Abstract
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are influenced by genetic and environmental factors. Using data from UK Biobank, SAIL Biobank, and FinnGen, we conducted an unbiased, population-scale study to: 1) Investigate how 155 endocrine, nutritional, metabolic, and digestive system disorders are associated with AD and PD risk prior to their diagnosis, considering known genetic influences; 2) Assess plasma biomarkers’ specificity for AD or PD in individuals with these conditions; 3) Develop a multi-modal classification model integrating genetics, proteomics, and clinical data relevant to conditions affecting the gut-brain axis. Our findings show that certain disorders elevate AD and PD risk before AD and PD diagnosis including: insulin and non-insulin dependent diabetes mellitus, noninfective gastro-enteritis and colitis, functional intestinal disorders, and bacterial intestinal infections, among others. Polygenic risk scores revealed lower genetic predisposition to AD and PD in individuals with co-occurring disorders in the study categories, underscoring the importance of regulating the gut-brain axis to potentially prevent or delay the onset of neurodegenerative diseases. The proteomic profile of AD/PD cases was influenced by comorbid endocrine, nutritional, metabolic, and digestive systems conditions. Importantly, we developed multi-modal prediction models integrating clinical, genetic, proteomic and demographic data, the combination of which performs better than any single paradigm approach in disease classification. This work aims to illuminate the intricate interplay between various physiological factors involved in the gut-brain axis and the development of AD and PD, providing a multifactorial systemic understanding that goes beyond traditional approaches. Further, we have developed an interactive resource for the scientific community [https://gut-brain-nexus.streamlit.app/] where researchers can investigate components of the predictive model and can investigate feature effects on a sample level.
Teaser Co-occurring disorders of the gut-brain axis combined with genetic and proteomic data can better predict neurodegenerative risk.
Competing Interest Statement
K.S.L., H.L.L., H.I., M.B.M., and M.A.N.'s participation in this project was part of a competitive contract awarded to Data Tecnica International LLC by the National Institutes of Health to support open science research. M.A.N. also currently serves on the scientific advisory board at Clover Therapeutics and is an advisor and scientific founder at Neuron23 Inc.
Funding Statement
This research was supported in part by the Intramural Research Program of the NIH, National Institute on Aging (NIA), National Institutes of Health, Department of Health and Human Services; project number ZO1 AG000534, as well as the National Institute of Neurological Disorders and Stroke. This work was also supported by the Dementia Research Institute [UKDRI supported by the Medical Research Council (UKDRI-3003), Alzheimer's Research UK, and Alzheimer's Society], Welsh Government, Joint Programming for Neurodegeneration (MRC: MR/T04604X/1), Dementia Platforms UK (MRC: MR/L023784/2) and MRC Centre for Neuropsychiatric Genetics and Genomics (MR/L010305/1).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Notebooks containing code used in this analysis can be found in the GitHub link here: [https://github.com/NIH-CARD/Gut-Brain-Nexus]. This paper analyzes existing, publicly available data. In addition, complete summary statistics describing these data/processed datasets derived from these data have been deposited in the supplementary materials connected to this publication and are publicly available as of the date of publication. Further, we have developed an interactive resource for the scientific community [https://gut-brain-nexus.streamlit.app/] where researchers can investigate components of the predictive model and can investigate feature effects on a sample level.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Revised to include updated classification models' performances and the interactive web application for investigating our predictive models.
Data Availability
This paper analyzes existing, publicly available data. In addition, complete summary statistics describing these data/processed datasets derived from these data have been deposited in the supplementary materials connected to this publication and are publicly available as of the date of publication.