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Abstract1

Phylodynamic analyses enable the inference of epidemiological parameters from pathogen2

genome sequences for enhanced genomic surveillance in public health. Pathogen3

genome sequences and their associated sampling times are the essential data in every4

analysis. However, sampling times are usually associated with hospitalisation or test-5

ing dates and can sometimes be used to identify individual patients, posing a threat6

to patient confidentiality. To lower this risk, sampling times are often given with7

reduced date-resolution to the month or year, which can potentially bias inference8

of epidemiological parameters. Here, we characterise the extent to which reduced9

date-resolution biases phylodynamic analyses across a diverse range of empirical and10

simulated datasets. We develop a practical guideline on when date-rounding biases11

phylodynamic inference and we show that this bias is both unpredictable in its direc-12

tion and compounds with decreasing date-resolution, higher substitution rates, and13

shorter sampling intervals. We conclude by discussing future solutions that prioritise14

patient confidentiality and propose a method for safer sharing of sampling dates by15

translating them uniformly by a random number.16
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Introduction17

Phylodynamics is commonly used to estimate the parameters of viral spread with18

increasing application to bacteria. It allows estimation of important epidemiological19

quantities including rates of transmission, the age of outbreaks, rates of spatial ad-20

vance, and the prevalence of variants of concern (Attwood et al., 2022, du Plessis and21

Stadler, 2015, Featherstone et al., 2022, Volz, 2023). It is applicable across the scales22

of transmission from the pandemic and epidemic scales, such as for SARS-CoV-223

and Ebola virus (Lancet, 2021, Mbala-Kingebeni et al., 2019), to long-term bacterial24

transmission such as in Salmonella enterica and Klebsiella pneumoniae. Phylody-25

namic analyses are most useful where temporal and spatial records of transmission26

are sparse, using genomic information to help fill in the gaps.27

The basis of all phylodynamic inference is that epidemiological spread leaves a28

trace in the form of substitutions in pathogen genomes that can be used to recon-29

struct transmission histories. Pathogen populations meeting this assumption are said30

to be ‘measurably evolving populations’ (Biek et al., 2015, Drummond et al., 2003).31

In accordance, phylodynamics uses a combination of genome sequences and associ-32

ated sampling times to leverage measurable evolution and infer temporally explicit33

parameters of transmission and pathogen demography.34

Ideal phylodynamic datasets should include precise sampling dates alongside genome35

sequences (Black et al., 2020), but sampling times necessarily carry over sensitive in-36
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formation about times of hospitalisation, testing, or treatment than can be used to37

identify individual patients. This can pose an unacceptable risk for patient confiden-38

tiality. In some cases, sampling times or dates of admission are even available for39

purchase or have allowed identification for a majority of patients in a given record40

(Sweeney, 2013). In acknowledgement of this risk, Shean and Greninger (2018) sug-41

gest that Expert Determination govern whether sampling times be released alongside42

genome sequences, and the resolution to which they are disclosed (day, month, year).43

Essentially, this approach involves an expert opinion on whether information is safe44

to release on a case-by-case basis.45

From a phylodynamic point of view, sampling times with reduced resolution are46

usable. Uncertainty in sampling times can be accommodated in Bayesian inference47

(Shapiro et al., 2011), but such an approach is only effective when samples with48

uncertain dates comprise a small proportion of the total data (Rieux and Khatchikian,49

2017).50

The most common technique for incorporating data with a majority of uncertain51

sampling times is to assume that sampling occurred at the middle of the uncertainty52

range, such as all samples from 2020 being assigned 15 June 2020. Other approaches53

would include sampling a random day within 2020 using a probability distribution54

over the duration of 2020 for each sample. Both approaches introduce a degree of55

error, which may cause bias because sampling times can drive phylodynamic infer-56
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ence (Featherstone et al., 2021, 2023, Volz and Frost, 2014). Understanding this57

bias has practical significance, as there are many examples of phylodynamic analyses58

conducted with reduced date resolution for a diverse array of pathogens. These in-59

clude viral pathogens such as Rabies Virus, Enterovirus, SARS-CoV-2, Dengue virus60

(Bennett et al., 2010, Talbi et al., 2010, Wolf et al., 2022, Xiao et al., 2022), and61

bacterial pathogens, such as Klebsiella pneumoniae, Streptococcus pneumoniae, and62

Mycobacterium tuberculosis (Azarian et al., 2018, Cella et al., 2017, Merker et al.,63

2015).64

Precision in sampling dates is also relevant to the design and curation of pathogen65

sequence databases because sampling dates are often considered as metadata, and66

thus recorded inconsistently throughout repositories (Raza and Luheshi, 2016). For67

example, as of early September 2024, there were roughly 19.9M SARS-CoV-2 genome68

sequences available on GISAID with roughly 2.4% (382K) of these having incomplete69

date information, where sampling dates are absent or only given to the month or year.70

In other words, roughly 1 in 50 sequences lacked clear date resolution, reflecting global71

inconsistency in SARS-CoV-2 sampling time records.72

In recognition of this issue, we characterised the conditions under which biases73

arise from reduced date resolution in phylodynamic inference. We analysed four74

empirical datasets of SARS-CoV-2, H1N1 Influenza, M. tuberculosis, Staphylococcus75

aureus, and conducted a simulation study with parameters corresponding to each em-76
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pirical dataset. These pathogens are key examples of candidates for genome surveil-77

lance, with SARS-CoV-2 and H1N1 having caused pandemics and S. aureus and78

M. tuberculosis being global priority pathogens (WHO, 2024). These data also have79

diverse infectious periods and molecular evolutionary rates, thus providing a broad80

representation of phylodynamics’ applicability to pathogens presenting human-health81

threats. For each empirical and simulated dataset, we studied the bias in estimated82

epidemiological parameters across treatments with sampling times rounded to the83

day, month, or year. For example, 2021-10-11 would be specified as 2021-10-15 when84

rounding to the month and 2021-06-15 when the month and day are not provided.85

We focused on inference of the reproductive number (R0 or Re for the basic and86

effective reproductive number, respectively), defined as the average number of sec-87

ondary infections stemming from an individual case (reviewed by du Plessis and88

Stadler (2015), Featherstone et al. (2022), Kühnert et al. (2011)), the time to the89

most recent common ancestor (tMRCA), and the substitution rate (substitutions per90

site per year) in each dataset. Together, these parameters span much of the insight91

that phylodynamics offers through inferring when an outbreak started and how fast it92

proceeded. The evolutionary rate is also the central parameter relating evolutionary93

time to epidemiological time, so any resulting bias in this parameter is expected to94

have a pervasive effect throughout each phylodynamic model.95

We hypothesised that reduced date resolution causes bias that compounds where96
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the uncertainty in dates exceeds the average time for a substitution to arise in a given97

pathogen. We visualise the relationship between date resolution and average substi-98

tution time in Fig 1. For example, H1N1 influenza virus accumulates substitutions at99

a rate of about 4 ×10−3 subs/site/year (Hedge et al., 2013). With a genome length100

of 13,158bp, we then expect roughly one substitution to accrue per week. Therefore,101

rounding dates to the month or year conflates molecular evolution in time and bi-102

ases inferences. Based on this, we expected the SARS-CoV-2 and H1N1 datasets to103

exhibit bias from month resolution onwards, the S. aureus dataset to exhibit bias104

at year resolution, and the M. tuberculosis dataset to not display bias up to and105

including year resolution (See Table 2 for average substitution times).106

Our results across the simulation study and analyses of empirical data support107

using the average substitution time as a rough threshold for when date-rounding108

causes compounding bias. We also discuss factors that modulate the extent of bias,109

such as duration of sampling intervals and the choice of phylodynamic model. We110

finish by discussing future solutions that prioritise both patient confidentiality and111

accurate data sharing for routine phylodynamic analyses for public health.112
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Figure 1: The average time to accrue one substitution based on a fixed genome size and evo-
lutionary rate, Ts = [Genome Length (sites) × Evolutionary rate (subs/site/yr)]−1 against
the temporal resolution lost by date-rounding. We hypothesised and showed that when
analyses for a given pathogen round dates to an extent nearing or crossing the diagonal
from left to right, biases is induced in Re, tMRCA, and substitution rate. substitution
rates are taken from each source for the empirical data. We do not report the numerical
axis as this figure is designed to illustrate a concept rather than serve as a reference, in the
same spirit as is inspiration in Figure 2 of Biek et al. (2015).

Methods113

Overview114

Our study is based on four empirical datasets including with two viruses, H1N1115

influenza and SARS-CoV-2, and two bacterial species, Staphylococcus aureus and116

Mycobacterium tuberculosis. We also conducted a simulation study with parameters117

tailored to each dataset. These data were chosen to span the usual parameter space for118
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substitution rate and sampling duration in phylodynamics for epidemiology (roughly119

10−3-to-10−8 (subs/site/yr) for substitution rate and months-to-decades for duration120

of sampling).121

To assess the effects of date-rounding, we conducted phylodynamic analyses for122

both the empirical and simulated datasets with sampling dates rounded to the day,123

month, or year. For example, two samples from 2000-05-29 and 2000-05-02 would124

become 2000-05-15 if rounded to the month. We then measured the resulting bias125

in epidemiologically- or phylodynamically-important parameters: the reproductive126

number (R0 or Re), substitution rate (subs/site/year), and the tMRCA. The tMRCA127

gives a measure of the age of the pathogen population driving the outbreak and is128

often interpreted as the age of the outbreak. We also consider the tMRCA to facilitate129

comparison, because there is variability in which phylodynamic models include the130

length of the root branch in the age of the outbreak (Stadler et al., 2012).131

The two viral datasets consist of samples from the 2009 H1N1 pandemic (n=161)132

from Hedge et al. (2013), and a cluster of early SARS-CoV-2 cases from Victoria,133

Australia in 2020 (n = 112) (Lane et al., 2021). The bacterial datasets consist of134

S. aureus, with 104 samples from New York sampled over ≈2 years (Duchêne et al.,135

2016, Uhlemann et al., 2014, Volz and Didelot, 2018), and 30 M. tuberculosis sam-136

ples from an ≈25 year outbreak studied by Kühnert et al. (2018). These data were137

chosen because they encompass a diversity of epidemiological dynamics, timescales,138
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and variable substitution rates.139

Simulation Study140

We simulated outbreaks as birth-death sampling processes using the ReMaster pack-141

age in BEAST v2.7.6 (Bouckaert et al., 2019, Vaughan, 2024). Simulations consisted142

of four parameter settings corresponding to each empirical dataset (Table 1), with 100143

replicates of each. All parameter sets include a proportion of sequenced cases (p), out-144

break duration (T ), and a ‘becoming un-infectious’ rate (δ = 1

Duration of infection).145

For simulations corresponding the viral datasets, transmission was modelled via R0,146

the average number of secondary infections (assuming a fully susceptible population).147

For those corresponding to the bacterial datasets, we allowed the effective reproduc-148

tive numbers to vary over two intervals (Re1 and Re2 respectively). For the S. aureus149

setting, the change time for Re was set at t = 22 with the sequencing proportion150

(p) also set to zero before this time to replicate the sampling effort in the empiri-151

cal dataset. For the M. tuberculosis dataset, the change time was fixed at halfway152

through simulations (t = 12.5) with a fixed sequencing proportion throughout.153
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Table 1: Parameter sets for the simulation study corresponding to each empirical dataset.
δ is the ‘becoming un-infectious‘ rate, which is the reciprocal of the duration of infection
in units of years−1. R0 is the basic reproductive number, describing the average number of
secondary infections arising at the beginning of an outbreak where the susceptible popula-
tion is greatest. Re• refer to the effective reproductive number over two successive intervals
of an outbreak as the susceptible population varies. p is the proportion of sequenced cases.
T is the duration of the outbreak.

Microbe δ(yrs)−1 R0 Re1 Re2 p T (yrs) Source

H1N1 91.31 1.3 - - 0.015 0.25 Hedge et al. (2013)

SARS-CoV-2 36.56 2.5 - - 0.80 0.16 Lane et al. (2021)

S. aureus 0.93 - 2.0 1.0 0.2† 25 Duchêne et al. (2016)

M. tuberculosis 0.125 - 2.0 1.10 0.08 25.0 Kühnert et al. (2018)

† p was set to zero before T = 22154

Simulations generated a total of 400 outbreaks which we then used to simulate155

sequences data under a Jukes-Cantor model using Seq-Gen v1.3.4 (Rambaut and156

Grass, 1997) with fixed substitution rates (Table 2). We chose a simple substitution157

model to reduce parameter space and because substitution model mismatch has been158

widely explored elsewhere (e.g. Lemmon and Moriarty (2004)).159
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Table 2: Substitution rates and genome length for sequence simulation.

Microbe Substitution Rate (subs/site/yr) Genome Length Time/Sub/Genome (yrs)

H1N1 4× 10−3 13158 0.0190

SARS-CoV-2 1× 10−3 29903 0.0334

S. aureus 1× 10−6 2900000 0.3458

M. tuberculosis 1× 10−7 4300000 2.3256

We then analysed each of the 400 simulated datasets under each tree prior and160

three date resolutions (day, month, and year), yielding 1800 analyses (1200 for the161

birth-death and 600 for coalescent with exponential growth, referred to hereon as162

the ‘coalescent exponential‘ or CE). We used identical model specifications and prior163

distributions as for the corresponding empirical datasets. We ran each MCMC chain164

for 5 × 188 steps, sampling every 104th step and discarding the first 50% as burnin.165

We then discarded all analyses that did not have effective sample sizes of the MCMC166

(ESS) of at least 200 (ESS ≥ 200), leaving a total of 1670 replicates incorporated167

in our results.168

Empirical Data169

We conducted Bayesian phylodynamic analyses using a birth-death skyline tree prior170

in BEAST v2.7.6 for all datasets (Bouckaert et al., 2019, Stadler et al., 2012). We also171
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fit a coalescent tree prior with exponential population growth for the viral datasets172

(Kingman, 1982). We sampled from the posterior distribution using Markov chain173

Monte Carlo (MCMC), with 5× 107 steps (1× 107 for SARS-CoV-2 data), sampling174

every 104 steps, and discarding the initial 10% as burnin. We assessed sufficient175

sampling from the stationary distribution by ensuring ESS ≥ 200 for all parameters176

and likelihoods.177

H1N1178

The H1N1 data consist of 161 samples from North America during the 2009 H1N1179

influenza virus pandemic, previously analysed by Hedge et al. (2013). Samples orig-180

inate from April to September 2009 and provide an example of a rapidly evolving181

pathogen sparsely sequenced during an emerging outbreak.182

Under the birth-death model, we placed a Lognormal(µ = 0, σ = 1) prior on R0,183

β(1, 1) prior on p, and fixed the becoming-uninfectious rate to (δ = 91 years−1), cor-184

responding to a four-day duration of infection. We also placed an improper (U(0,∞))185

prior on the age of the outbreak and a Gamma(shape = 2, rate = 400) prior on the186

substitution rate.187

Under the coalescent exponential, we placed a Laplace(µ = 0, scale = 100) prior188

on the growth rate, which was later transformed to R0 via R0 = rD + 1 where r is189

the growth rate and D is the duration of infection. We also placed an improper prior190
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on the effective population size, and otherwise included the same priors as for the191

birth-death.192

SARS-CoV-2193

The SARS-CoV-2 data consist of 112 samples from a densely sequenced transmission194

cluster from Victoria, Australia over late July to mid September 2020 Lane et al.195

(2021). These data are similar to the H1N1 datasets in presenting a quickly evolving196

viral pathogen, but differ in that a high proportion of cases were sequenced.197

Under the birth-death, we placed a Lognormal(mean = 1, sd = 1.25) prior on R0198

and an Inv-Gamma(α = 5.807, β = 346.020) prior on the becoming-uninfectious rate199

(δ). The sampling proportion was fixed to p = 0.8 since every the target was to200

sequence every known SARS-CoV-2 case in Victoria at this stage of the pandemic,201

with a roughly 20% sequencing failure rate. We also placed an Exp(mean = 0.019)202

prior on the origin, corresponding to a lag of up to one week between the index203

case and the first putative transmission event. Lastly, we placed a Gamma(shape =204

2, rate = 2000) prior on the substitution rate.205

Under the coalescent exponential, we placed an improper prior ( 1
x
) on the effective206

population size and a Laplace(µ = 0.01, scale = 0.5) prior on the growth rate. Other207

parameters were given the priors as under the birth-death. Note that we fit the208

coalescent exponential tree prior for completeness here, but in practice it would not be209
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a reliable model choice due to the high sequencing proportion violating the assumption210

of a low sequencing proportion under the coalescent. This poor fit is reflected later211

in the results.212

Staphylococcus aureus213

The S. aureus dataset originates from Uhlemann et al. (2014) and we analysed a214

subset of the data later analysed in Duchêne et al. (2016) and Volz and Didelot (2018).215

It consists of a single nucleotide polymorphism (SNP) alignment of 104 sequenced216

isolates sampled in New York from 2009 to 2011. Populations growth is understood217

to have been driven by β-lactam antibiotic use beginning in the 1980s. These data218

therefore provide a comparison to the M. tuberculosis dataset in a briefer sampling219

span from an outbreak of similar duration.220

To accommodate changing transmission dynamics, we included two intervals for221

Re with a Lognormal(µ = 0, σ = 1) prior on each. We also placed a β(1, 1) prior222

on the sampling proportion, which was otherwise fixed to 0 before the first sample223

to capture the lag in sampling. We also placed a U(0, 1000) prior on the origin, and224

fixed the becoming un-infectious rate at δ = 0.93, corresponding to a nearly year-long225

duration of infection following Volz and Didelot (2018).226
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Mycobacterium tuberculosis227

The M. tuberculosis dataset consists of 36 sequenced isolates from a retrospectively228

recognised outbreak in California, USA, that originated in the Wat Tham Krabok229

refugee camp in Thailand. The data were originally analysed using the birth-tree230

prior by Kühnert et al. (2018). We applied the same prior configurations as Kühnert231

et al. (2018), with the exception of including two intervals for Re and fitting a strict232

molecular clock with a Gamma(shape = 0.001, rate = 1000.0) prior.233

Results234

Simulation study235

The viral simulation conditions (i.e. SARS-CoV-2 and H1N1) display the greatest236

bias in mean posterior estimates of substitution rate, tMRCA, and reproductive num-237

ber with decreasing date resolution (Figure 2 A-C). The S. aureus simulations exhibit238

similar trend with lesser bias in response to decreasing date resolution when rounding239

dates to the year. The M. tuberculosis condition is effectively inert to decreasing date240

resolution, with mean posterior estimates for each parameter of interest remaining241

consistent across date resolution (day to year). The S. aureus data provide an impor-242

tant intermediate case in that estimates of each parameter change when transitioning243

from month to year resolution (see crossing of lines from month to year resolution in244
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the S. aureus column of Figure 2). These trends are in agreement with the hypothesis245

of decreasing date resolution causing increased bias where the resolution lost exceeds246

the average time for a substitution to arise. This occurs because date-rounding com-247

presses divergent sequences in time, driving a signal for higher rates of substitution248

and transmission locally to each temporal cluster of sampling times. This effect is249

less pronounced in the bacterial simulation conditions relative to the viral conditions,250

because the date resolution lost is a smaller fraction of the effective substitution time251

(average time to until substitution is ≈ 4 months and ≈ 28 months for S. aureus252

and M. tuberculosis conditions respectively, Table 2). In other words, the bacterial253

sequences clustered in time were on average less divergent than for the viral data,254

which is biologically realistic given that bacteria tend to accrue substitutions more255

slowly than viruses. There are also notable deviations from these general trends256

across date resolutions, simulation conditions, and tree priors that we attribute to257

the duration of the sampling intervals below.258
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Figure 2: Mean posterior estimates for parameters of interest for each simulated dataset
varying across date resolution. Individual lines track mean posterior estimates for each sim-
ulated dataset and boxplots are given to summarise the spread and direction of bias across
all simulated datasets at each date resolution. Rows correspond to individual parameters,
columns correspond to simulation conditions (underlying parameters matching each empir-
ical dataset), and colour corresponds to tree prior or reproductive number interval. Dashed
horizontal lines correspond to the true value under which each dataset was simulated. (A)
Mean posterior substitution rate across simulation scenarios. (B) Mean posterior tMRCA,
a measure of the age of the population driving the outbreak

. (C) mean posterior reproductive number.
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The coalescent exponential shows overall downwards bias in the substitution rate259

for the SARS-CoV-2 and H1N1 treatments at month resolution, while the birth-260

death exhibits upwards bias. Since the sampling times for each viral dataset are261

distributed over three months, date-rounding compresses samples within a month262

to one time, simultaneously increasing the time between samples across months and263

driving a signal for lower transmission and substitution rates between months. The264

different phylodynamic likelihood functions for each tree prior respond differently265

to this warped distribution of diversity over time with the coalescent exponential266

placing more weight on decreased rates of substitution rates while the birth-death267

favoured an increase. This can be explained by the birth-death drawing signal for268

increased transmission among coincident sampling times within each month, while the269

coalescent exponential instead conditions on sampling times (Volz and Frost, 2014).270

At the year resolution there is there is also lower bias in estimates of substitution rate271

for the coalescent exponential than the birth-death, however both models estimate272

upwards-biased substitution rates as year resolution. This is probably because year273

resolution clusters all sampling times to a single time, meaning a highly inflated rate274

of substitution is needed to model the artificial burst in diversity at one time for275

both tree priors - See Figure S2 to see sampling times compressed in time across date276

resolution for posterior trees. For all viral simulation conditions, the mean posterior277

tMRCA of each outbreak shifts inversely to the substitution rate. This is the result278
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of a well understood relationship among phylodynamic models where higher rates of279

evolution suggest shorter periods of evolution.280

The reproductive number for each viral dataset (R0) also changes markedly with281

decreasing date resolution under the birth-death, but not under the coalescent. For282

the birth-death, this is in agreement with temporal clustering of samples driving283

a signal for higher transmission rates. Conversely, estimates under the coalescent284

exponential remain near-identical at month resolution, which is again due to its con-285

ditioning on sampling times. Estimates of R0 for the SARS-CoV-2 settings under286

the coalescent exponential are also heavily biased downwards. This is probably due287

to high sequencing proportions violating the assumption of low sampling under the288

coalescent, thus leading to poorly fitting model in the first place.289

The S. aureus condition yields consistent estimates of substitution rate, tMRCA,290

and reproductive number (Re in this case) when days are rounded to the month (Fig-291

ure 2 S. aureus column). At year resolution the posterior substitution rate appears292

biased downwards. This can be explained by the two year sampling duration of the293

S. aureus condition, such that samples rounded to the year will be on average fur-294

ther apart in time than if dates are given to the month or day (Figure S2). This295

spacing of diversity in time likely drives the signal for lower substitution rates and296

an older outbreak in turn. There is no clear pattern in the direction of bias for Re1297

and Re2 at year resolution, though estimates deviate from those at month and day298
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resolution. Estimates for Re1 are also overall lower than their true value of 2.0, and299

this is attributable to inconsistent sampling over the duration of the outbreak which300

was previously demonstrated for other datasets with late sampling in Featherstone301

et al. (2021).302

The M. tuberculosis simulation condition effectively acts as a control, since it303

appears inert to date-rounding. This is expected because this dataset reflects longer304

simulation time, with temporal clustering less likely to inflate Re, and an average305

substitution time is longer than a year. As such, even rounding to the year is unlikely306

to drive a signal for increased evolutionary rate or a more recent origin time.307

Phylodynamic and phylogenetic terms from the total posterior likelihood also vary308

with decreasing date resolution (Figure S3). deviation also increases with lesser date309

resolution from month and year. This verifies that altered date resolution affects the310

likelihood manifold of each analysis, which is reflected in the different trends of bias311

in each parameter of interest.312

Empirical Results313

Broadly, analyses of the empirical datasets reproduce the patterns of bias in the sim-314

ulation study(Figure 3). That is, the reproductive number increases with decreasing315

date resolution along with an increase in the substitution rate and corresponding316

decrease in the tMRCA. There are a few exceptions to this trend that we consider317
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below and which we again attribute to the difference between simulated and empirical318

sampling time distributions.319
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Figure 3: Posterior distributions for parameters of interest estimated for each empirical
dataset. Date resolution is given on the horizontal axis and colour denotes tree prior. Esti-
mates for viral datasets at year-resolution are omitted because results deviate by implausible
orders of magnitude due to sampling times rounded to identical dates. (A) Posterior sub-
stitution rate across date resolutions. (B) Posterior tMRCA in units of months (m) or years
(y). (C) Posterior reproductive number on a log-transformed axis.

Phylodynamic and phylogenetic likelihoods also diverge where the loss in date320
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resolution exceed the average time for a substitution to arise (Figure 4). For both321

viral datasets, month and day posterior distributions of phylodynamic and phyloge-322

netic likelihood are diverged, while likelihoods overlap at all date resolutions for the323

M. tuberculosis data. The S. aureus data provide an intermediate case where only324

the posterior likelihoods for year-resolution differ. Together, these likelihood distri-325

butions support the hypothesis that date-uncertainty that is wider (in time) than the326

average time to one substitution causes a qualitative shift in the likelihood manifold327

for analyses under both birth-death based and coalescent tree priors.328
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Figure 4: Posterior phylodynamic likelihood against phylogenetic likelihood for each combi-
nation of empirical dataset and with colour corresponding to date resolution. Ellipses sur-
round the 95% highest posterior density region for each posterior. Both Phylodynamic and
phylogenetic likelihoods diverge between day and month resolution for the viral datasets,
while year resolution differs from month and day for the S. aureus data. Posterior likeli-
hoods all coincide for M. tuberculosis.
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H1N1329

Mean posterior R0 increases from day to month resolution for the birth-death (1.08 to330

1.14), yet remains near-identical for the coalescent exponential (1.14 to 1.13) (Table331

S1). The mean posterior substitution rate also decreases for both tree priors across332

day to month resolution (4.3× 10−3 to 3.9× 10−3 and 3.9× 10−3 to 3.2× 10−3 for the333

birth-death and coalescent exponential respectively) (Table S1). The posterior tM-334

RCA also differs between tree priors mirroring substitution rate, with a decrease from335

date to month resolution for the birth-death and an increase for the coalescent expo-336

nential. For the coalescent exponential, we can attribute the decrease in reproductive337

number and substitution rate from day to month resolution to samples being spread338

further in time (Figure S1), which drives the signal for and an older outbreak and339

lower transmission rates. While the same is true for the sampling distribution under340

the birth-death, the additional information it draws from identical sampling times as341

month-resolution likely inflates the mean posterior reproductive number despite the342

signal for a lower substitution rate and older outbreak.343

SARS-CoV-2344

Under the birth-death, the SARS-CoV-2 dataset behaves as expected, with an in-345

crease in posterior R0 from day to month rounding. In particular, rounding to the346

month results in a high, yet plausible value of R0 = 5.972 (Table S1). Under the347
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coalescent exponential, the mean posterior R0 remains near identical across day to348

month treatments (1.00 to 1.01 respectively). We again note that the coalescent ex-349

ponential is included for completeness for the SARS-CoV-2 dataset, but is not an350

appropriate choice of model in practice due to the near complete-sequencing of the351

original transmission cluster. Thus, poor model-fit is probably the cause of unrealistic352

estimates of R0.353

The mean posterior substitution rate under the birth-death increases over two-354

fold when rounding to the month (2.47 × 10−4 to 6.56 × 10−4, Table S1). Mean355

posterior tMRCA also increases from 0.15 years to 0.17 years from day to month,356

which contradicts the expectation of a decreased estimate of tMRCA under date-357

rounding. We again attribute these differences to the distribution of the empirical358

sampling times under date-rounding. Sampling for the SARS-CoV-2 dataset mainly359

occurred over August to September 2020, with most August samples originating later360

in the month (Figure S1). Rounding to 15th of August therefore made these samples361

appear older in time and likely contributed to the older origin under month-rounding.362

S. aureus363

For Re1 , the S. aureus dataset recapitulated the simulation study with month round-364

ing having a minimal effect, but year rounding inducing an upwards bias (mean365

values of 1.57, 1.56, 1.73 respectively)(Figure 3, Table S1). Re2 displays a similar366
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pattern with consistent estimates at day and month-rounding before a reduction at367

year rounding (0.66, 0.67, and 0.37 respectively). This result is consistent with the368

estimates an initial increase in growth rate in previous analyses of the dataset Volz369

and Didelot (2018).370

Mean posterior substitution rate and tMRCA remain identical across date resolu-371

tions (10−5 subs/site/year and a tMRCA of 30 years), despite the change in reproduc-372

tive numbers at year rounding. This is surprising given the change in posterior phy-373

lodynamic and phylogenetic likelihoods (Figure 4), and highlights that date-rounding374

can perturb the likelihood without predictable changes in parameters of epidemiolog-375

ical significance.376

M. tuberculosis377

The M. tuberculosis data recapitulate the outcome of the simulation study in be-378

ing robust to date-rounding. Posterior substitution rates and outbreak ages remain379

consistent across decreasing date resolution (1.02 × 10−7, 1.02 × 10−7, 9.86 × 10−8
380

(subs/site/time) and 21.7, 21.7, and 22.5 years respectively) (Table S1, Figure 3).381

We also infer that Re1 > Res across date-rounding conditions, coinciding with an382

earlier burst of transmission in agreement with Kühnert et al. (2018). However, Re1383

decreases slightly date date-rounding (mean posterior estimates of 2.77, 2.74, 2.66 for384

day, month and year rounding)(Table S1), while Re2 increases (1.4, 1.41, 1.53 from385
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day to year rounding). This was likely caused by the higher number of samples in the386

second sampling interval, from roughly 2002 to 2010, such that compressing sampling387

times drive drove a signal for higher transmission in the second interval with longer388

periods between sampling in the first interval at year resolution. Again, this shows389

that distribution of sampling times for empirical data, which is largely unpredictable,390

modulate the effects of date-rounding.391

Discussion392

The results of the simulation study and analyses of empirical data support our hypoth-393

esis that phylodynamic inference is most biased where the temporal resolution lost in394

date rounding exceeds the average time for one substitution to arise. In the both the395

simulation study and empirical analyses, the viral datasets (H1N1 and SARS-CoV-2)396

display the greatest bias in mean posterior reproductive number, substitution rate,397

and tMRCA when rounding to the month or year, with the average substitution time398

being less than one month in both simulation conditions. The S. aureus data pro-399

vide an intermediate case, with estimated parameters displaying bias when rounding400

dates to the year (average substitution time between the order of months to a year).401

Lastly, the M. tuberculosis data also provide supporting evidence in not displaying402

any notable bias between estimates at day, month, or year date-rounding. This is ex-403

pected because the average substitution time longer than a year in all M. tuberculosis404
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analyses.405

We therefore propose the average substitution time as a rough practical threshold406

after which genomic epidemiologists can invariably expect date-rounding to distort in-407

ference. Genomic epidemiologists can make this assessment by calculating the average408

substitution time, Ts, as Ts = [Genome Length (sites)×Evolutionary rate (subs/site/yr)]−1
409

and checking whether Ts <
1
12

(indicating substitutions arising faster than monthly)410

when justifying rounding to the day, or Ts < 1 (substitutions arising more than yearly)411

when justifying rounding to the month. In the more general terms, we propose that412

date rounding is problematic for fast-evolving RNA viruses, such as in the H1N1 and413

SARS-CoV-2 datasets. We urge others uploading data to repositories such as GISAID414

to include dates to the day where possible, and support the practice of including dates415

to the day on pathoplexus (pathoplexus.org). This will increase the added-value of416

phylodynamic analysis for future infectious disease threats. Rounding to the year is417

sufficient for slowly evolving bacteria such asM. tuberculosis. We suggest case-by-case418

assessment for pathogens with intermediate average substitution times, such as the S.419

aureus herein and other faster-evolving bacteria including Streptococcus, multi-drug420

resistant Escherichia coli, or Klebsiella pneumoniae (Gorrie et al., 2018, Sherry et al.,421

2022, Xie et al., 2024). In the specific cases of S. aureus and other high disease-burden422

bacteria with asymptomatic and/or community carriage, we suggest preserving dates423

as much as possible to recover maximal information given the additional work that424
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is often dedicated to screening samples. Finally, we note that genome samples with425

or without rounded dates reflect considerable efforts in the field to collect and pro-426

cess samples. In the case where only low-resolution dates are available, we do not427

discourage phylodynamic analyses, but instead encourage additional analyses to test428

the effects of rounded dates, such as by including priors on sampling ranges.429

We also strongly emphasise that this proposal is a rough guideline lacking rigor-430

ous mathematical derivation. Any degree of date-rounding may alter likelihood and431

parameter estimation in phylodynamic analyses. Other factors such as as the length432

of the sampling window, distribution of sampling times over this interval, and choice433

of tree prior also affect the direction and severity of bias when rounding dates.434

Shorter sampling intervals can also exacerbate the bias due to date-rounding.435

For example, in the SARS-CoV-2 data and simulation conditions, most sequences436

originated over one month with the remainder towards the end of each of the previous437

two months. Bias for these data was greater for each parameter compared to otherwise438

similar H1N1 data, which had a more even distribution of sampling over three full439

months. This result is in line with previous results for ancient DNA data showing440

that date-rounding has negligible effects for timescales of millennia or longer, which441

we expect to span the average substitution time several-fold (Molak et al., 2013). This442

emphasises the importance of accurate dates for phylodynamic datasets of emerging443

pathogens sequenced over shorter timescales, where results are likely to be the most444
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urgent and reflect shorter sampling intervals.445

The choice of tree prior also affects bias when rounding dates. For example, the446

coalescent exponential tended to infer decreased substitution rates while the birth-447

death favoured increased substitution rates across simulated and empirical viral data.448

The inverse trend also arose for the tMRCA. This is because the birth-death draws449

additional information from clustered sampling times, which serves to elevate rates450

of substitution and transmission, while the coalescent conditions on these and relies451

more on the longer duration between sampling times at month resolution for both452

datasets.453

Taken together, the results form the simulation study and empirical data show that454

although date-rounding biases epidemiological estimates in a theoretically predictable455

directions (upwards for transmission and substitution rates, downwards for tMRCA),456

the intensity of the bias is difficult to predict and varies with the distribution and457

span of sampling times as well as tree prior. We conclude that sufficiently accurate458

sampling times are essential where phylodynamic insight is needed to understand459

infectious disease epidemiology and evolution. There does not appear to be an clear460

way to adjust for the bias caused otherwise. Accurate sampling times will be essential461

for employing phylodynamics amid future infectious disease threats.462

We also acknowledge that while accurate sampling times are essential for reliable463

phylodynamic results, it may pose an unacceptable level of risk to patient confiden-464
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tiality to release sampling times. We therefore emphasise the importance of methods465

that prioritise both patient confidentiality and data transparency and finish by dis-466

cussing potential future solutions.467

Translating dates by random seeds468

The functional component of phylodynamic data are the differences among genome469

sequences and among dates, rather than their absolute values. It may therefore be470

possible to protect patient confidentiality while sharing accurate dates by translating471

dates uniformly by a random number. This would protect the true sampling dates472

while preserving the relative times between them. For example, if the sampling times473

in a dataset of 3 genomes are 2000, 2001 and 2002, then data providers may randomly474

draw a number of 1000, which is kept secret, to shift dates. The genome-associated475

dates 2000, 2001 and 2002 are then shared as 3000, 3001 and 3002. While currently476

implausible, these translated dates are usable in phylodynamic analyses and preserve477

the distance between sampling times. Once results are returned the data provider478

can internally account for the translation in any estimated ages, such as node ages or479

the tMRCA, by subtracting 1000. For example if the estimated age of the outbreak480

(taken as the tMRCA) was 5 years before the most recent sample, then the data481

provider can privately estimate the outbreak’s onset as 1997 (2002 - 5), while those482

conducting the analysis externally can only estimate the relative age of 5 years. In483
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the same way, intervals of transmission parameters such as Re can be placed with484

respect to the true sampling times. Rates, such as growth or infection rates can also485

be accurately estimated via this method since these are not biased by shifting dates486

uniformly in time.487

Distributed computing488

Approaches based on distributed computing, where data are analysed across remote489

servers, also offer promise for maximising data transparency and patient confiden-490

tiality. For example, Santos et al. (2022) recently developed a method to estimate491

phylogenetic trees from private genome data using distributed computing and quan-492

tum crytographic protocols. Routine phylodynamic analysis for genomic surveillance493

may also benefit from adopting protocols from so-called swarm learning approaches494

that allow artificial intelligence models in precision medicine to be trained across495

distributed datasets (together comprising a swarm) (Warnat-Herresthal et al., 2021).496

Such approaches are in general complementary with hub-and-spoke networks, which497

are commonly used for storing sensitive pathogen genome data in national reposito-498

ries (Hoang et al., 2022). We remain optimistic that future advances in distributed499

computing can eliminate the need for date-rounding in phylodynamic analysis.500
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Figure S1: The number of samples over time for each empirical dataset. Date-rounding has
the effect of moving each sampling within a month or year to the middle of that month or
year (15th of the month or June 15th of the year).
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Figure S2: Desnsitrees (overlayed posterior trees) for empirical data with columns corre-
sponding to pathogen under each combination of date resolution and tree prior. For the
H1N1 and SARS-CoV-2 treatments, Year resolution causes trees to collapse to instanta-
neous bursts.
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Figure S3: Adjusted phylodynamic likelihood against adjusted phylogenetic likelihood with
panels corresponding to each simulation condition. Points correspond to mean posterior
likelihood for each simulated dataset under each simulation condition. Colour corresponds
to date resolution. Likelihoods are adjusted by subtracting the mean phylodynamic or phy-
logenetic likelihood at Day resolution from each the means under Month and year resolution.
Resulting points therefore show the difference phylodynamic and phylogenetic likelihoods
due to date-rounding with the point (0, 0) representing likelihood at day resolution for each
dataset. Month resolution generally results in smaller differences that Year resolution, sug-
gesting coarser date resolution results in more perturbed likelihoods. There is also generally
more error in phylodynamic likelihood than phylogenetic likelihood.
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Table S1: Mean posterior estimates of substitution rate and tMRCA for empirical data with
95% HPD in brackets. The lower table gives mean posterior estimates of R• for empirical
data with 95% HPD in brackets.

Tree Prior Resolution Substitution Rate (subs/site/yr) tMRCA

H1N1 BD Day 4.31e-3 (3.7e-3, 4.9e-3) 3.67e-1 (3.3e-1, 4.2e-1)
H1N1 BD Month 3.9e-3 (3.2e-3, 4.6e-3) 3.53e-1 (3.1e-1, 4.1e-1)
H1N1 CE Day 3.87e-3 (3.2e-3, 4.5e-3) 4.25e-1 (3.6e-1, 5.0e-1)
H1N1 CE Month 3.17e-3 (2.6e-3, 3.8e-3) 4.59e-1 (3.8e-1, 5.6e-1)

SARS-CoV-2 BD Day 2.47e-4 (1.1e-4, 4.5e-4) 1.45e-1 (1.4e-1, 1.5e-1)
SARS-CoV-2 BD Month 6.56e-4 (3.3e-4, 1.1e-3) 1.7e-1 (1.7e-1, 1.7e-1)
SARS-CoV-2 CE Day 2.37e-4 (9.1e-5, 4.7e-4) 2.03e-1 (1.4e-1, 3.6e-1)
SARS-CoV-2 CE Month 4.34e-5 (4.4e-6, 1.4e-4) 1.6 (2.9e-1, 5.9)

S. aureus BD Day 1e-5 (1e-5, 1e-5) 3e+01 (3e+01, 3e+01)
S. aureus BD Month 1e-5 (1e-5, 1e-5) 3e+01 (3e+01, 3e+01)
S. aureus BD Year 1e-5 (1e-5, 1e-5) 3e+01 (3e+01, 3e+01)

M. tuberculosis BD Day 1.02e-7 (6.5e-8, 1.4e-7) 2.17e+01 (1.7e+01, 3.2e+01)
M. tuberculosis BD Month 1.02e-7 (6.6e-8, 1.4e-7) 2.17e+01 (1.7e+01, 3.2e+01)
M. tuberculosis BD Year 9.86e-8 (6.2e-8, 1.4e-7) 2.25e+01 (1.8e+01, 3.4e+01)

Tree Prior Resolution R0 Re1 Re2

H1N1 BD Day 1.08 (1.1, 1.1) - -
H1N1 BD Month 1.14 (1.1, 1.2) - -
H1N1 CE Day 1.14 (1.1, 1.2) - -
H1N1 CE Month 1.13 (1.1, 1.2) - -

SARS-CoV-2 BD Day 1.2 (9.3e-1, 1.6) - -
SARS-CoV-2 BD Month 5.85 (3.7, 9.0) - -
SARS-CoV-2 CE Day 1 (9.6e-1, 1.0) - -
SARS-CoV-2 CE Month 1.01 (9.8e-1, 1.1) - -

S. aureus BD Day - 1.57 (1.5, 1.7) 6.56e-1 (5.1e-1, 8.0e-1)
S. aureus BD Month - 1.56 (1.5, 1.7) 6.78e-1 (5.4e-1, 8.3e-1)
S. aureus BD Year - 1.73 (1.6, 1.8) 3.71e-1 (1.9e-1, 5.4e-1)

M. tuberculosis BD Day - 2.77 (5.8e-1, 5.3) 1.4 (7.2e-1, 2.7)
M. tuberculosis BD Month - 2.74 (5.7e-1, 5.0) 1.41 (7.4e-1, 2.7)
M. tuberculosis BD Year - 2.66 (4.6e-1, 5.1) 1.53 (8.1e-1, 2.9)
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