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Abstract11

During the COVID-19 pandemic, many communities across the US experienced surges in12

hospitalizations, which strained the local hospital capacity and affected the overall quality13

of care. Even when effective vaccines became available, many communities remained at high14

risk of surges in COVID-19-related hospitalizations due to waning immunity, low uptake of15

booster vaccinations, and the continual emergence of new variations of SARS-CoV-2. Some16

risk metrics, such as the CDC’s Community Levels, were developed to predict the impact17

of COVID-19 on the community-level healthcare system based on routine surveillance data.18

However, they had limited utility as they were not routinely updated based on accumulating19

data and were not directly linked to specific outcomes, such as surges in COVID-19 hospital-20

izations beyond local capacities. Regression models could resolve these limitations, but they21

have limited interpretability and do not convey the reasoning behind their predictions. In22

this paper, we evaluated decision tree classifiers that were developed in “real-time” to predict23

surges in local hospitalizations due to COVID-19 between July 2020 and November 2022.24

These classifiers would have provided visually intuitive and interpretable decision rules for25

local decision-makers to understand and act upon, and by being updated weekly, would have26

responded to changes in the epidemic. We showed that these classifiers exhibit reasonable27

predictive ability with the area under the receiver operating characteristic curve (auROC)28

> 80%. These classifiers maintained their performance temporally (i.e, over the duration of29

the pandemic) and spatially (i.e., across US counties). We also showed that these classifiers30

outperformed the CDC’s Community Levels for predicting high hospital occupancy.31

Significance Statement32

A major concern during the COVID-19 pandemic was the risk of exceeding local healthcare33

capacity due to COVID-19-related hospitalizations. To assess this risk and inform mitigating34

strategies, several risk assessment tools were developed during the pandemic. Many of these35

tools, however, did not predict local outcomes, were not updated as the pandemic progressed,36

and/or were not interpretable by decision-makers. We propose an adaptive framework of de-37

cision tree classifiers to predict whether COVID-19-related hospital occupancy would exceed38

a given capacity threshold. This framework would provide interpretable classification rules to39

predict surges in local hospitalizations,and maintained its performance over time and across40

US counties, and outperformed the CDC’s Community Level tool.41

Keywords42

COVID-19, decision tree classifier, risk prediction, surveillance43
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1 Introduction44

When COVID-19 emerged in the United States in 2020, it proved an immediate threat to45

healthcare systems. Rapid surges in hospitalizations threatened to overwhelm the healthcare46

capacity and compromise the standard of care and patient health outcomes [1]. Even after47

vaccinations were introduced in late 2020, many communities remained at risk of intermittent48

surges in COVID-19 hospitalizations due to low rates of vaccination, waning infection- and49

vaccine-induced immunity, and seasonal changes in transmission dynamics [2, 3].50

To assess the risk of surges in hospitalizations, significant efforts ware made to predict the51

trajectory of the pandemic [4], including the COVID-19 Forecast Hub [5], the Scenario52

Modeling Hub [6], and the IHME COVID-19 Forecast Model [7]. However, the majority of53

these predictions are made available at the state or national levels [4], reducing their utility54

in more local settings, where the pandemic trajectory could bear little resemblance to that55

of the nation or state. Hence, there was a need among local policymakers for tools that will56

convert the data collected by surveillance systems into meaningful predictions for their area.57

One attempt at such a tool was the CDC’s COVID-19 Community Levels [8] (replaced with58

the COVID-19 Hospital Admission Rate [9] and the COVID-19 County Check [10] in 2023),59

which was designed to indicate when there may be an upcoming strain on healthcare systems.60

The COVID-19 Community Levels were based on the number of new weekly COVID-1961

cases, weekly hospital admissions due to COVID-19, and weekly inpatient beds occupied by62

COVID-19 patients and predicted whether the Community Level would be low, medium, or63

high. While these metrics were chosen for their correlation with future high mortality and64

hospital occupancy [8], they did not directly predict any specific outcome of interest [11].65

Additionally, the thresholds for the Community Levels were chosen once and not updated66

as the pandemic progressed or new coronavirus strains became dominant. This limited the67

overall utility of the Community Levels tool in the long term. Previous work has attempted68

to address these issues by using regression models that are continuously updated to predict69

concrete outcomes (e.g., mortality level) [12]. The main limitation of regression models is70

that they are not easily interpretable and do not convey the reasoning behind their assessment71

of risk for some adverse outcomes (e.g., surges in COVID-19 hospitalizations).72

In this paper, we investigate whether accurate decision tree classifiers could be developed73

to predict local surges in COVID-19 hospitalizations. Decision tree classifiers are machine74

learning models that provide simple and interpretable classification rules to make predictions75

[13, 14]. They resemble the threshold-based, flowchart-like structure of the CDC Community76

Levels, which makes them easy to use and interpret by local policymakers. Using decision77

tree classifiers, however, allows us to explicitly link the surveillance data to the outcome of78

interest, which here is to predict whether local hospital occupancy due to COVID-19 patients79

would exceed a set threshold. To develop these decision tree classifiers, we use data collected80

from US county surveillance systems and evaluate their performance during different waves81

of the pandemic between July 2020, before which data was not routinely collected from each82

county in the US, and November 2022. We also compare the performance of these decision83

tree classifiers with that of CDC Community Levels.84
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2 Method85

2.1 Overview86

From July 2020, several COVID-19 indicators (e.g., deaths, cases, hospital admissions) were87

collected through surveillance systems to monitor and predict trends in the pandemic [15, 16].88

Our goal is to use these indicators and metrics derived from these indicators as features in89

decision tree classifiers to predict whether the local hospital capacity is expected to exceed90

in the short term due to surges in COVID-19 hospitalizations.91

We consider four groups of classifiers that differ based on the predictors (features) they use to92

predict whether local hospital capacity would be surpassed in a three weeks from the current93

week. These models are described in detail below. To develop and evaluate these models, we94

used data collected between July 15th, 2020, and November 7th, 2022, a 123-week period.95

Before July 2020, data was not routinely collected and reported. In December 2022, there96

was a change in hospitalization reporting guidelines, and data was reported to the Centers97

for Disease Control and Prevention’s (CDC) National Health Safety Network (NHSN) rather98

than to the Department of Health and Human Services (HHS). After this period, there were99

changes in the quality of the data being reported. Hence, we focused our analysis over the100

period July 15th, 2020 to November 7th, 2022.101

For a given week t, we train decision tree classifiers using data collected between week 1102

through week t − 1. We then use the data collected in week t to predict the outcome in103

week t+3. For example, at the beginning of week t = 10, we use the data collected through104

week 9 to develop models to predict whether hospital capacity would be exceeded in week105

13. To evaluate how the performance of these classifiers changes throughout the pandemic106

(especially during the phases where novel variants emerge), we repeat this procedure for107

every week t ∈ {2, 3, 4..., 118}.108

2.2 Data109

We obtained COVID-19 hospital admissions, occupancy, and ICU occupancy data from the110

Department of Health and Human Services [16], and the data on cases and deaths from111

the New York Times [15]. Only cases confirmed by a reverse-transcriptase polymerase chain112

reaction (RT-PCR) test were included in the definition of “case”. We followed the procedures113

outlined in previous studies for data pre-processing, including the aggregation of weekly114

observations and the imputation of missing values [11, 12].115

To account for patients leaving their county of residence to access healthcare, we aggregated116

data by Health Services Areas (HSAs)[17] consistent with the CDC’s Community Level117

calculations. We compiled data at the midpoint of each week. A total of 804 HSAs were118

included in the analysis; for each of the classifiers we developed, < 1.5% of the health service119

areas were omitted from the data set due to missing data.120
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2.3 Outcomes121

The outcome of interest was whether the COVID-19-caused hospital occupancy would ex-122

ceed 15 per 100,000 population in exactly three weeks’ time. The capacity threshold of 15123

per 100,000 population is calculated in prior studies and falls in the middle of the CDC Com-124

munity Level’s “Medium” risk assessment for the hospital admissions indicator [18, 19, 20]125

(Figure S1 in SI). We chose the three-week period for consistency with the CDC Community126

Levels [8, 12]. However, we note that knowledge of hospital capacity in interceding weeks127

is also of use to policymakers. Consequently, we considered whether this outcome occurs128

any week during the interval [t + 1, t + 3] as a sensitivity analysis. This time period skips129

the immediate next week but maintains a relatively short period between the training and130

target weeks.131

In addition to the initial threshold of 15 cases per 100,000 population over a three-week132

period, we performed a sensitivity analysis using alternative threshold values and outcome133

periods.134

2.4 Features135

The prediction models we consider utilize all or a subset of the following features:136

1. Number of COVID-19 cases per 100,000 population in the last week,137

2. Number of COVID-19 deaths per 100,000 population in the last week,138

3. Number of COVID-19-related hospital admissions per 100,000 population in the last139

week,140

4. Number of hospital beds occupied by COVID-19 patients per 100,000 population in141

the last week,142

5. Number number of ICU beds occupied by COVID-19 patients per 100,000 population143

in the last week,144

6. Portion of hospital beds occupied by COVID-19 patients in the last week,145

7. Change in each of the aforementioned metrics in the last week, and146

8. Whether the hospital occupancy by COVID-19 patients exceeded the selected capacity147

threshold in the last week.148

2.5 Decision tree classifiers149

We consider four broad categories of decision tree classifiers, which differ in the features they150

include, to predict whether hospital capacity will be exceeded:151

1. “Naive” classifier that uses only a binary variable of whether the current hospital152

capacity threshold is exceeded;153
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2. “CDC Optimized” classifier that uses the same features included in the CDC Commu-154

nity Levels (i.e., new weekly COVID-19 cases, hospital admissions, and the percent of155

inpatient beds used by COVID-19 patients);156

3. “Reduced” classifier, which uses features related to hospital admissions, hospital and157

ICU occupancy, but not cases or deaths (because as of mid-2023, the county-level case158

and death data was no longer routinely reported [15]);159

4. “Full” classifier that uses all features listed in the previous section.160

We compare the performance of these classifiers with that of the CDC’s Community Levels161

(Figure S1 of SI), which were developed using all data collected between March 1st, 2021162

and January 24th, 2022 [8]. To measure the performance of Community Levels, we evaluate163

it on the period between March 3rd, 2022 and November 20th, 2022, during which its use164

was encouraged by the CDC.165

We also note that the Community Levels designate an area as “low”, “medium”, or “high”166

risk; hence, to evaluate its ability to predict surges in COVID-19 hospitalizations, we counted167

all weeks in which the set hospitalization threshold was exceeded as equivalent to a “high”168

community level, and weeks where it was below as equivalent to “medium/low”.169

2.6 Model development170

For each week t between July 15th, 2020 and November 7th, 2022, we use the data collected171

from all HSAs from week 1 to week t− 1 as a single training set to develop our classification172

trees. We used 10-fold spatial and temporal cross-validation both to optimize the model173

hyperparameters (see §S2 in SI for details). To ensure that resulting decision trees were easy174

to interpret, we restricted the depth of trees to less than five layers and then found optimal175

depth through hyperparameter tuning.176

Since the data from larger populations are expected to be less noisy compared to data from177

smaller populations, we included instance weights in the model fitting procedure, based on178

HSA population. Additionally, to account for class imbalance in the outcome, we trained179

the model using “balanced” class weights, with higher weights assigned to the minority class180

in the decision tree classifier’s function [21, 22].181

Though we used 123 weeks of data, due to the 3-week prediction task, the need for one week182

of test data, and one week for initial training, we could only train 117 decision tree classifiers.183

We developed our decision tree classifiers using the scikit-learn package in Python [23].184

2.7 Model evaluation185

In line with Transparent Reporting of a multivariable prediction model for Individual Prog-186

nosis or Diagnosis (TRIPOD) recommendations [24], model validation was carried out using187

temporal validation, partitioning our dataset into training and testing subsets based on time.188

To evaluate the performance of a decision tree classifier, we calculate the area under the re-189

ceiver operating curve (auROC) based on data from all HSAs collected during the projection190
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period. A classifier that provide 100% correct predictions has an auROC of 1 and a classifier191

that randomly guess that outcomes has an auROC of 0.5.192

To investigate the regional variation in the performance of our classifiers, we also present the193

auROC scores based on the out-of-sample predictions by HSA. These auROC scores were194

calculated based on the predictions made by each weekly classifier for a given HSA, which195

was then matched with the corresponding HSA.196

The auROC metric is agnostic to the selected classification threshold and presume that197

true/false positives and true/false negatives are equally desirable outcomes. In reality, a198

predicted surge in hospital capacity will cause different responses among policymakers, each199

with an associated cost. Under this assumption, the value of true and false predictions may200

differ. To allow for any differences in preferences policymakers may have, we additionally201

calculate the net benefit [25], a metric that allows for differences in the weighting of true202

and false positives, facilitated by an “exchange” parameter, ω. The net benefit function203

incorporating true positive and false positive rates is given by:204

NBP (ω, p) = TP (p)− ωFP (p), (1)

where TP (p) is the true positive rate and FP (p) is the false positive rate when the classifi-
cation threshold p is selected (a classifier with classification threshold p predicts the hospital
capacity would be exceeded if the estimated the probability of exceeding capacity is greater
than p). A true positive result means that the model has correctly predicted the surge in
hospital capacity; hence, any action undertaken by the policymaker to avoid such a surge
was justified and could have prevented loss in population health. In contrast, a false positive
result could waste resources if it leads to using mitigating strategies. Equation 1 allows
policymakers to weigh the economic costs of unnecessary action (ωFP (p)) with the health
benefits of justified action (TP (p)). These outcomes, however, depend on the classification
threshold p. To find the optimal classification threshold for a given ω, we solve:

NB∗
P (ω) = max

p
[TP (p)− ωFP (p)],

using a grid search over values of p.205

The above definition of net benefit does not consider the health and economic consequences206

of true and false negatives. True negatives mean that policymakers can avoid implementing207

costly interventions and false negatives may risk overwhelming hospital capacity. To account208

for these factors, we also evaluate our classifiers using the following version of net benefit:209

NBP,N(ω, p) = [TP (p)− FN(p)]− ω[FP (p)− TN(p)]. (2)

For a given ω, we use a grid search to find the optimal classification threshold that maximizes210

the above function.211

We also evaluate the performance of different classifiers using maximum regret (MR). MR is212

the difference between the performance of the best-performing model and that of the model213

under consideration and gives a metric of loss or gain in difference in performance by using214
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one model over another. Mathematically, for a given metric q (e.g., auROC), the MR of215

model m is defined as [12]:216

MRm = max
m∈M

(qm)− qm, (3)

whereM is the set of all models under consideration and qm is the performance (e.g., auROC)217

of model m.218

Finally, we used SHAP (Shapley Additive exPLanations) values to evaluate the contribution219

of each feature to predictions [26]. SHAP values provide a way to allocate the contribution220

of each feature to a model’s prediction by considering all possible combinations of feature221

values across instances [27]. It provides insight into changes in model performance that may222

occur if some features are not included. We use the shap package in Python to calculate the223

SHAP values and present the SHAP summary plot [27]. In this plot, we present the SHAP224

values for each prediction period across all 117 Reduced classifiers.225

3 Results226

Between July 15th, 2020 and November 7th, 2022, there was a substantial variation in the227

burden of COVID-19 across HSAs (Figure 1). Throughout this 123-week period, on average,228

78% of HSA-weeks surpassed the 15 COVID-19 patients per 100,000 hospitalized threshold229

(dashed curve in Figure 1C).230

COVID-19 cases, new hospital admissions, hospital beds and ICU beds occupied by COVID-231

19 patients, and the percentage of hospital beds occupied by COVID-19 patients were posi-232

tively correlated with surpassing the hospitalization threshold (Table 1).233

Across all classifiers, the auROC was always above 0.5, including for the Naive classifiers234

which used just one feature. The Full classifiers generally had the highest auROC, though235

the Reduced classifiers were competitive despite not using features related to cases or deaths.236

The CDC Optimized, Reduced and Full classifiers had an auROC of > 0.8 across all weeks237

(Figure 2A). The performance of these classifiers was relatively consistent across different238

waves of the pandemic. However, the regret for auROC scores was best controlled by the239

Full and Reduced classifiers (Figure 2B).240

Across all models, around week 62, there was a decrease in the auROC score, which coincided241

with when the omicron strain became the predominant strain in the US. There is additionally242

a decrease in performance when there was a peak in cases during the omicron wave (around243

week 90). Conversely, the highest auROC scores were achieved when a high proportion of244

HSAs exceeded the 15 per 100,000 hospitalization threshold (Figure 2A). As county-level245

case and death data ceased being available from mid-2023, we focused the remainder of the246

analysis on the Reduced classifiers.247

For 76% of the counties, the auROC that could be calculated using the Reduced classifiers248

over the entire study period exceeded 0.80 (Figure 3). However, for around 23% of counties,249

an auROC could not be calculated as across each 117 outcome weeks, the hospital beds250

occupied by COVID-19 patients always exceeded the 15 per 100,000 threshold, or never did.251

Thus, there was no “true negative” with which to calculate the auROC.252
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The added benefit of the Reduced classifiers compared with the Naive classifiers varied over253

the pandemic weeks and depended on the selected penalty value (ω in Eq. 1) to model the254

trade-off between the true positive and false positive rates (Figure 4A). For smaller values of255

ω, which represent scenarios where the false positive is minimally penalized, the added benefit256

of using the Reduced classifiers is unimportant. Reduced classifiers provide greater benefit257

when false positives are penalized more substantially and when the proportion of HSAs where258

hospital capacity exceeds 15 per 100,000 is large (Figure 4A). However, the Naive classifiers259

provide additional net benefit over the Reduced classifiers when the proportion of HSAs260

exceeding the hospital occupancy threshold was low. The Full classifier presented higher net261

benefit compared to the Naive classier over each penalty value and weekly classifier (FigureS8262

in the SI).263

We observe similar behavior when the net benefit function NBP,N(), which accounts for true264

and false positive rates and true and false negative rates, is used (Figure 4B). When this net265

benefit function is used, the Reduced classifiers outperform the Naive classifiers for a larger266

number of weeks and penalty values.267

The change in the number of COVID-19 hospital admissions in the previous week, the268

number of beds occupied by COVID-19 patients, and the number of COVID-19 hospital269

admissions, were selected as important features in more than 50% of 117 Reduced classifiers270

between July 15th, 2020 and November 7th, 2022 (Figure 5). Whether the current hospital271

capacity exceeded the 15 per 100,000 threshold was not included as an important feature272

in any classifier, despite the good performance of the Naive classifier, which only used this273

feature. However, this binary feature is highly correlated with other features such as the274

number of hospital beds by week and the percentage of beds occupied by COVID-19 patients275

(Table 1), which do appear as important features (Figure 5).276

The SHAP values also indicate that COVID-19 admsissions and ICU beds occupied by277

COVID-19 patients have a large influence on model predictions (Figure 6). The SHAP278

values broadly follow a trend where high numbers of admissions and occupied hospital beds279

(indicated by the pink dots in Figure 6) increase the log odds of a positive prediction, whilst280

lower admissions decrease the log odds.281

One major advantage of and the main motivation for the use of decision tree classifiers is that282

they are interpretable. To demonstrate, we present three decision tree classifiers developed283

for three different stages of the pandemic (Figure 7): the week of July 14th, 2021, when284

the delta variant was circulating in the population but was not yet the dominant strain285

(Panel A), the week of August 4th, 2021, when the delta variant was dominant (Panel B),286

and the final week in our study time period, i.e., the week of November 20, 2022 (Panel287

C). To illustrate how these decision tree classifiers could be used in practice by a local288

policymaker, we consider the scenario observed in an HSA in Maryland for July 14th, 2021289

(Table 2). Since hospital beds occupied by COVID-19 patients = 22.82, which is less than290

29.0, the condition of the first decision node is satisfied. Hence, we check the condition of291

the second node, whether hospital beds occupied by COVID-19 patients ≤ 10.0, which is292

satisfied. Therefore, this classification decision tree predicts that the hospital capacity of 15293

per 100,000 population is not expected to be exceeded in 3 weeks’ time.294

9
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We note that while these classification trees are developed for different phases of the pan-295

demic, they all use the same features: 1) the number of hospital beds occupied by COVID-19296

patients, 2) the number of ICU beds occupied by COVID-19 patients, and 3) the number297

of hospital admissions of COVID-19 patients. What is different between these classification298

trees is the classification thresholds and the depth of the tree; for example, the classification299

threshold at the first node of these trees are 29.0 (Panel A), 30.0 (Panel B), and 27.0 (Panel300

C).301

4 Discussion302

We presented an adaptive framework to generate simple classification rules that predict303

whether COVID-19 hospitalizations would have exceeded local capacity. These classification304

rules are easy to communicate and use the latest data from surveillance systems that are305

available at the local level. To develop these classification rules during the weeks of July,306

2020 to November, 2022, we trained decision tree models on “expanding” datasets, where307

all available data up to the target week of interest are used in the training procedure. This308

allowed for the model training procedure to account for changes in pandemic trajectories as309

population-level factors not directly accounted for as features in the model (e.g., vaccina-310

tion rates, waning immunity, and easing non-pharmacological interventions). Our analysis311

suggests that classification rules that are adaptively updated could maintain their predictive312

ability temporally (i.e., over the duration of the pandemic; Figure 2) and spatially (i.e.,313

across US counties, Figure 3). Additionally, these classifiers outperform other classifiers314

trained only on more recent datasets (see SI S4).315

Our classifiers were trained on a range of COVID-19 indicators that were routinely reported316

between July 2020 and November 2022, including hospital admissions, and hospital occu-317

pancy. However, the source of case and death data used in this study for the “Full” classifiers318

ceased being updated in mid-2023 [15], and other data sources are only updated at the state319

level [28] if at all [29, 30]. Though this limits the training data on which the classifiers can be320

trained, we showed omitting death and case data does not meaningfully impact the perfor-321

mance of the characterized classification rules (Figure2). Indeed, the CDC Optimized, Full,322

and Reduced presented reasonable predicted accuracy, with an auROC of > 0.80 for the ma-323

jority of classifiers; even classifiers based solely on current occupancy can achieve relatively324

high auROC, including when a new strain becomes dominant in the population (Figure 2).325

In the Reduced classifiers, the admissions and change in admissions, and occupied ICU beds326

were most frequently considered to be important in the decision tree classifiers (Figure 5).327

Similarly, these features had some of the largest explanatory effects on the auROC (Figure328

6).329

We focused on providing predictions at the level of HSAs as this would have enabled local330

policymakers to detect potential surges in COVID-19 hospitalizations and to respond accord-331

ingly before the local hospital capacity is overwhelmed. One such previous attempt was the332

CDC’s Community Levels framework. This framework, however, lacked a direct relationship333

with a specific outcome of interest [18] and was never updated after its development. Other334

studies have provided more systematic classification rules predicting specific outcomes (such335
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as hospital capacity [20] or high mortality [12]). We extended this work by demonstrating336

that decision tree classifiers trained on surveillance data could predict whether COVID-19337

hospitalizations may exceed the local capacity level with reasonable accuracy. These classi-338

fication rules provided by these models are easy to use and interpret in practice (Figure S9339

in SI).340

The spread of SARS-CoV-2 varied substantially across different communities and geographic341

regions, depending on the implementation of non-pharmaceutical interventions [31], local342

rates of vaccination [32], and the emergence of novel strains, amongst other factors [33, 34,343

35]. Despite the substantial heterogeneity in data reported by HSAs, our analysis suggests344

that our Reduced classifiers maintained their performance across US counties (Figure 3).345

We note that the spatial performance of classifiers was not dramatically improved when case346

and death data were used to develop classification rules (Figure S7).347

By using the net benefit framework, our approach allows for incorporating policymakers’348

preferences between different prediction outcomes (i.e. false negative and positive and true349

negative and positive). For example, predicting that there will be a surge in hospital occu-350

pancy when there will not actually be one (false positive) or predicting no surge when one is351

going to occur (false negative) have distinct health and economic costs; the former could have352

high economic costs and the latter could lead to high adverse health outcomes. Our analysis353

shows that the classification rules identified by our approach present positive net benefit354

values, especially during the phases of the pandemic when the COVID-19 hospitalizations355

were rising or declining (Figure 4).356

Two of the classifiers considered here (i.e., “CDC Optimized” and “Full”) use case and death357

data. The available case data undercounted the actual number of infections, as only cases358

confirmed by a molecular laboratory test were included [15]. Limited testing availability [36],359

particularly at the beginning of the pandemic, and asymptomatic transmission contributed to360

this undercount [37]. Similarly, death counts relied on the patient to be diagnosed according361

to guidelines specified by state and federal bodies [38], which could have led to both the362

mis- and underdiagnosis of patients. However, our analysis shows that even without these363

COVID-19 indicators (as in our “Reduced” classifier), reasonable predictive power can still364

be achieved (Figure 2).365

An important limitation of predictive models that are only trained on historical data is that366

the historical data may not sufficiently capture the possible changes in pandemic trajectories367

due to future events. This is particularly true if novel strains emerge with characteristics that368

are substantially different from what is manifested in historical data. The use of simulated369

trajectories, which can be parameterized to allow for such variations, may help to make the370

predictions of the classifier more robust [20].371

The proposed approach is flexible to facilitate a number of extensions. While we trained our372

models to predict a binary outcome, classification decision trees could also be developed to373

predict multiple outcomes, such as “low”, “medium” and “high” levels of COVID-19 hos-374

pital capacity, if thresholds to define these outcomes are available. Furthermore, we only375

included indicators related to the COVID-19 pandemic to predict surges in hospital occu-376

pancy. However, there is evidence of cocirculation of influenza, COVID-19, and respiratory377
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syncytial virus infections during recent winters [39, 40], which threatens to overwhelm the378

healthcare system. Data from surveillance systems related to these infectious diseases could379

be incorporated to provide more robust predictions. Finally, while we focused on predicting380

surges in hospitalizations, other metrics of interest, such as ICU capacity or mortality, could381

also be considered depending on the availability and the quality of data related to these382

outcomes.383
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5 Figures384

Figure 1: Weekly COVID-19 indicators between July 15th, 2020 and November
7th, 2022 reported by HSAs. The purple and blue boxes shows the period when the
delta and omicron variants were dominant, respectively. The hatching shows the data used
to develop the CDC Community Levels. The black curve shows the mean across all HSAs
for the given indicator.
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Figure 2: Performance of decision tree classifiers to predict whether the COVID-
19 hospital occupancy is expected to exceed 15 per 100,000 in exactly 3 weeks.
(A) auROC, (B) maximum regret. The purple and blue boxes show the period when, re-
spectively, the delta and omicron variants were dominant. The gray dashed line shows the
proportion of HSAs that exceed the hospitalization threshold of 15 per 100,000 population
for a given week.

Figure 3: Performance of Reduced classifiers across all counties. The auROC was
calculated by HSA using the predictions from all 117 Reduced classifiers. The hatching
indicates where there were no true negative instances with which to calculate the auROC,
and the auROC is recorded as NA. See Figure S7 for the spatial performance of classifiers
that includes case and death data.
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Figure 4: The net benefit of the Reduced classifiers related to the Naive classifiers.
(A) Using the net benefit function NBP (), which accounts for false positive and true positive
rates and (B) Using the net benefit function NBP,N(), which accounts for true and false
positive rates and true and false negative rates. In areas shaded green, the Reduced classifiers
outperform the Naive classifier, while areas shaded pink indicate where the Naive classifier
perform better. The gray dashed line is the proportion of HSAs that exceed the 15 per
100,000 hospital capacity for a given week.
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Figure 5: Frequency at which a feature was identified as important in 117 Reduced
classifiers created between July 15th, 2020 and November 7th, 2022.
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Figure 6: SHAP summary plot. Each point represents the SHAP value for a feature
and an instance (observations from a single HSA over a single week). The color of each
point represents the value of the feature from low to high. Overlapping points are jittered
vertically to display the distribution of SHAP values per feature.
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Figure 7: Decision tree classifiers developed at three different points during the
pandemic. The week of July 14th, 2021, when the delta variant was circulating in the
population but was not yet the dominant strain (Panel A), the week of August 4th, 2021,
when the delta variant was dominant (Panel B), and the final week in our study time period,
i.e., the week of November 20, 2022 (Panel C).
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6 Tables385

Table 1: Mean and standard deviation of weekly COVID-19 observations stratified by
whether the hospital occupancy is surpassed in 3 weeks’ time or not.

Feature Surpassed Not surpassed

Mean Std Dev Mean Std Dev

Cases 143.63 290.4 53.4 122.9
Deaths 1.8 3.2 1.4 3.0
Hospital beds 37.9 87.3 1.4 4.3
Admissions 9.4 21.6 2.3 9.1
ICU beds 1.75 3.5 0.08 0.44
Percent beds occupied by COVID-19 patients 4.3 9.4 0.023 0.073
Change in cases -1.4 169.0 2.5 88.1
Change in deaths 0.059 1.1 -0.16 1.3
Change in hospital beds -0.098 41.6 0.016 4.3
Change in admissions -0.19 14.7 0.36 9.1
Change in ICU beds -0.0057 1.64 0.0076 0.38
Change in percent beds occupied by COVID-19 patients -0.00022 0.071 0.000024 0.0064

Table 2: Data for Allegany/Garrett HSA in Maryland on July 14, 2021. This HSA contains
Allegany and Garrett counties in Maryland and Grant, Hardy, and Mineral Counties in West
Virginia.

Value

Hospital Admissions 1.35
ICU beds 0.52
Hospital beds 22.82
Percent beds occupied by COVID-19 patients 1.5
Change in admissions -1.81
Change in ICU beds 0.34
Change in hospital beds 5.65
Change in percent beds occupied by COVID-19 patients 0.38
Currently exceed threshold capacity Yes
Exceed capacity three weeks later Yes
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