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Abstract:  

Background. Despite the increasing disparity between the number of patients awaiting kidney 

transplants and the availability of deceased donor kidneys, a significant number of donated kidneys 

go unused. Early identification of organs at high risk of nonuse can facilitate effective allocation 

interventions, ensuring these organs are offered to patients who could potentially benefit from 

them. While several machine learning models have been developed to predict nonuse risk, the 

complexity of these models compromises their practical implementation. Methods. We propose 

implementable nonuse risk prediction models that consist of a minimal set of variables, including 

the Kidney Donor Risk Index (KDRI), along with factors selected by machine learning models or 

transplantation experts. Our approach takes into account the influence of Organ Procurement 

Organization (OPO) behavior on kidney disposition. Results. The proposed models demonstrate 

competitive performance compared to more complex models that involve a large number of 

variables. Importantly, they maintain simplicity and interpretability. Conclusions. Our results 

provide accurate risk predictions, offer valuable insights into key factors contributing to kidney 

nonuse, and underscore significant variations among OPOs in the allocation of hard-to-place 

kidneys. These findings can inform the design of effective organ allocation interventions, 

increasing the likelihood of transplantation for hard-to-place kidneys. 
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1 Introduction 

Kidney transplantation is the gold standard treatment for patients with end-stage renal disease. 

Nearly 80% of kidneys are recovered from deceased donors, however a significant challenge 

remains: almost 90,000 U.S. patients stay on the waiting list, while one out of every four donated 

kidneys that are recovered for transplantation go unused.1–3 Perceived organ quality plays a crucial 

role in the alarming nonuse rate, as does the intricacies of appropriately matching available organs 

with suitable recipients.4 To alleviate such significant discrepancies, mechanisms to expeditiously 

match donated organs at higher risk of nonuse with patients who may potentially benefit from 

receiving them emerge as a pressing need.5,6 

In current practice, to increase the utilization and expedite the placement of “hard-to-place” 

kidneys, organ procurement organizations (OPOs) can deviate from the match-run process and 

extend out-of-sequence offers to transplant centers. The prevalence of such offers has recently 

increased because latest updates in the kidney allocation system inadvertently created delays in 

local kidney placements.7 Without defined guidelines, allocation exceptions may amplify the 

existing inequalities in organ access.8,9 Thus, predicting which kidneys require additional effort or 

interventions for successful placement is crucial for making equitable and transparent allocation 

decisions. 

The Kidney Accelerated Placement (KAP) initiative, launched in July 2019, aimed at 

identifying hard-to-place kidneys and channeling them to transplant centers with a history of 

accepting such organs.3,10 However, the KAP project failed to increase organ utilization due to: (i) 

a vague definition of "hard-to-place" kidneys, and (ii) delayed acceleration of placement for such 
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kidneys until they had been rejected by multiple local and regional transplant programs.11 Our 

study addresses these two shortcomings by proposing machine learning models that can accurately 

identify kidneys at high risk of nonuse either before the beginning of the match run process or 

during its early stages, enabling timely interventions. 

The Kidney Donor Risk Index (KDRI) and Kidney Donor Profile Index (KDPI) serve as 

mainstays for clinicians and transplant decision-makers for evaluating kidney quality and 

predicting post-transplant longevity, both of which subsequently impact the likelihood of offer 

acceptance.11,12 KDRI is a relative graft failure risk metric, and KDPI maps KDRI to a cumulative 

percentage scale. These indices have been used by transplant policymakers to assess the nonuse 

risk of deceased donor kidneys when designing interventions to mitigate the alarming rates of 

organ nonuse.13,14 The KAP project, for example, leveraged minimum 80% KDPI (slightly 

Figure	1	Percentage	of	deceased	donor	kidneys	recovered	for	transplantation	between	2016	
and	2021	that	are	not	utilized	(light	gray)	or	transplanted	(dark	gray)	with	respect	to	KDPI 
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deviating from the conventional 85% threshold) as a primary criterion for triggering accelerated 

placement interventions.13 However, using KDPI alone for predicting nonuse risk is fallible since 

KDPI was not designed for this purpose. As illustrated in Figure 1, many kidneys with high KDPI 

find recipients, while a significant portion with KDPI<85% go unused. 

There exists research advocating for nonuse risk modeling to supplant the KDPI 85% 

benchmark.15 Massie et al.16 and Marrero et al.17 developed logistic regression models that 

outperform KDRI in nonuse risk prediction. Barah & Mehrotra18 proposed machine learning 

models, such as random forest, boosting tree, and neural networks. These models demonstrated 

good predictive performance; however they had three major drawbacks. First, they overlooked the 

potential benefits of including KDRI/KDPI as a variable. Although these metrics, in isolation, may 

not provide a reliable nonuse risk assessment, their widespread acceptance and usage in clinical 

settings cannot be dismissed. Second, they used a multitude of variables, impeding their 

interpretability and implementability.19,20 Finally, they focused on donor and organ characteristics, 

ignoring the impact of the OPO characteristics on the utilization likelihood of kidneys.21,22 

We propose implementable and parsimonious machine learning models to predict the nonuse 

risk of kidneys during the match run. Harmonizing KDRI with a minimal number of variables, the 

proposed models can help improve kidney utilization rates by informing expedited placement 

interventions in a timely manner. Our computational experiments demonstrate the competitive 

performance of the proposed models and identify donor and OPO-level factors affecting the 

utilization of hard-to-place organs.  
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2  Materials and Methods 

2.1 Data 

Our data set, provided by the United Network for Organ Sharing, includes records from 61,320 

deceased donors, between January 2016 and September 2021, who had at least one kidney 

recovered for transplantation. Each record contains 530 variables, encompassing donor 

demographic characteristics, physical properties, and relevant medical information, such as 

laboratory values and comorbidities. Furthermore, we obtained Potential Transplant Recipient 

(PTR) data for the same time period, which captures all kidney offers made to patients on the US 

waiting list. The PTR data logs the match run creation time for each donor, which was used to 

determine ischemia time. We removed 110 donors missing a match run creation time from the 

analysis. 

We identified an initial list of variables linked to kidney nonuse in the literature.16–18 This 

list was further augmented by kidney transplant experts on our team, leading to the list of 36 

variables included in our analysis (Table 1). These variables were used to generate an observation 

vector for each kidney, where each kidney from the same donor was treated as a separate 

observation (Figure 2).  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.11.24313488doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.11.24313488
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

7 
 
 
 

Table	1:	The	results	of	the	univariate	analysis	(N	=	117	747).	For	continuous	variables,	the	mean	value	is	reported.	For	
binary	and	categorical	variables,	the	percentage	of	kidneys	in	each	category	is	reported.	The	highlighted	categories	are	used	
as	the	reference	group	when	calculating	the	odds	ratio	for	non-utilization.		

Variable Name Category Mean/Percent Odds 
Ratio 95% CI 

Age (year)  40.48 1.07 1.07, 1.07 
Height (cm)  169.33 1.00 0.99, 1.00 
BMI (kg/𝑚!)  28.37 1.03 1.03, 1.04 

Creatinine (mg/dL)  1.43 1.39 1.38, 1.40 
Warm Ischemia Time 

(hrs) 
 0.01 2.30 2.00, 2.65 

Initial Cold Ischemia 
Time (hrs) 

 0.23 1.06 1.05, 1.07 

KDRI  1.35 16.50 15.90, 17.10 

Ethnicity 

Other 68.83%   

Asian 2.52% 1.14 1.04, 1.25 
African 

American 14.40% 1.23 1.18, 1.28 

Hispanic 14.25% 0.80 0.76, 0.83 

Blood Type 

O 47.75%   

AB 3.42% 1.32 1.23, 1.42 
B 11.65% 1.05 1.00, 1.10 
A 37.18% 1.04 1.01, 1.08 

Cause of Death 

Other 3.17%   

CVA/Stroke 25.44% 1.86 1.71, 2.02 
Anoxia 43.82% 0.89 0.82, 0.97 
Trauma 27.57% 0.47 0.43, 0.51 

OPO Clusters 

Cluster 1 43.76%   

Cluster 2 24.67% 0.83 0.80, 0.86 
Cluster 3 6.14% 0.72 0.67, 0.77 
Cluster 4 24.33% 1.34 1.30, 1.39 
Cluster 5 1.10% 0.83 0.72, 0.96 

Diabetes Status 

Yes 
[>0Years] 10.66% 4.63 4.45, 4.81 

Yes 
[>5Years] 5.24% 5.78 5.49, 6.09 

Yes 
[>10Years] 3.19% 6.47 6.05, 6.92 

Glomerulosclerosis 

>5 20.44% 8.13 7.87, 8.39 

>10 11.96% 12.10 11.60, 12.50 
>15 7.89% 18.00 17.10, 18.90 
>20 5.41% 26.30 24.60, 28.20 

Interstitial Fibrosis Level 
Absent 68.65%   

Minimal 14.77% 2.84 2.73, 2.95 
Advanced 16.58% 7.53 7.26, 7.80 

Vascular Changes Level 
Absent 74.15%   

Minimal 10.57% 2.66 2.55, 2.78 
Advanced 15.28% 6.18 5.97, 6.40 

Biopsy Indicator 
No 44.93%   

Yes 55.07% 6.48 6.24, 6.74 

Variable Name Category Percent Odds 
Ratio 95% CI 

Gender 
Male 61.12%   

Female 38.88% 1.35 1.31, 1.39 

Dual Kidney 
No 97.95%   

Yes 1.04% 2.72 2.42, 3.05 

Enbloc Kidney 
No 98.99%   

Yes 1.01% 0.77 0.65, 0.89 

DCD Donor 
No 76.47%   

Yes 23.53% 1.21 1.17, 1.25 

History of Cancer 
No 96.97%   

Yes 3.03% 2.68 2.50, 2.87 

History of Smoking 
No 78.67%   

Yes 21.33% 2.11 2.04, 2.18 

History of Hypertension 
No 67.06%   

Yes 32.94% 4.35 4.22, 4.48 

History of 
Myocardial Infraction 

No 95.86%   

Yes 4.14% 3.16 2.98, 3.35 

History of Cocaine 
No 77.43%   

Yes 22.57% 0.86 0.83, 0.89 

History of I.V. Drug 
No 86.95%   

Yes 13.05% 0.77 0.73, 0.80 

History of Other Drugs 
No 51.93%   

Yes 48.07% 0.63 0.61, 0.65 

Insulin 
No 64.34%   

Yes 35.66% 1.23 1.20, 1.27 

CMV Status 
Negative 38.37%   

Positive 61.63% 1.23 1.19, 1.26 

HBV Core 
Antibody Status 

Negative 95.17%   

Positive 4.83% 2.39 2.26, 2.53 

Risk for Blood-Borne 
Disease Transmission 

No 75.14%   

Yes 24.86% 0.76 0.73, 0.79 

Protein in Urine 
No 48.45%   

Yes 51.55% 1.45 1.41, 1.49 

HCV NAT Results 
Negative 94.57%   

Positive 5.43% 1.75 1.65, 1.84 

Arginine Vasopressin 
With 24hrs pre-Clamp 

No 41.06%   

Yes 58.94% 0.59 0.57, 0.61 

Coronary Angiogram 
No 78.79%   

Yes 21.21% 0.52 0.52, 0.57 

Pump 
No 60.88%   

Yes 39.12% 0.86 0.83, 0.88 
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2.2 Variable Creation 

We created additional variables using some of the 36 variables included in our data. Specifically, 

we computed Cold Ischemia Time (CIT) and Warm Ischemia Time (WIT) for each kidney, since 

prolonged CIT and WIT adversely affect graft function,23,24 and transplant centers carefully 

evaluate these metrics when responding to kidney offers. For kidneys from Donation after Cardiac 

Death (DCD) donors, we calculated the WIT as the difference between agonal time and the clamp 

time. We calculated the CIT at the first match run creation (referred to as CIT onset) as the gap 

between the clamp time and the first match run creation time. CIT onset was set to zero if the 

clamp time is after the first match run creation. 

	

Figure	2	The	process	for	creating	the	kidney-level	data	set.	Numbers	inside	the	square	brackets	and	parentheses	
indicate	the	number	of	donors	and	kidneys,	respectively. 
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En-bloc kidney transplantation is a procedure where two small kidneys from a donor 

weighing less than 18 kg are transplanted into one recipient.25 Dual (or 2-for-1) kidney 

transplantation involves transplanting both kidneys from a donor weighing at least 18 kg, which 

are individually less suitable for transplantation.25 To account for the disparities between the 

nonuse risk of en-bloc and dual kidneys, we created two indicator variables, namely isEnbloc and 

isDual.  

Finally, we used the k-means method26,27 to cluster the OPOs based on two criteria: (i) the 

transplantation percentage of all kidneys they recovered, and (ii) the transplantation percentage of 

kidneys they recovered with KDPI greater than or equal to 85%. We created indicator variables 

for each cluster to study the effect of OPO characteristics on the utilization of kidneys. 

2.3 Missing Data Imputation and Data Exclusion 

Our data included variables with unspecified categories or categories that were deemed 

inconsequential to kidney disposition (e.g., the distinction between blood types A, A1, and A2). 

We consolidated those categories (see Table A1 in the online supplement). We further processed 

the data by replacing creatinine values above 20 with 20 for six kidneys; by computing missing 

BMI values using available donor weight and height; and by imputing missing WIT and CIT onset 

values using median observed values. After these steps, 1,406 kidneys (1.2%) with missing data 

were excluded from the analysis. 

We excluded two kidneys with more than 24 hours WIT as outliers to avoid bias in our 

results. Furthermore, kidneys that were not used for reasons unrelated to their characteristics were 

excluded. In particular, we excluded kidneys with nonuse reasons “not as described” (0.05% of 
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kidneys, 60 kidneys), or “recipient determined to be unsuitable in the operating room” (0.06% of 

kidneys, 76 kidneys). Lastly, categories with less than 20 observations were removed, as detailed 

in Table A1. 

2.4 Model Development for Kidney Nonuse Risk Prediction 

We employed two machine learning models for predicting nonuse risk: logistic regression (a 

parametric model) and random forest (a non-parametric model). For the logistic regression, non-

linear effects of continuous variables were accounted for using linear splines (refer to Table A2 in 

the online supplement). We designed two classes of kidney nonuse risk prediction models:  

Simplified Risk Models: These models use KDRI alongside a minimal set of variables, 

streamlining the risk assessment. For random forest (RF) models, initial training was done using 

all of the original variables (i.e., variables included in the UNOS data and created variables 

explained in Section 2.2) and KDRI. We then identified the top five, seven, and nine variables 

based on permutation importance. Models were then re-trained with these variables and KDRI. 

For logistic regression (LR) models, we included both the original and spline variables and 

compared the coefficients of normalized variables to identify the top ones. 

Comprehensive Risk Models: Serving as a benchmark, these models excluded KDRI to 

avoid any implied, intrinsic biases or shortcomings of this metric. The RF model used all of the 

original variables, while the LR model used both the original and spline variables. The efficacy of 

simplified and comprehensive risk models was compared. Additionally, we evaluated the 

performance of our models against a benchmark nonuse risk prediction model that uses only 

KDRI, directly correlating it with nonuse risk, which we refer to as KDRI alone.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.11.24313488doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.11.24313488
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

11 
 
 
 

We performed five-fold stratified cross-validation and evaluated the performance of the 

proposed models using the receiver operating characteristic (ROC) and the precision-recall (PR) 

curves. The area under the ROC curve (AUROC) measures the model's ability to distinguish 

between transplanted and unused kidneys. Precision and recall are critical metrics for prediction 

performance. Precision is equivalent to Positive Predictive Value (PPV); representing the ratio of 

correctly predicted unused kidneys to the total number of kidneys predicted as unused. Recall is 

equivalent to sensitivity; representing the ratio of correctly predicted unused kidneys to the actual 

number of unused kidneys. There is a trade-off between precision and recall; the proposed models 

can achieve higher recall at the expense of more false positives (i.e., transplanted kidneys predicted 

as unused) by lowering the prediction threshold. We plotted the PR curve for each model to 

visualize this trade-off and calculated the area under the PR curve (AUPRC). 

2.5 Prediction Scenarios 

We aim to predict kidney nonuse risk either before the beginning of the match run or during its 

early stages. While the majority of variables considered in our analysis are available pre-match-

run, biopsy-related variables like glomerulosclerosis, interstitial fibrosis, and vascular change 

usually become available during the match run. The role of these variables in the kidney offer 

response decisions can be paramount,4 and more than half of the deceased donor kidneys undergo 

biopsy.28 We developed models with and without biopsy-related variables. In practice, decision-

makers can readily utilize the models without biopsy-related variables before the beginning of the 

match run, and pivot to the ones with such variables once biopsy data become available. 
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2.6 Co-Design of Nonuse Risk Prediction Models 

Risk prediction models developed by machine learning methods may prioritize certain variables 

over others based on statistical patterns in the data, which may not always align with clinical 

relevance. One reason for this is that the training data may not be totally representative of the 

population.36 To enhance the clinical relevance and interpretability of the proposed risk prediction 

models, we embarked on a co-design process with kidney transplant experts in our team. This 

collaborative effort entailed a systematic evaluation and potential substitution of variables. More 

precisely, transplant experts scrutinized the variables chosen by the machine learning algorithms 

and suggested replacing those deemed less relevant in kidney utilization with alternative variables. 

We assessed each recommended variable's impact on prediction performance to ascertain the final 

set of model variables. The co-design approach fosters a deeper understanding of the clinical 

context, resulting in models that are not only accurate but also easily interpretable and actionable 

by healthcare providers.  

3 Results 

3.1 Study Population and Variable Analysis 

Figure 2 outlines the data preparation process. Starting with 119,334 procured kidneys from 61 

210 donors, we implemented four exclusion criteria removing 1,587 kidneys (1.33%). The final 

dataset consisted of 94,057 transplanted kidneys (79.9%) and 23,690 unused kidneys (20.1%). 

Figure 3 demonstrates the k-means clustering of the 58 OPOs into five groups based on the 

transplantation percentage of all kidneys and the transplantation percentage of hard-to-place 

(KDPI ≥ 85%) kidneys they recovered. 
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Univariate analysis results (i.e., single factor analysis for nonuse) are displayed in Table 1. 

All variables exhibited statistically significant odds ratios for non-utilization. For instance, all else 

equal, with each hourly increment in WIT and CIT onset, we expect to see a 130% and 6% increase 

in the odds of nonuse as indicated by their odds ratios of 2.30 and 1.06, respectively. 

3.2 Model Prediction Performance 

Figure A1 presents the ROC and PR curves. The models that use KDRI and nine additional 

variables (simplified risk models) matched the performance of models trained on the entire variable 

set (comprehensive risk models). Figure 4 shows the performance of the models in the same plot 

for comparison. The RF model has the best performance, followed by the LR model- both 

exhibiting clearly superior performance compared to using KDRI alone. Figure A2 and Figure A3 

show the impact of biopsy results on model performance: the performance of the LR model 

Figure	3	Impact	of	OPO	centers	on	the	disposition	of	hard-to-place	kidneys.	Categorizing	OPO	centers	into	
five	clusters	to	account	for	their	impact. 
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markedly improves whereas the performance of the RF model remains comparable. Table A3 

reports the number of false positives avoided by the proposed models compared to using KDRI 

alone. For example, the RF model can precisely predict and potentially increase the transplantation 

likelihood of nearly 12,000 unused kidneys at a recall (sensitivity) level of 0.5. Concurrently, this 

model would prevent the misclassification of over 5,500 transplanted kidneys compared to using 

KDRI alone, mitigating thousands of needless interventions. The efficacy of the proposed 

prediction models becomes increasingly evident at higher recall levels. 

3.3 Selected Variables 

In the rest of this manuscript, we focus on the simplified RF model that includes KDRI and nine 

additional variables since its performance is clearly better than the simplified LR model with the 

same size. We denote the simplified RF model excluding the biopsy information as the baseline 

model. Table 2 displays the model variables in two prediction scenarios, including and excluding 

biopsy information. The variables in each column are reported in the order of their permutation 

importance. Creatinine, age, BMI, history of smoking, and height are chosen in both scenarios. In 

Figure	4	The	ROC	(left)	and	PR	(right)	curves	for	the	simplified	models	incorporating	KDRI	and	nine	additional	(non-biopsy-
related)	variables.	The	area	under	the	curve	of	each	model	is	reported	in	the	legend. 
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Table	2:	Variable	selected	by	proposed	simplified	risk	models	when	excluding	and	including	biopsy-related	variables.	
Variables	that	are	commonly	selected	in	both	scenarios	are	given	in	bold.	

 

 

 

 

 

 

 

 

 

 

the model with biopsy information, glomerulosclerosis, interstitial fibrosis, and the biopsy 

indicator replaced the history of hypertension, coronary angiogram and DCD indicator variables. 

3.4 The Role of OPOs in the Disposition of Kidneys 

The clustering analysis in Figure 3 demonstrated the differences between OPOs’ performance on 

kidney disposition. Furthermore, OPO cluster indicator variables had significant (unadjusted) odds 

ratios for nonuse in Table 1. To further assess the impact of OPO cluster variables, we computed 

their odds ratios for nonuse by adjusting for the nonuse risk predicted by the baseline model. Table 

A4 displays these adjusted odds ratios when using OPO cluster 1 as the reference group. Except 

for cluster 5, which has fewer observations than other clusters, all other clusters yielded significant 

risk-adjusted odds ratios for nonuse. The findings presented in Table A4 reveal, for example, that 

 Baseline Model Model With Biopsy Information 

1 KDRI KDRI 

2 Creatinine Creatinine 

3 Age Age 

4 History of Hypertension Glomerulosclerosis 

5 Arginine Biopsy Performed 

6 BMI BMI 

7 History of Smoking Interstitial Fibrosis 

8 DCD History of Smoking 

9 Coronary Angiogram Height 

10 Height Arginine 
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a kidney from an OPO in cluster 3 (cluster 4) is significantly less (more) likely to go unused 

compared to a similar kidney with the same predicted nonuse risk from an OPO in cluster 1. 

3.5 Factors Increasing the Transplantation Likelihood of Kidneys at High Risk of Nonuse 

In this section, we analyze the factors which increase the transplantation likelihood of hard-to-

place kidneys. These factors can inform actionable interventions to improve the transplantation 

likelihood of such kidneys. We consider a kidney as hard-to-place if its risk prediction exceeds 

0.75; when using this probability threshold, the number of identified kidneys that were not used 

(i.e., true positives) mirrors that were identified using the KDPI 85% benchmark. Specifically, of 

the 12 916 kidneys identified as hard-to-place, 10,845 (84%) were not used, while 2,071 (16%) 

were transplanted. We perform a univariate analysis among hard-to-place kidneys by adjusting for 

the nonuse risk. The results of this analysis are presented in Table 3, spotlighting factors that are 

associated with a higher transplantation likelihood of hard-to-place kidneys.  

Table 3: Top significant factors that are associated with increased transplantation likelihood for hard-to-place kidneys. The odds 
ratio is adjusted for the nonuse risk. 

Variable Name 

Adjusted Odds 

Ratio for 

Transplant 

95% CI 

Percentage of 

transplanted hard-to-place 

kidneys when the variable 

value is YES 

Percentage of 

transplanted hard-to-place 

kidneys when the variable 

value is NO/Baseline 

Enbloc Kidney 5.88 1.76, 22.67 63% 16% 

Dual Kidney 5.31 3.98, 7.07 52% 16% 

OPO Cluster3 

(Baseline: OPO Cluster1) 
2.04 1.65, 2.51 28% 16% 

Pump 2.01 1.82, 2.21 23% 12% 

OPO Cluster2 

(Baseline: OPO Cluster1) 
1.13 1.00, 1.28 19% 15% 
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3.6 Outcomes of the Co-Design Experiment 

Kidney transplantation experts in our team identified three variables of the baseline model, history 

of smoking, coronary angiogram, and height, as less relevant from a clinical perspective and 

recommended six potential alternative variables to replace them: OPO cluster, history of diabetes, 

cause of death, insulin, protein in urine, and pump. Similarly, for the model with biopsy 

information, eight potential variables were suggested (OPO clusters, history of diabetes, cause of 

death, insulin, protein in urine, pump, history of hypertension, and DCD indicator) to replace the 

two that were deemed less relevant (history of smoking and height). We evaluated 20 alternatives 

(six choose three) for the baseline model and 28 alternatives (eight choose two) for the model with 

biopsy information and selected the ones with the highest AUROC and AUPRC. Table 4 displays 

variables in these models. The modifications suggested by transplant experts did not compromise 

the predictive performance of our models; the AUC values remained comparable, and even 

increased slightly, for both the baseline model (0.905 versus 0.904 for AUROC and 0.767 versus 

0.759 for AUPRC) and the model with biopsy information (0.905 versus 0.903 for AUROC and 

0.771 versus 0.762 for AUPRC). 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.11.24313488doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.11.24313488
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

18 
 
 
 

Table	4:	Variables	of	the	random	forest	nonuse	risk	prediction	model	after	the	co-design.	Variables	that	are	added	to	the	
model	during	the	co-design	process	are	in	bold.	

 Baseline Model Model With Biopsy Information 

1 KDRI KDRI 

2 Creatinine Creatinine 

3 Age Age 

4 History of Hypertension Glomerulosclerosis 

5 Arginine Biopsy Performed 

6 BMI BMI 

7 DCD Interstitial Fibrosis 

8 OPO Cluster Arginine 

9 Cause of Death OPO Cluster 

10 Pump Pump 

4 Discussion 

Our study proposes kidney nonuse risk prediction models consisting of KDRI and nine additional 

variables. By achieving a balance between simplicity and performance, these models address a 

crucial gap in the organ allocation system—the need for easy-to-use yet accurate kidney nonuse 

risk prediction models. The proposed models can provide transparent and interpretable decision 

support to initiate interventions and manage allocation exceptions within the match-run system, 

and hence increase the transplantation likelihood of hard-to-place kidneys. Our simplified models 

significantly outperform using KDRI alone in predicting kidney nonuse risk, and exhibit 

performances on a par with substantially larger models with more variables.  

If biopsy results are available, models with these variables can be used for nonuse risk 

prediction. However, the inclusion of biopsy information does not markedly enhance the 
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performance of the RF models, suggesting that their predictive capability is robust regardless of 

the availability of such data. This challenges the conventional understanding in the literature that 

biopsy information is indispensable for nonuse risk prediction.4,29 The impact of biopsy results on 

the utilization of kidneys does, however, manifest clearly in the LR models. That is, the 

significance of biopsy results for nonuse risk prediction varies across modeling approaches.  

In addition to KDRI, terminal creatinine level, age, BMI, and use of arginine vasopressin 

within 24 hours pre-cross clamp are significant predictors of kidney nonuse risk. If biopsy is 

performed, our models also utilize variables such as interstitial fibrosis and glomerulosclerosis, 

aligning well with previous studies that emphasized the role of glomerulosclerosis in kidney non-

utilization.30,31 If the biopsy results are not available, then the models utilize variables such as the 

DCD indicator and history of hypertension. It is worth noting that some of the variables used in 

our models, such as age, creatinine, and history of hypertension are also considered in KDRI 

calculation. The predictive performance gap between the proposed models and using KDRI alone 

emphasizes the importance of recalibrating KDRI for nonuse risk prediction. 

 Our prediction results reveal the significance of OPO-related factors in the utilization of 

hard-to-place kidneys. We identify a cluster of OPOs that demonstrate exemplary performance in 

placing such kidneys. The inclusion of OPO-related factors in our risk prediction models is not 

just a technical innovation but a call to action for the transplantation community to analyze and 

disseminate the successful strategies of high-performing OPOs, thereby elevating overall practice 

standards and to encourage other OPOs to adopt similar, effective approaches in organ recovery 

and allocation. For example, the literature documents major disparities in making out-of-sequence 
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kidney offers to accelerate the placement of hard-to-place kidneys.32 Our models can help mitigate 

such disparities by providing guidance to OPOs for identifying hard-to-place kidneys that can be 

intervened for better utilization and for standardizing interventions to enhance transparency and 

equitability.  

The results of the model co-design approach confirm that data-driven machine learning 

methods and clinical expertise are not mutually exclusive but complementary. By incorporating 

the insights of transplant experts into the model development process, we have created models that 

not only have high prediction performance but also align well with real-world clinical judgments, 

enhancing the medical relevance of our results. In particular, three variables that are deemed less 

relevant to kidney utilization, the history of smoking, coronary angiogram, and height (when 

considered in addition to BMI), are replaced with OPO cluster, cause of death, and pump indicator 

variables through the co-design process. 

After identifying hard-to-place kidneys in our data using the proposed nonuse risk 

prediction models, we explored their characteristics that are associated with an increased 

transplantation likelihood within the current allocation system. These characteristics can inform 

the development of operational and system-level interventions. Operational interventions that are 

identified in our analysis include pumping kidneys, which can help maintain graft function,33 and 

presenting dual offers, which can increase the chances of acceptance.34 System-level interventions 

require strategic changes at the policy or organizational level and often involve a longer-term 

approach. Such interventions identified in our analysis include identifying and promoting the best 
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organ recovery and allocation practices across OPOs or the integration of an effective nonuse risk 

prediction framework into the national allocation system. 

Nevertheless, our study is not without limitations. Our dataset, spanning from 2016 to 

2021, does not completely capture the potential impacts of recent policy changes post-March 2021. 

Additionally, the observed decline in nonuse rates for hepatitis C-positive donor kidneys, 

attributable to treatment advances,35 suggests that our models might benefit from updated datasets 

to reflect current trends. Moreover, while our models aim to enhance the utilization of kidneys at 

high risk of nonuse, it is essential to balance this goal with the imperative to avoid adverse 

outcomes for recipients. The integration of lower-quality kidneys into the transplant pool 

necessitates careful consideration to prevent complications and ensure recipient welfare. Ongoing 

collaborations with medical decision-makers, organ transplant researchers, and ethics committees 

will be vital in navigating these challenges. 

In summary, our work presents interpretable models that effectively predict the nonuse risk 

of deceased donor kidneys, thereby paving the way for timely data-driven interventions that can 

alleviate the alarming rates of kidney nonuse. Although these models consist of a small number of 

variables including KDRI along with factors selected by machine learning models and transplant 

experts, they perform comparably to more complex risk prediction models. The integration of these 

simplified models into organ procurement and allocation processes can enhance organ utilization 

and mitigate disparities in access to transplantation. Future research is warranted to validate these 

findings with newer datasets, evaluate the impact of recent policy changes, and assess the real-

world implementation of nonuse risk prediction models in the actual organ allocation systems. 
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