risk factor for AD.

14 Methods

15 We analyzed data on 1,509 participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) 16 database using multivariate linear regression models. The rankoutcomes were 17 normalized hypometabolic convergence index (HCI), statistical regions of interest (SROI) for AD, and mild 18 cognitive impairment (MCI). Marginal mean estimates for infections, stratified by APOE4 carrier status, 19 were then computed.

20 Results

21 Prior infections were associated with greater HCI [β =0.15, 95% CI: 0.03, 0.27, p=0.01]. The combined 22 effects of infections and *APOE4* carriers on HCI levels were significantly greater than either variable

alone. Among *APOE4* carriers, the estimated marginal mean was 0.62, rising to 0.77, with infections (p<0.001), indicating an interaction effect. Carriers with multiple infections showed greater hypometabolism (higher HCI), with an estimate of 0.44 (p=0.01) compared to 0.11 (p=0.08) for those with a single infection, revealing a dose-response relationship. The estimates for the association of infections with SROI AD and SROI MCI were β =-0.01 (p=0.02) and β =-0.01 (p=0.04), respectively.

28 Conclusion

- 29 Our findings suggest that infections and APOE4 jointly contribute to brain glucose hypometabolism and
- 30 AD pathology, supporting a "multi-hit" mechanism in AD development.
- 31

32 Keywords

Alzheimer's Disease, Infections, Hypometabolic Convergence Index, Statistical Regions of Interest,
 APOE4, Brain Hypometabolism

35 1 Introduction

36 Alzheimer's disease (AD) is a slowly developing neurodegenerative disorder that is clinically manifested 37 as dementia.¹ The current figure for the AD burden in older adults in the United States is 6.7 million, and it is poised to rise to 13.8 million by 2060.² The preclinical stage of AD can last many years without 38 39 obvious signs of dementia.³ It is crucial to better understand this preclinical stage to develop successful 40 AD prevention.⁴ Common preclinical features of AD include toxic protein depositions, neuronal 41 apoptosis, and reduction in hippocampal volume (brain shrinkage), and brain glucose hypometabolism.^{5,6} The brain glucose hypometabolism is observed long before the occurrence of overt 42 symptoms in AD and is partly due to mitochondrial dysfunction.⁷ Measuring glucose utilization in the 43 brain using positron emission tomography (PET) and 18F-fluorodeoxyglucose (FDG) allows for 44 convenient examination of hypometabolic patterns in the brain.⁸ Brain scans based on FDG PET can 45

46 effectively detect around 90% of AD-specific metabolic patterns, such as those in the parieto-temporal,

47 frontal, and posterior cingulate regions.⁹

48 A large genetic component drives AD (60-80%), and the entire spectrum of the disease can develop over 15-25 years.¹⁰ Genetic variations in the APOE gene could single-handedly account for a large part of the 49 risk related to AD in old age.¹¹ On the other hand, addressing modifiable risk factors could reduce or 50 delay up to 40% of dementia risk.¹² Therefore, by focusing on the modifiable risk factors, a substantial 51 part of the AD burden could be alleviated at the population level.¹³ Prevention of certain infections can 52 reduce the risk of chronic diseases, including neurological deficits.^{14–16} Accumulating evidence suggests 53 54 that infections could be a significant risk factor for AD that may also facilitate the development of AD 55 pathology at the preclinical stage, though the exact mechanism is unclear and might involve a direct detrimental impact of infection-related factors as well as indirect effects of compromised immunity.¹⁷⁻²⁰ 56

The connection between infections and AD and related pathology may also be influenced by genetic factors.^{18,21,22} There are also indications that infections can contribute to brain hypometabolism, one of the earliest features of AD pathology; however, research on this topic is scarce.²³ Here we explore how infectious diseases may influence brain glucose metabolism in presence and absence of *APOE4*, the strongest genetic risk factor for AD, in participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI).

63

64 2 Materials and Methods

65 2.1 Study Population

ADNI is a multi-center observational study that began in 2004 under the supervision of Michael W.
Weiner. The study recruited individuals within the 55-90 years age range, and enrollment in this cohort
occurs in different phases, with previous participants continuing to be in the study and new participants

69 being recruited. To compare and gain knowledge about dementia, this database maintains and updates 70 demographic, phenotypic, biomarker, and genetic data gathered from participants with normal 71 cognition, AD, and other forms of cognitive impairment. The availability of such a wide variety of 72 biomarkers provides sufficient information to learn about the evolution and pathology driving AD.²⁴

73 More details regarding the study design and objectives can accessed here be 74 (https://adni.loni.usc.edu/study-design/). Broadly, ADNI seeks to integrate information from biomarkers, cognitive measures, and brain scans to improve AD diagnosis and treatment.²⁵ Brain scans 75 76 were primarily collected to learn about the structural and metabolic functions of the brain, serving as a standard for differentiating the pathological changes seen in AD from those in normal aging.²⁶ 77

78 2.2 Predictors: Infections and APOE4

79 Prior infections were determined by combining information from medical history, baseline symptoms, 80 initial health assessment, and adverse effects datasets. The details of the selected subset of infections 81 included in the final dataset are illustrated in Supplementary Fig 1. Medical history information was 82 collected during the screening visit using a questionnaire. Non-harmonious disease names were 83 uniformly labeled for analytical purposes. Duplicated participant information having the same infection 84 and diagnosis date, as well as any infections lacking a diagnosis date, were subsequently excluded. 85 Covariates such as age, sex, education, race, marriage status, and APOE4 information were retrieved 86 from the ADNIMERGE file.

The *APOE4* carrier status was identified from DNA extracted by Cogenics from a 3 ml aliquot of EDTA blood extracted from participants during their screening visit.²⁷ Anti-diabetic medications were extracted (list provided in the S2 File) using the *Anatomical Therapeutic Chemical (ATC)* classification system coding (<u>https://www.who.int/tools/atc-ddd-toolkit/atc-classification</u>). Information regarding

91 smoking and alcohol usage was obtained from the medical history file. Finally, we retained infections
92 that only preceded the HCl measurements.

93 **2.3 Outcomes: Brain glucose hypometabolism, AD, and MCI**

Multiple PET scanners were used to capture brain images based on a standard protocol.²⁸ Measures were taken to correct for the related discrepancies.²⁹ The details regarding the PET scan and related protocols can be viewed elsewhere (<u>https://adni.loni.usc.edu/methods/pet-analysis-method/pet-</u> analysis/). The generated raw PET data are centrally stored at the Laboratory of Neuroimaging (LONI) at the USC Mark and Mary Stevens Neuroimaging and Informatics Institute of the University of California.³⁰

99 We retrieved BAIPETNMRCFDG the processed study outcomes from the dataset 100 (https://adni.bitbucket.io/reference/bajpetnmrc.html). The main outcome of interest was the 101 hypometabolic convergence index (HCI), developed to reflect AD-specific hypometabolism across 102 regions of the brain by computing voxel-wise z-scores from FDG-PET brain images. Higher HCI values correspond to lower levels of metabolism in the brain.³¹ 103

104 Additionally, we examined the associations for infections with statistical regions of interest (SROI) 105 corresponding to AD and Mild Cognitive Impairment (MCI). SROI associations might provide additional 106 insights into the cerebral metabolic rate for glucose (CMRgl) decline in these brain regions, helping to understand the disease-specific pathology they represent.³² The Statistical Parametric Mapping (SPM) 107 software was used to generate the HCI and SROI scores.^{32,33} The work of Landau et al. provides further 108 details on the generation and development of regions of interest in the ADNI cohort.³⁴ A decline in FDG-109 110 PET Region of Interest (ROI) values suggests a pathological brain damage and may contribute to the progression of dementia.³³ 111

112 2.4 Statistical Analysis

R version 4.3.2 was used for the data linking and statistical analysis.³⁵ We analyzed the dataset with full 113 114 covariate and outcome information, without performing any imputations. The *qqplot2* package was used to create variable distribution plots.³⁶ The leptokurtic HCl readings were normalized during the 115 RNomni package.³⁷ Multivariate linear regression models were conducted for all specified outcomes 116 117 separately. Age, education, and allele dosages of APOE $\varepsilon 4$ were analyzed as continuous variables. 118 Infections, AD, and diabetes medications were coded as a binary variable (yes or no). Marriage, smoking, 119 and alcohol use were coded as Ever or Never. We explored models with a full set and a reduced set of 120 covariates. The parsimonious model (the best explanatory model) was determined using the Akaike Information Criterion (AIC) in the *MuMin* package.³⁸ A two-sided p-value less than 0.05 was considered 121 122 to support our hypothesis.

A *Random Forest-based* model was used to rank the significant variables according to their contributions to the best model.³⁹ The effect modification for infections with HCI by *APOE4* carrier status was assessed by visualizing with the *rockchalk* package.⁴⁰ Marginal mean estimates were calculated to show the interaction effects for the infections across categories of *APOE4* and sex.

127 **2.5 Ethics Approval**

The Institutional Review Board of Duke University Health System issued approval for this study (Protocol IDs Pro00109279 and Pro00105389). This publication includes only secondary analyses of existing data available from ADNI, and does not include identifiable human data. Written informed consent for ADNI participants was obtained by the ADNI in accordance with the local legislation and ADNI requirements. ADNI studies follow Good Clinical Practices guidelines, the Declaration of Helsinki, and United States regulations (U.S. 21 CFR Part 50 and Part 56).

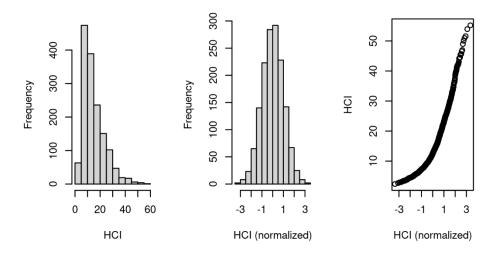
134

135 **3 Results**

136 **3.1 Participant Characteristics**

137 The final sample included information on 1,509 participants after data linking (Supplementary Fig 2). As shown in Table 1, the average age among participants was 73.3 years, with an average education 138 139 duration of 16.0 years (IQR 14.0-18.0). Over 96% of respondents reported being ever married, and 55.8% 140 were males. There was a relatively lower representation of non-white individuals, totaling 116 (7.6%) in 141 the sample. Percentage of individuals with a history of smoking and alcohol use was 27.1% and 3.3%, 142 respectively. Of these, 215 individuals accounting for 14.2% of the total sample size, reported having 143 infections. The median interval between biomarker assessment and infections was 8.4 (IQR: 3.5 - 28.3). Median HCl was 12.59, and the IQR was 8.4 - 19.3. 144 145 Fig 1 shows the distributions of the original HCI and rank-normalized HCI and also a scatterplot of their 146 relationship. For AD and MCI participants, the mean SROI values were 1.15 and 1.03, respectively. About 147 3% of participants with diabetes were on medication, and 18.3% had an AD diagnosis. Peptic ulcer 148 disease (PUD) (n=152), urinary tract infection (UTI) (n=146), and pneumonia (n=102) were the most 149 frequent among the selected infections. Supplementary Fig 3 shows the difference in the distribution of 150 HCl values for individuals with infections, AD, and APOE4. The median HCl value among individuals with 151 infections was 13.64, while it was lower (12.48) for those without infections. It was also seen that the 152 HCI had a modest positive correlation with APOE4 (Supplementary Fig 4).

153


154 Table 1. Demographic and clinical characteristics of the study population

Variable	Mean/Median /Frequency	SD/IQR	Range
Age (Years) [#]	73.3	7.2	55.0-91.4
Male (%)	843 (55.8%)		
Education (Years) [#]	16.0	14.0-18.0	4.0-20.0

Marriage Status

Ever	1455 (96.4%)		
Never	54 (3.5%)		
Race			
White	1393 (92.3%)		
Other	116 (7.6%)		
Smoking (Ever)	409 (27.1%)		
Alcohol (Ever)	50 (3.3%)		
Infections (Yes)	215 (14.2%)		
Time duration (Years) ^{#@}	8.4	3.5-28.3	0.03-86.7
HCI [#]	12.59	8.4-19.3	2.3-55.2
SROI AD	1.15	0.08	0.8-1.38
SROI MCI	1.03	0.10	0.7-1.35
APOE4 ^{\$}			
0	813 (53.8%)		
1	544 (36.0%)		
2	152 (10.0%)		
Diabetes (Yes)	43 (2.8%)		
AD	277 (18.3%)		

Note. Data are presented as mean ± standard deviation (SD) or percentage (%) for continuous and categorical variables, respectively; [#]Variables with skewed distributions are presented as median and IQR. ^{\$} Frequencies in the analyzed sample. [@]Time from Infection to HCI measurements.

157 **Fig 1.** Distribution of HCI and normalized HCI with scatterplot showing their relationship

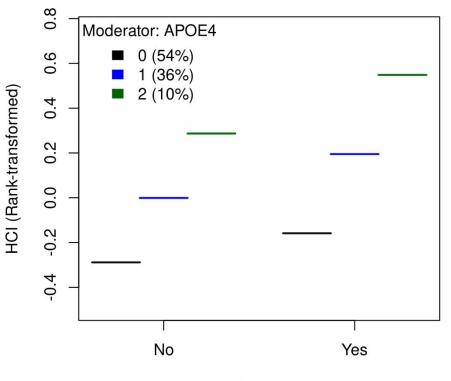
158

3.2 Association of Infections and Other Predictors with the HCI

160 Supplementary Table 1 shows the regression estimates for all the predictors in the multivariate linear 161 regression full model for HCI outcome. Marriage status, education, smoking, alcohol, and diabetes 162 medication use were not significant predictors of HCI. Table 2 presents the results of the reduced model, 163 which best describes the model variance. AD status predicted the strongest reduction in brain 164 metabolism [β = 1.04, 95% Cl 0.92-1.15, p<0.001], followed by age [β = 0.01, 95% Cl 0.01-0.02, p<0.001] 165 and APOE4 carrier status [β = 0.32, 0.25-0.38, p<0.001]. Higher variable relevance is indicated by higher 166 values of %INCMSE and INCNodepurity (Supplementary Table 2). The regression coefficient for 167 infections was 0.15 [95% Cl 0.02- 0.27, p=0.01]. Males and white people were at higher risk of having 168 elevated HCI values. Smoking history was the only non-significant predictor retained in the reduced 169 model. The adjusted R-squared from the reduced model was 26.9%. Males had higher median HCI 170 values.

171 In the sex-stratified analysis evaluating the effects of infections versus non-infections, males generally 172 demonstrated relatively higher HCl values (Supplementary Table 3). The difference in normalized 173 marginal means between all groups was statistically significant (p<0.001). The combined effects of 174 infections and APOE4 carrier status on HCI levels are shown in Fig 2. This was significantly greater than 175 the effects of either variable alone. Supplementary Table 4 clarifies these results. Specifically, for 176 individuals without infections and APOE4 carrier status, the estimated marginal mean was 0.03 (p=0.53). 177 However, this increased significantly to 0.18 (p<0.001) for APOE4 non-carriers in the presence of 178 infections. Notably, among APOE4 carriers, the estimated marginal mean was substantially higher at 179 0.62, and this value rose to 0.77 with infections (p<0.001), confirming an interaction between the two 180 factors.

This interaction was further demonstrated in the additional analysis (Supplementary Table 5 and Fig 3), indicating that carriers who experienced multiple infections exhibited greater hypometabolism. Among individuals with more than one prior infection (n=23), the estimate was significantly higher at 0.44 (p=0.01) compared to those with a single infection, which was 0.11 (p=0.08), revealing a dose-response relationship.


Table 2. Regression estimates for predictors in the reduced multivariate linear regression model for HCI
 outcome

Variables	Estimates	95% Cl	Р
AD (Yes)	1.04	0.92, 1.15	<0.001***
APOE4	0.32	0.25, 0.38	<0.001****
Age	0.01	0.01, 0.02	<0.001***
Infections (Yes)	0.15	0.02, 0.27	0.01*

Race (White)	0.25	0.09, 0.42	0.002**
Sex (Male)	0.17	0.09, 0.26	<0.001***
Smoking (Yes)	0.08	-0.01, 0.18	0.085
Note. *p<0.05; **p<0.01; *	**p<0.001.		

189

188

Infections

Fig 2. Joint effect of APOE4 and history of infections on HCI

193

192

195

196

Fig 3. Brain hypometabolism by APOE4 carrier status and frequency of infections

197

3.3 Association of Infections and Other Predictors with the SROI AD

199 Supplementary Table 6 provides regression estimates for all the factors investigated for SROI AD. 200 Marriage, race, smoking, and alcohol history were not significant predictors of AD-specific 201 hypometabolism. In the reduced model shown in Table 3, AD was associated with increased region-202 specific hypometabolism (regression coefficient: -0.08, p<0.001). The use of diabetes medications was 203 associated with decreased brain metabolism (-0.03, p=0.02). Similar to previous regression, an increase 204 in APOE4 alleles was a strong risk factor for hypometabolism (-0.02, p<0.001). Male gender showed 205 greater hypometabolism (-0.01, p<0.01). Although education was linked to a better metabolic pattern, 206 this relationship was not profound. Age-specific decreases were not as notable as those observed in HCI

- 207 (-0.003, p<0.001). While statistically significant, the effect estimate for previous infections was lower for
- AD (-0.01, p=0.02). These variables collectively predicted 26.8% of the variance in SROI AD.
- Table 3. Regression estimates for predictors in the reduced multivariate linear regression model for SROI
- 210 AD outcome

Estimates	95% Cl	Р
-0.08	-0.09, -0.07	<0.001***
-0.02	-0.03, -0.02	<0.001***
-0.003	-0.003, -0.002	<0.001***
-0.03	-0.05, -0.004	0.02*
0.001	0.00, 0.002	0.04*
-0.01	-0.02, -0.001	0.02*
-0.01	-0.02, -0.003	0.00**
-0.01	-0.02, 0.001	0.11
	-0.08 -0.02 -0.003 -0.03 0.001 -0.01 -0.01	-0.08 -0.09, -0.07 -0.02 -0.03, -0.02 -0.003 -0.003, -0.002 -0.03 -0.05, -0.004 0.001 0.00, 0.002 -0.01 -0.02, -0.003

211

Note. *p<0.05; **p<0.01; ***p<0.001.

212

213 **3.4 Association of Infections and Other Predictors with the SROI MCI**

The results of the SROI MCI regression (full model) is presented in the Supplementary Table 7. Generally, the estimates were closer to the SROI AD than HCI. Among the variables that best explained the model (Table 4), AD, *APOE4*, and diabetes medications had the largest effect estimates. Sex and use of diabetic medications had a marginally greater impact on the MCI region than on the AD region. However, race and education were not identified as significant predictors. Infections were

- associated with a -0.01 reduction in regional metabolism (p=0.04). The percentage of variation explained
- by the model for the SROI MCI was also the highest (28.8%) of the three investigated outcomes.
- Table 4. Regression estimates for predictors in the reduced multivariate linear regression model for SROI
- 222 MCI outcome

Estimates	95% Cl	Ρ
-0.09	-0.10, -0.08	<0.001***
-0.02	-0.03, -0.02	<0.001***
-0.004	-0.01, -0.003	<0.001***
-0.04	-0.06, -0.01	0.01**
-0.01	-0.03, -0.0005	0.04*
-0.02	-0.03, -0.01	<0.001***
-0.01	-0.02, 0.003	0.15
	-0.09 -0.02 -0.004 -0.04 -0.01 -0.02	-0.09 -0.10, -0.08 -0.02 -0.03, -0.02 -0.004 -0.01, -0.003 -0.04 -0.06, -0.01 -0.01 -0.03, -0.0005 -0.02 -0.03, -0.01

223

Note. *p<0.05; **p<0.01; ***p<0.001.

224

225 4 Discussion

Results of our study suggest that infections and *APOE4* can jointly significantly affect brain glucose metabolism, specifically promote hypometabolism, as measured by the increased values of HCI. A history of infections in this ADNI sample corresponds to a greater hypometabolism, specifically a 0.15 unit increase in rank normalized HCI. However, this estimate rose to 0.44 in the presence of multiple infections. Model inclusion of established confounders such as age, sex, race, and education did not diminish these findings. We also adjusted for AD status, which was more prevalent in the group with no

infections and associated with reduced brain metabolism. Adjusting for AD status and *APOE4* was necessary to reveal the genuine association of previous infections. Additionally, previous infections were significantly associated with regional brain metabolism specific to AD and MCI in our data.

Our findings agree with previous research suggesting that infections may negatively impact brain metabolism.^{16,41–43} Infectious diseases, including those addressed in this study, have been previously linked to AD in other data.^{22,44–46} Our recent paper that used Health and Retirement Study (HRS) data reported associations between AD and various infectious (viral, bacterial, fungal), suggesting that compromised immunity may play a role in AD etiology.²⁰ The connection between infections and brain hypometabolism may also involve pathological immune responses. Some research provides indirect support to this idea by linking brain hypometabolism to microglia activation.^{47–49}

242 Determining the onset time of infection is a major challenge in AD research. Furthermore, the causal 243 inferences are obscured by the fact that individuals with AD often grapple with a variety of infections due to declining immunity, leading to elevated antimicrobial markers.¹⁶ Pathogens have a high affinity 244 to the central nervous system and brain tissue and could affect cognition.⁵⁰ Given that brain 245 hypometabolism is an early sign of AD, our findings suggest that infections could potentially trigger this 246 process.⁵¹ However, the progression of hypometabolism may also depend upon the combination of 247 other risk factors.⁵² Infections can affect the brain through multiple pathways, both directly and 248 indirectly, particularly when the blood-brain barrier is breached.^{53,54} Infections propagated through the 249 respiratory route can also reach the brain relatively easily.^{50,55} However, upon reaching the brain, 250 different infectious agents employ their preferred mechanisms, such as latent activation and the 251 initiation of inflammation, as seen in the case of the Herpes virus.⁵⁶ Pathogen invasion into the brain 252 leads to chronic inflammation, which can compromise the blood-brain barrier.⁴² There are distinct 253 differences in inflammatory pathways noted across specific pathogens.^{19,57} Age-related changes could 254 exacerbate these pathological processes even further.⁵⁸ Strom and colleagues have also demonstrated 255

256 that brain hypometabolism correlates with tau pathology and neurodegeneration in crucial dementia-257 specific regions within the ADNI dataset.⁵⁹ These mechanisms could potentially explain a significant 258 portion of the biological processes leading up to hypometabolism.

259 Studies on the relationship between APOE4 and brain metabolism have produced contrasting findings.⁵⁹⁻⁶³ In their recently published work, Fortea and colleagues found that simply being 260 homozygous for APOE4 is sufficient, in most cases, to guarantee an AD diagnosis.⁶⁴ In our analysis, the 261 262 increase in APOE4 allele was associated with all three outcomes and showed compounding effects with 263 infections and their burden. Even in patients with a single APOE4 variant, which is usually not considered 264 a significant increase in risk compared to homozygous carriers, the presence of infections increases the 265 risk of hypometabolism to nearly the same level as in homozygous APOE4 carriers. One possibility is that 266 the observed effect is due to accelerated neuroinflammation arising from the presence of both risk factors.⁶⁵ Risk factors for AD tend to cluster in individuals with APOE risk alleles, including a reduction in 267 brain metabolism.⁶⁶ Amyloid-beta and Tau deposition are higher in APOE4 carriers.⁶⁷ APOE4 can also 268 269 accelerate brain degeneration through non-overlapping pathways independent of amyloid deposition and Tau pathology.^{68–70} APOE4 alleles both promote and resist infections, depending on the type of 270 271 infection.⁷¹ Researchers suggest that APOE4 polymorphisms result in increased lipid production⁷² and blood-brain barrier loss⁷³, which could facilitate a conducive environment for pathogens.⁷⁴ Supporting 272 273 evidence from the Northern Manhattan Study showed that the effect-modifying relationship between APOE4 and infectious burden was correlated with decreased cognition.⁷⁵ The influence of APOE4 on AD 274 275 remains incompletely understood, although it is known to engage in intricate interactions with other risk factors for AD, such as age.^{76,77} However, in stark contrast to these findings, a study reported that the 276 277 effects of APOE4 on cognition are AD-specific. It singles out the cause of cognitive decline as the interaction between APOE4 and amyloid beta in the hippocampus.⁷⁸ 278

Our study revealed that diabetes medication was the third-biggest risk factor for AD and MCI-specific brain metabolism, but not for the HCI measure. Previous studies indeed demonstrated that diabetes increases the risk for MCI and AD.^{79,80} Individuals with diabetes and AD often share common biological pathways.⁸¹ Most prominent among these are low-grade chronic inflammation and insulin resistance.⁸²

Sex differences in mechanisms related to AD warrant in-depth study. Usually, females are susceptible to 283 AD and early brain hypometabolism compared to males.^{83,84} On exposure to prior infections, women are 284 also, particularly at higher risk for reduced hippocampal volume.¹⁹ Males overall had a higher HCl value 285 286 than females in our sample. It is important to note that males with infections had a slightly higher mean 287 age. But this alone cannot explain the gender difference. Importantly, there was no difference in the 288 increase in marginal means due to infections for both sexes. An earlier study reported that brain 289 hypometabolism increased in men after 70 years of age, while this was not seen in females in a normal brain.⁸⁵ However, the applicability of this finding in the AD context needs confirmation. Some participant 290 291 characteristics in ADNI may differ from the general population due to voluntary recruitment. Variations in the distribution of AD risk factors among genders might also contribute to this finding.^{86,87} 292

Given that AD is not curable, prevention stands as the most viable option at present. Vaccinations may potentially alleviate dementia risk. Influenza vaccines, in particular, are among the candidates demonstrating this preventive potential.^{4,79} However, personal genetics could play a role in determining the efficacy and effectiveness of vaccinations. Recent research has revealed that individuals carrying a polymorphism in the *NECTIN2* gene exhibit a decreased susceptibility to AD when compared to noncarriers, when receiving vaccinations for pneumonia and flu.²²

The availability of medical history information and longitudinally standardized FDG PET measurements were important strengths of our study. We were also able to demonstrate the temporality of association, which was rarely described in earlier human studies.⁸⁸ There were a couple of study

302 limitations. Of these, the most important is that the medical history is questionnaire-based, suggesting 303 that recall bias may exist and lead to an incorrect exposure classification. Currently, the representation of 304 high-risk groups, such as Afro-American and Hispanic individuals, is limited in the ADNI database, which 305 has constrained the evaluation of the effect modification role of race in relation to infections and brain hypometabolism.⁸⁹ In this work, we did not specifically explore the heterogeneity in infections and the 306 307 brain metabolism relationship. However, previous AD studies indicate that there could be subgroups that may be differentially vulnerable.⁹⁰⁻⁹² There may also be a cohort effect, wherein the frequency of 308 309 infections observed within this group may not accurately fit the current disease landscape. We 310 recommend validating the findings in large cohorts with robust information on prior infections.

311

312 5 Conclusion

This study found that infections and *APOE4* jointly promoted brain glucose hypometabolism in older ADNI participants. In individuals with a history of infections who were also carriers of one *APOE4* allele, the degree of brain glucose hypometabolism was nearly that seen in *APOE4* homozygotes without prior infections. We conclude that prior infections may contribute to AD pathology in synergy with *APOE4*, thus playing a part in the "multi-hit" mechanism of AD development.

318

319 Data Availability

The data used in this manuscript were obtained from the publicly available ADNI database (adni.loni.usc.edu). The ADNI database contains anonymized patient information, making it a secure data repository.

323 Funding

- 324 This research was supported by the National Institutes of Health's National Institute on Aging (NIA/NIH)
- grants R01AG076019 and R01AG062623. This content is solely the responsibility of the authors and does
- 326 not necessarily represent the official views of the NIA/NIH.
- 327

328 Abbreviations

AD	Alzheimer's disease
AIC	Akaike Information Criterion
ΑΡΟΕ	Apolipoprotein E
Αβ	Amyloid βeta
FDG	18F-fluorodeoxyglucose
GxE	Gene-environment interaction
GWAS	Genome-wide association studies
HSV	Herpes Simplex Virus
%INCMSE	Percent Increase in Mean Squared error
IQR	Interquartile Range
PET	Positron Emission Tomography
pTau	Phosphorylated Tau
SD	Standard Deviation
SNP	Single Nucleotide Polymorphism
SROI	Statistical Region of Interest
NECTIN2	Nectin Cell Adhesion Molecule 2 (gene)
PUD	Peptic Ulcer Disease
UTI	Urinary Tract Infection

329

330 References

331	1.	Tupler L, Yashkin A, Hoque M, Yashin A, Akushevich I, Stallard E. differences in cognitive
332		decline due to Alzheimer's disease, neurodegenerative disorders, and trauma. Innov
333		Aging. 2023;7(Suppl 1):852.
334		
335	2.	2023 Alzheimer's disease facts and figures. Alzheimer's Dement. 2023;19:1598–695.
336		
337	3.	Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, et al. Preclinical
338		Alzheimer's disease: Definition, natural history, and diagnostic criteria. Alzheimers
339		Dement. 2016;12(3):323.
340		
341	4.	Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, et al.
342		Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in
343		neurally derived blood exosomes: A case-control study. Alzheimer's & Dementia.
344		2015;11(6):600-607.
345		
346	5.	Blázquez E, Hurtado-Carneiro V, LeBaut-Ayuso Y, Velázquez E, García-García L, Gómez-
347		Oliver F, et al. Significance of Brain Glucose Hypometabolism, Altered Insulin Signal
348		Transduction, and Insulin Resistance in Several Neurological Diseases. Front Endocrinol
349		(Lausanne). 2022;13(873301).

351	6.	Jack CR, Andrews JS, Beach TG, Buracchio T, Dunn B, Graf A, et al. Revised criteria for
352		diagnosis and staging of Alzheimer's disease. Nat Med. 2024;30(8):2121–4.
353		
354	7.	Atamna H, Frey WH. Mechanisms of mitochondrial dysfunction and energy deficiency in
355		Alzheimer's disease. Mitochondrion. 2007;7(5):297–310.
356		
357	8.	Herholz K. PET studies in dementia. Ann Nucl Med. 2003;17(2):79–89.
358		
359	9.	Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's
360		disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005;32(4):486-
361		510.
362		
363	10.	Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al.
364		Alzheimer's disease. Lancet. 2021;397(10284):1590.
365		
366	11.	Tanzi RE. The Genetics of Alzheimer Disease. Cold Spring Harb Perspect Med [Internet].
367		2012;2(10):a006296.
368		

369	12.	Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia
370		prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet.
371		2020;396(10248):446.
372		
373	13.	De La Torre JC. Alzheimer's disease is incurable but preventable. J Alzheimers Dis.
374		2010;20(3):70.
375		
376	14.	Grau AJ, Urbanek C, Palm F. Common infections and the risk of stroke. Nat Rev Neurol.
377		2010;6:681–94.
378		
379	15.	Mcmurry HS, Mendenhall E, Rajendrakumar A, Nambiar L, Satyanarayana S, Shivashankar
380		R. Coprevalence of type 2 diabetes mellitus and tuberculosis in low - income and middle -
381		income countries: A systematic review. Diabetes Metab Res Rev. 2019;35(2018).
382		
383	16.	Vigasova D, Nemergut M, Liskova B, Damborsky J. Multi-pathogen infections and
384		Alzheimer's disease. Microb Cell Fact. 2021;20(25).
385		
386	17.	Rippee-Brooks MD, Wu W, Dong J, Pappolla M, Fang X, Bao X. Viral Infections, Are They a
387		Trigger and Risk Factor of Alzheimer's Disease? Pathogens. 2024;13(3):240.
388		

389	18.	Paranjpe MD, Belonwu S, Wang JK, Oskotsky T, Gupta A, Taubes A, et al. Sex-Specific Cross
390		Tissue Meta-Analysis Identifies Immune Dysregulation in Women With Alzheimer's
391		Disease. Front Aging Neurosci. 2021;13(735611).
392		
393	19.	Popov VA, Ukraintseva S, Duan H, Arbeev KG, Yashin Al. Prior infections are associated
394		with smaller hippocampal volume in older women. Front Dement. 2024;3(2024).
395		
396	20.	Ukraintseva S, Yashkin AP, Akushevich I, Arbeev K, Duan H, Gorbunova G, et al.
397		Associations of infections and vaccines with Alzheimer's disease point to a role of
398		compromised immunity rather than specific pathogen in AD. Exp Gerontol. 2024;190.
399		
400	21.	Rajendrakumar L, Ukraintseva S, Arbeev KG, Bagley O, Yashin Al. The association between
401		rs6859 in NECTIN2 gene and Alzheimer's disease is partly mediated by pTau. Front Aging
402		Neurosc. 2024;16.
403		
404	22.	Ukraintseva S, Duan M, Simanek AM, Holmes R, Bagley O, Rajendrakumar AL, et al.
405		Vaccination Against Pneumonia May Provide Genotype-Specific Protection Against
406		Alzheimer's Disease. J Alzheimers Dis. 2023;96(2):499–505.
407		

40	8	23.	Hosp JA, Dressing A, Blazhenets G, Bormann T, Rau A, Schwabenland M, et al. Cognitive
40	9		impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19.
41	0		Brain. 2021;144(4):1263–76.
41	1		
41	2	24.	Weber CJ, Carrillo MC, Jagust W, Jack CR, Shaw LM, Trojanowski JQ, et al. The Worldwide
41	3		Alzheimer's Disease Neuroimaging Initiative: ADNI-3 updates and global perspectives.
41	4		Alzheimers Dement (N Y). 2021;7(1):e12226.
41	5		
41	6	25.	Ashford MT, Raman R, Miller G, Donohue MC, Okonkwo OC, Mindt MR, et al. Screening
41	7		and enrollment of underrepresented ethnocultural and educational populations in the
41	8		Alzheimer's Disease Neuroimaging Initiative (ADNI). Alzheimer's Dement. 2022;1–11.
41	9		
42	0	26.	Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, et al. Alzheimer's
42	1		Disease Neuroimaging Initiative (ADNI) Clinical characterization. Neurology. 2010;74:201-
42	2		9.
42	3		
42	4	27.	Sudre CH, Cardoso MJ, Frost C, Barnes J, Barkhof F, Fox N, et al. APOE ϵ 4 status is
42.	5		associated with white matter hyperintensities volume accumulation rate independent of
42	6		AD diagnosis. Neurobiol Aging. 2017;53:67–75.
42	7		

428	28.	Langbaum JBS, Chen K, Lee W, Reschke C, Bandy D, Fleisher AS, et al. Categorical and
429		correlational analyses of baseline fluorodeoxyglucose positron emission tomography
430		images from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Neuroimage.
431		2009;45(4):1116.
432		
433	29.	Jagust WJ, Bandy D, Chen K, Foster NL, Landau SM, Mathis CA, et al. The Alzheimer's
434		Disease Neuroimaging Initiative positron emission tomography core. Alzheimer's &
435		Dementia. 2010;6(3):221–9.
436		
437	30.	Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack C, Jagust W, et al. The Alzheimer's
438		Disease Neuroimaging Initiative. Neuroimaging Clin N Am. 2005;15(4):869-77.
439		
440	31.	Chen K, Ayutyanont N, Langbaum JBS, Fleisher AS, Reschke C, Lee W, et al. Characterizing
441		Alzheimer's disease using a hypometabolic convergence index. Neuroimage. 2011;56:52-
442		60.
443		
444	32.	Chen K, Langbaum JBS, Fleisher AS, Ayutyanont N, Reschke C, Lee W, et al. Twelve-month
445		metabolic declines in probable Alzheimer's disease and amnestic mild cognitive
446		impairment assessed using an empirically pre-defined statistical region-of-interest:
447		Findings from the Alzheimer's Disease Neuroimaging Initiative. Neuroimage.
448		2010;51(2):654–64.

450	33.	Ewers M, Brendel M, Rizk-Jackson A, Rominger A, Bartenstein P, Schuff N, et al. Reduced
451		FDG-PET brain metabolism and executive function predict clinical progression in elderly
452		healthy subjects. Neuroimage Clin. 2014;4:45–52.
453		
454	34.	Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM, Foster NL, et al. Associations
455		between cognitive, functional, and FDG-PET measures of decline in AD and MCI.
456		Neurobiol Aging. 2011:1207–18.
457		
458	35.	R Core Team. R: A language and environment for statistical computing. R Foundation for
459		Statistical Computing, Vienna, Austria [Internet]. 2021 [cited 2023 May 15]. Available
460		from: https://www.R-project.org/
461		
462	36.	Wickham H. ggplot2: Elegant Graphics for Data Analysis Using the Grammar of Graphics
463		[Internet]. Springer-Verlag New York; 2016. Available from: https://ggplot2.tidyverse.org.
464		
465	37.	McCaw Z. RNOmni: Rank Normal Transformation Omnibus Test [Internet]. 2020. Available
466		from: https://CRAN.R-project.org/package=RNOmni
467		
468	38.	Bartoń K. MuMIn: Multi-model inference [Internet]. Vol. 1, R package version 1.10.0.
469		2013. Available from: https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf

471	39.	Liaw A, Wiener M. Classification and Regression by randomForest. R News [Internet].
472		2002 [cited 2024 May 2];2(3):18–22. Available from: http://www.stat.berkeley.edu/
473		
474	40.	Johnson PE. Using rockchalk for Regression Analysis * [Internet]. 2017 [cited 2024 Apr 30].
475		Available from: http://cran.nexr.com/web/packages/rockchalk/vignettes/rockchalk.pdf
476		
477	41.	Ashraf GM, Tarasov V V, Makhmutova A, Chubarev VN, Avila-Rodriguez M, Bachurin SO, et
478		al. The Possibility of an Infectious Etiology of Alzheimer Disease. Mol Neurobiol.
479		2019;56:4479–91.
480		
481	42.	Shinjyo N, Kita K. Infection and Immunometabolism in the Central Nervous System: A
482		Possible Mechanistic Link Between Metabolic Imbalance and Dementia. Front Cell
483		Neurosci. 2021;15(765217).
484		
485	43.	Butler L, Walker KA. The Role of Chronic Infection in Alzheimer's Disease: Instigators, Co-
486		conspirators, or Bystanders? Curr Clin Micro Rpt. 2021;8:199–212.
487		
488	44.	Cairns DM, Itzhaki RF, Kaplan DL. Potential Involvement of Varicella Zoster Virus in
489		Alzheimer's Disease via Reactivation of Quiescent Herpes Simplex Virus Type 1. J
490		Alzheimers Dis. 2022;88(3):1189–200.

491

492	45.	Bukhbinder AS, Ling Y, Hasan O, Jiang X, Kim Y, Phelps KN, et al. Risk of Alzheimer's
493		Disease Following Influenza Vaccination: A Claims-Based Cohort Study Using Propensity
494		Score Matching. J Alzheimers Dis. 2022;88(3):1061–74.
495		
496	46.	Noori M, Mahboobi R, Nabavi-Rad A, Jamshidizadeh S, Fakharian F, Yadegar A, et al.
497		Helicobacter pylori infection contributes to the expression of Alzheimer's disease-
498		associated risk factors and neuroinflammation. Heliyon. 2023;9(9):e19607.
499		
500	47.	Tondo G, Boccalini C, Caminiti SP, Presotto L, Filippi M, Magnani G, et al. Brain
501		Metabolism and Microglia Activation in Mild Cognitive Impairment: A Combined [18F]FDG
502		and [11C]-(R)-PK11195 PET Study. J Alzheimers Dis. 2021;80(1):433–45.
503		
504	48.	Kadamani KL, Logan SM, Pamenter ME. Does hypometabolism constrain innate immune
505		defense? Acta Physiol. 2024;240:e14091.
506		
507	49.	Aldana Bl. Microglia-Specific Metabolic Changes in Neurodegeneration. J Mol Biol.
508		2019;431(9):1830–42.
509		

510	50.	Guedj E, Million M, Dudouet P, Tissot-Dupont H, Bregeon F, Cammilleri S, et al. 18F-FDG
511		brain PET hypometabolism in post-SARS-CoV-2 infection: substrate for persistent/delayed
512		disorders? Eur J Nucl Med Mol Imaging. 2021;48(2):592–5.
513		
514	51.	Zilberter Y, Zilberter M. The vicious circle of hypometabolism in neurodegenerative
515		diseases: Ways and mechanisms of metabolic correction. J Neurosci Res. 2017;95:2217-
516		35.
517		
518	52.	Yang Z, Cummings JL, Kinney JW, Cordes D. Accelerated hypometabolism with disease
519		progression associated with faster cognitive decline among amyloid positive patients.
520		Front Neurosci. 2023;17.
521		
522	53.	Sweeney MD, Sagare AP, Zlokovic B V. Blood-brain barrier breakdown in Alzheimer
523		disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–50.
524		
525	54.	Sochocka M, Zwolińska K, Leszek J. The Infectious Etiology of Alzheimer's Disease. Curr
526		Neuropharmacol. 2017;15(7):996–1009.
527		
528	55.	Wan D, Du T, Hong W, Chen L, Que H, Lu S, et al. Neurological complications and infection
529		mechanism of SARS-COV-2. Signal Transduct Target Ther. 2021;6(406).
530		

531	56.	Lövheim H, Gilthorpe J, Adolfsson R, Nilsson LG, Elgh F. Reactivated herpes simplex
532		infection increases the risk of Alzheimer's disease. Alzheimer's & Dementia.
533		2015;11(6):593–9.
534		
535	57.	Chhatbar C, Prinz M. The roles of microglia in viral encephalitis: from sensome to
536		therapeutic targeting. Cell Mol Immunol. 2021;18:250–8.
537		
538	58.	Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-brain
539		barrier breakdown in the aging human hippocampus. Neuron. 2015;85(2):296–302.
540		
541	59.	Strom A, laccarino L, Edwards L, Lesman-Segev OH, Soleimani-Meigooni DN, Pham J, et al.
542		Cortical hypometabolism reflects local atrophy and tau pathology in symptomatic
543		Alzheimer's disease. Brain. 2022;145(2):713–28.
544		
545	60.	Corder EH, Jelic V, Bosun H, Lannfelt L, Valind S, Winblad B, et al. No Difference in
546		Cerebral Glucose Metabolism in Patients With Alzheimer Disease and Differing
547		Apolipoprotein E Genotypes. Arch Neurol. 1997;54(3):273–7.
548		
549	61.	Rabinovici GD, Furst AJ, Alkalay A, Racine CA, O'Neil JP, Janabi M, et al. Increased
550		metabolic vulnerability in early-onset Alzheimer's disease is not related to amyloid
551		burden. Brain. 2010;133(2):512–28.

553	62.	Lehmann M, Ghosh PM, Madison C, Karydas A, Coppola G, O'Neil JP, et al. Greater medial
554		temporal hypometabolism and lower cortical amyloid burden in ApoE4-positive AD
555		patients. J Neurol Neurosurg Psychiatry. 2014;85(3):266–73.
556		
557	63.	Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, et al. Preclinical Evidence of
558		Alzheimer's Disease in Persons Homozygous for the ϵ 4 Allele for Apolipoprotein E. N Engl J
559		Med. 1996;334:752–8.
560		
561	64.	Fortea J, Pegueroles J, Alcolea D, Belbin O, Dols-Icardo O, Vaqué-Alcázar L, et al. APOE4
562		homozygozity represents a distinct genetic form of Alzheimer's disease. Nat Med.
563		2024;30:1284–91.
564		
565	65.	Finch CE, Morgan TE. Systemic Inflammation, Infection, ApoE Alleles, and Alzheimer
566		Disease: A Position Paper. Curr Alzheimer Res. 2007 ;4(5):185–9.
567		
568	66.	Duong MT, Nasrallah IM, Wolk DA, Chang CCY, Chang TY. Cholesterol, Atherosclerosis, and
569		APOE in Vascular Contributions to Cognitive Impairment and Dementia (VCID): Potential
570		Mechanisms and Therapy. Front Aging Neurosci. 2021;13(647990).
571		

572	67.	Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L,
573		Svensson M, et al. APOE in the bullseye of neurodegenerative diseases: impact of the
574		APOE genotype in Alzheimer's disease pathology and brain diseases. Mol
575		Neurodegeneration. 2022;17(62).
576		
577	68.	Farmer BC, Williams HC, Devanney NA, Piron MA, Nation GK, Carter DJ, et al. APOE4
578		lowers energy expenditure in females and impairs glucose oxidation by increasing flux
579		through aerobic glycolysis. Mol Neurodegener. 2021;16(1):62.
580		
581	69.	Calderón-Garcidueñas L, Hernández-Luna J, Aiello-Mora M, Brito-Aguilar R, Evelson PA,
582		Villarreal-Ríos R, et al. APOE Peripheral and Brain Impact: APOE4 Carriers Accelerate Their
583		Alzheimer Continuum and Have a High Risk of Suicide in PM2.5 Polluted Cities.
584		Biomolecules. 2023;13(6):927.
585		
586	70.	Sohn HY, Kim SI, Park JY, Park SH, Koh YH, Kim J, et al. ApoE4 attenuates autophagy via
587		FoxO3a repression in the brain. Sci Rep. 2021;11:17604.
588		
589	71.	Chen F, Ke Q, Wei W, Cui L, Wang Y. Apolipoprotein E and viral infection: Risks and
590		Mechanisms. Mol Ther Nucleic Acids. 2023;33:529–42.
591		

592	72.	Garcia AR, Finch C, Gatz M, Kraft T, Rodriguez DE, Cummings D, et al. Apoe4 is associated
593		with elevated blood lipids and lower levels of innate immune biomarkers in a tropical
594		amerindian subsistence population. Elife. 2021;10:e68231.
595		
596	73.	Raulin AC, Doss S V., Trottier ZA, Ikezu TC, Bu G, Liu CC. ApoE in Alzheimer's disease:
597		pathophysiology and therapeutic strategies. Mol Neurodegeneration. 2022;17(72).
598		
599	74.	Urosevic N, Martins RN. Infection and Alzheimer's disease: the APOE epsilon4 connection
600		and lipid metabolism. J Alzheimers Dis. 2008;13(4):35.
601		
602	75.	Zhao C, Strobino K, Moon YP, Cheung YK, Sacco RL, Stern Y, et al. APOE ϵ 4 modifies the
603		relationship between infectious burden and poor cognition. Neurol Genet. 2020;6(4):
604		e462.
605		
606	76.	Mosconi L, Herholz K, Prohovnik I, Nacmias B, Cristofaro MTR De, Fayyaz M, et al.
607		Metabolic interaction between ApoE genotype and onset age in Alzheimer's disease:
608		implications for brain reserve. Jour. 2005;76:15–23.
609		
610	77.	Khalifa KN. Effect of APOE e4 allele on age-related brain FDG-PET uptake in older
611		individuals at risk of dementia. Alzheimer's Dement. 2023;19:e067424.
612		

613	78.	Fernández A, Vaquero L, Bajo R, Zuluaga P, Weiner MW, Saykin AJ, et al. Apolipoprotein E
614		${f \Bbb P}$ 4–related effects on cognition are limited to the Alzheimer's disease spectrum.
615		Geroscience. 2022;44:195–209.
616		
617	79.	Li W, Risacher SL, Huang E, Saykin AJ. Type 2 diabetes mellitus is associated with brain
618		atrophy and hypometabolism in the ADNI cohort. Neurology. 2016;87(6):595–600.
619		
620	80.	Raut S, Bhalerao A, Powers M, Gonzalez M, Mancuso S, Cucullo L. Hypometabolism,
621		Alzheimer's Disease, and Possible Therapeutic Targets: An Overview. Cells.
622		2023;12(16):2019.
623		
624	81.	De La Monte SM, Wands JR. Alzheimer's Disease Is Type 3 Diabetes-Evidence Reviewed. J
625		Diabetes Sci Technol. 2008;2(6):1101–13.
626		
627	82.	Jayaraj RL, Azimullah S, Beiram R. Diabetes as a risk factor for Alzheimer's disease in the
628		Middle East and its shared pathological mediators. Saudi J Biol Sci. 2020;27(2):736–50.
629		
630	83.	Nebel RA, Aggarwal NT, Barnes LL, Gallagher A, Goldstein JM, Kantarci K, et al.
631		Understanding the impact of sex and gender in Alzheimer's disease: A call to action.
632		Alzheimer's and Dementia. 2018;14(9):1171–83.
633		

634	84.	Zhao L, Mao Z, Woody SK, Brinton RD. Sex differences in metabolic aging of the brain:
635		insights into female susceptibility to Alzheimer's disease. Neurobiol Aging. 2016;42:69–79.
636		
637	85.	Feng B, Cao J, Yu YP, Yang HY, Jiang YHY, Liu Y, et al. Gender-Related Differences in
638		Regional Cerebral Glucose Metabolism in Normal Aging Brain. Front Aging Neurosci.
639		2022;14.
640		
641	86.	Malpetti M, Sala A, Vanoli EG, Gianolli L, Luzi L, Perani D. Unfavourable gender effect of
642		high body mass index on brain metabolism and connectivity. Sci Rep. 2018;8:12584.
643		
644	87.	Miller KK, Deckersbach T, Rauch SL, Fischman AJ, Grieco KA, Herzog DB, et al.
645		Testosterone administration attenuates regional brain hypometabolism in women with
646		anorexia nervosa. Psychiatry Res Neuroimaging. 2004;132(3):197–207.
647		
648	88.	Muzambi R, Bhaskaran K, Brayne C, Davidson JA, Smeeth L, Warren-Gash C. Common
649		Bacterial Infections and Risk of Dementia or Cognitive Decline: A Systematic Review. J
650		Alzheimer's Dis. 2020;76(4):1626.
651		
652	89.	Lim AC, Barnes LL, Weissberger GH, Lamar M, Nguyen AL, Fenton L, et al. Quantification of
653		race/ethnicity representation in Alzheimer's disease neuroimaging research in the USA: a
654		systematic review. Commun Med. 2023;3(101).

655

656	90.	Veitch DP, Weiner MW, Aisen PS, Beckett LA, DeCarli C, Green RC, et al. Using the
657		Alzheimer's Disease Neuroimaging Initiative to improve early detection, diagnosis, and
658		treatment of Alzheimer's disease. Alzheimer's & Dementia. 2022;18(4):824–57.
659		
660	91.	Phillips JS, Das SR, McMillan CT, Irwin DJ, Roll EE, Da Re F, et al. Tau PET imaging predicts
661		cognition in atypical variants of Alzheimer's disease. Hum Brain Mapp. 2018;39(2):691-
662		708.
663		
664	92.	Sun N, Mormino EC, Chen J, Sabuncu MR, Yeo BTT. Multi-modal latent factor exploration
665		of atrophy, cognitive and tau heterogeneity in Alzheimer's disease. Neuroimage.
666		2019;201(116043).
667		
668	Acknowledge	ements

669 Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging 670 Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of 671 Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the 672 National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from 673 the following: AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; 674 BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan 675 Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated 676 company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy

677 Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; 678 Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack 679 Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda 680 Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is 681 providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by 682 the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the 683 Northern California Institute for Research and Education, and the study is coordinated by the 684 Alzheimer's Therapeutic Research Institute at the University of Southern California. ADNI data are 685 disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

- 686 **Consent for publication**
- 687 Not applicable
- 688

689 Funding

690 This research was supported by the National Institute on Aging of the National Institutes of Health under

691 Award Numbers R01AG076019 and R01AG062623. The content is solely the responsibility of the authors

and does not necessarily represent the official views of the National Institutes of Health.

693

694 Author Information

695 Authors and Affiliations

⁶⁹⁶ ¹Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC,

697 *27708-0408, USA*.

COO	
nyx	

699 Contributions

- 700 S.U., K.G.A., A.I.Y., and A.L.R. were involved in the hypothesis generation, study design, and study
- supervision, and they critically revised the manuscript. A.L.R., M.D., and O.B. were responsible for data
- 702 cleaning. A.L.R. contributed to the analysis, interpretation of the data, and manuscript writing. All
- authors read and approved the submitted version of the manuscript.

704

705 Corresponding Author Information

706 ^{\$\$}Correspondence to ALR and SU, Email address: <u>alr75@duke.edu</u>, <u>Svetlana.Ukraintseva@duke.edu</u>

707

708 Competing Interests

709 The authors declare no competing interests.

710

- 711 Additional Information
- 712 Supplementary File 1
- 713 Supplementary File 2

714

715