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Abstract 

Purpose. This study aims to identify radiomic features extracted from contrast-enhanced CT 

scans that differentiate osteoradionecrosis (ORN) from normal mandibular bone in patients with 

head and neck cancer (HNC) treated with radiotherapy (RT). 

Materials and Methods. Contrast-enhanced CT (CECT) images were collected for 150 patients 

(80% train, 20% test) with confirmed ORN diagnosis at The University of Texas MD Anderson 

Cancer Center between 2008 and 2018. Using PyRadiomics, radiomic features were extracted 

from manually segmented ORN regions and the corresponding automated control regions, the 

later defined as the contralateral healthy mandible region. A subset of pre-selected features was 

obtained based on correlation analysis (r > 0.95) and used to train a Random Forest (RF) classifier 

with Recursive Feature Elimination. Model explainability SHapley Additive exPlanations (SHAP) 

analysis was performed on the 20 most important features identified by the trained RF classifier. 

Results. From a total of 1316 radiomic features extracted, 810 features were excluded due to high 

collinearity. From a set of 506 pre-selected radiomic features, the optimal subset resulting on the 

best discriminative accuracy of the RF classifier consisted of 67 features. The RF classifier was 

well calibrated (Log Loss 0.296, ECE 0.125) and achieved an accuracy of 88% and a ROC AUC 

of 0.96. The SHAP analysis revealed that higher values of Wavelet-LLH First-order Mean and 

Median were associated with ORN of the jaw (ORNJ). Conversely, higher Exponential GLDM 

Dependence Entropy and lower Square First-order Kurtosis were more characteristic of normal 

mandibular tissue. 

Conclusion. This study successfully developed a CECT-based radiomics model for differentiating 

ORNJ from healthy mandibular tissue in HNC patients after RT. Future work will focus on the 

detection of subclinical ORNJ regions to guide earlier interventions.  

 

Introduction 

Osteoradionecrosis of the jaw (ORNJ) is a debilitating long-term complication of radiotherapy (RT) 

that significantly impacts the quality of life of survivors of HNC, especially oropharyngeal cancer 

(OPC). Despite reductions in smoking, the incidence of OPC cancer is on the rise due to the 

increasing incidence of human papillomavirus (HPV)-associated OPC 1. It is projected that 

hundreds of thousands of locally advanced OPC patients will receive radiation as a primary 

treatment modality with an expected high rate of long-term survivors 2. These patients face an 

increased cumulative lifetime risk for the development of long-term complications from RT, such 

as ORNJ. Early diagnosis and intervention are crucial for improving outcomes, particularly for 

high-risk patients where mandibular RT dose constraints cannot be achieved due to tumor 

proximity. Currently, clinicians utilize basic preventive measures to reduce the risk of ORNJ, such 

as removing compromised teeth before radiation therapy and avoiding dental extractions within 

radiation fields after radiation treatment 3. However, the development and implementation of 

models that identify subclinical mandibular subvolumes at high risk for ORNJ could inform 

guidelines for preventative and conservative interventions aimed to reduce the incidence and 
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severity of ORNJ. Recently, predictive models that utilize radiological imaging features of normal 

tissue have been validated for accurately forecasting various RT-induced complications such as 

xerostomia and pneumonitis 4,5.  

Radiomics is a medical image analysis method involving high-throughput extraction of quantitative 

features from 2- or 3-dimensional images. By converting digital images into mineable high-

dimensional data, radiomic features give means to describe the texture, shape, and size of a 

defined region of interest (ROI), which can reveal characteristics imperceptible to the naked eye. 

These features have been shown to be valuable in predicting different therapy outcomes such as 

survival, local control, toxicities 4,5, and detection or assessment of various pathologies. 6–17  

In this study, we aim to explore the utility of radiomic feature analysis on the standard-of-care 

contrast-enhanced computed tomography (CECT) scans to distinguish mandibular ORNJ from 

normal mandibular bone in patients who underwent definitive radiotherapy for head and neck 

cancer. Our work represents a crucial step towards developing a model for the early detection of 

ORNJ changes in the mandible, prior to conventional radiologic or clinical diagnosis. Additionally, 

we aim to evaluate the most effective statistical models for the binary classification of ORNJ 

versus normal bone based on the identified radiomic features. 

 

Materials and methods 

Study Design 

This retrospective study was approved by the institutional review board (IRB) and the prerequisite 

for informed consent was waived [RCR-03-800]. Patients treated at the University of Texas MD 

Anderson Cancer Center were identified by querying the radiology reports of head and neck CT 

studies conducted between 2008 to 2018 using mPower Clinical Analytics (Nuance 

Communications Inc., Burlington, MA). The Boolean search strategy of the following keywords: 

"Osteoradionecrosis" AND "Squamous" AND ("Radiation" OR "Radiotherapy" OR "IMRT") 

resulted in an initial pool of 676 patients. Post-radiotherapy CECTs were directly retrieved from 

the institutional picture and archiving communication system (PACS) for manual screening and 

verification of findings consistent with ORNJ by a second observer. The earliest CECT with 

verified radiographic findings of ORNJ, which included bone sequestration, cortical bone erosion, 

a mix of sclerotic and osteolytic changes, soft tissue involvement with thickening or abscesses, 

and/or pathological fractures was included. Patients were excluded if they had irrelevant 

diagnoses (N=237), bilateral ORNJ at comparable sites (e.g., at both mandibular rami) [N=8], 

non-mandibular ORN (N=78), or history of major mandibular surgeries (N=203). No metal artifacts 

were present in the ORNJ or contralateral control ROIs in the final cohort. After exclusions, a final 

set of 150 patients were analyzed (Figure 1). The primary endpoint was physician-reported 

diagnosis of ORNJ of any grade. 18  
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Figure 1. Patient exclusion and dataset split workflow. 

 

 

Image Acquisition  

All CT scans were acquired with a multi-detector row CT scanner (Lightspeed 16, GE Healthcare, 

Milwaukee, WI) according to our institution’s protocol. The acquisition parameters ranged from 1-

3 mm section thickness, with a median of 1 mm. The X-ray tube current ranged from 99-584 mA 

at a peak voltage between 120-140 kVp. Composition of all images was 512 x 512 pixels. The 

post-intravenous contrast phase CT series were acquired at a 90-second delay following the 

injection of 120 CC of contrast agent. All selected Digital Imaging and Communications in 

Medicine (DICOM) images were converted to Neuroimaging Informatics Technology Initiative 

NIfTI format.    

Image Segmentation 

The mandibular volumes affected by ORNJ were manually segmented by a trained research 

fellow (A.A.) using Amira Software (Thermo Scientific, Waltham, MA, USA) and reviewed by a 
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radiation oncologist (A.M.) with 10 years of experience.  In order to isolate ORN-specific radiomic 

features, a conservative segmentation approach was adopted to avoid the inclusion of adjacent 

healthy bone tissue. Following ORNJ segmentations, mirroring “control” volumes representing 

healthy tissue were created on the contralateral mandible free of ORN (Figure 2). Thus, for each 

subject in the dataset, an ORNJ and a control ROI were obtained. We utilized the Convert3D 

image-processing tool of ITK-SNAP software 19to horizontally flip the segmented ORNJ volume 

around the x-axis thus defining the control ROI. The resulting control volumes were subsequently 

reviewed for the validity of their anatomical location. Due to discrepancies in anatomical 

orientation, the x-axis of the CT images did not consistently correspond to the midline of the 

mandible. Therefore, manual repositioning for misaligned control volumes was required to ensure 

accurate correspondence with their contralateral counterparts without modifications to their shape 

or size.   

 

 

Figure 2. Axial view of a contrast-enhanced CT image with segmented ORN (red) and contralateral mirror-

image control normal bone (yellow). 

 

Radiomic Features Extraction 

Radiomic features from the described ROIs were extracted using PyRadiomics, an open-source 

Python library for high-throughput extraction of quantitative features from medical imaging 20.  A 

fixed bin-width of 3.2 Hounsfield Units (HU) was used for grey value discretization with a target 

bin number of 30-130. The extracted features included first-order statistical features, shape-based 

features, and higher-order textural features, derived through matrix-based and filter-based 

methods 21,22. Additionally, an array of imaging filters was applied to CT images to diversify the 

radiomic features space and augment different textural and intensity characteristics. These filters 

included the Laplacian of Gaussian, which accentuates edges by highlighting regions of rapid 

intensity transition, and various wavelet transforms, decomposing the image into multiple 
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frequency sub-bands. Furthermore, mathematical transformations such as square, square root, 

logarithmic, and exponential filters were applied. In total, 1316 features were used for further 

analysis. The detailed explanations of the radiomic features and the intrinsic filters used in 

PyRadiomics are listed in the platform documentation 23, which is in accordance with the Imaging 

Biomarker Standardization Initiative (IBSI) 24. 

Data Preparation and Feature Normalization 

The dataset was split into training (80%) and testing (20%) subsets based on unique patient 

identifiers using a fixed random state for reproducibility. This approach ensured patient-level 

separation between training and testing datasets with equal distribution of ORNJ and control 

ROIs. The radiomic features were subsequently normalized to have a zero mean and a unit 

standard deviation (i.e., Gaussian-like distribution). Normalization was performed on the train 

subset, and the same transformation was subsequently applied to the test data to prevent 

information leakage. To address multicollinearity and enhance model interpretability, feature 

preselection was performed using a pairwise correlation analysis with a Pearson coefficient 

threshold of 0.95, thus reducing feature redundancy and dimensionality.  

Model Training and Evaluation  

The training dataset was used for feature selection and model development. A Random Forest 

(RF) classifier was trained with Recursive Feature Elimination (RFE) following a 5-fold Cross-

Validation (CV) approach to identify the optimal set of radiomic features (Figure 3). This approach 

systematically evaluates the contribution of each feature to model performance, described by 

predictive accuracy, iteratively removing the least contributing features. The optimal RF classifier 

hyperparameters, determined from a Grid Search hyperparameter tunning, were set at 100 

estimators, a maximum depth of 5, a minimum of 3 samples per leaf, and 'log2' for the maximum 

features.   

 

 

Figure 3. Workflow for the radiomic feature extraction and modeling steps. The number of features at each 

step is denoted by N. 
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Model Explainability Analysis 

The selected features by the RF classifier were ranked based on their importance with regards to 

their influence on the model performance. To explain how individual features influenced specific 

patient predictions, SHapley Additive exPlanations (SHAP) 25 values were computed. SHAP 

values for each feature represent a weighted average of the difference between the model’s 

prediction with and without a specific feature where positive, negative, or zero values indicated 

an increase, decrease, or no contribution to the model output, respectively.  

 

Results 

Patient Characteristics 

A total of 150 patients with radiographic ORNJ post-RT for head and neck cancer were included 

in the final analysis. The mean age of the patients at the time of CECT acquisition was 62.3 years 

(range 27-82). The average time from the commencement of RT to the onset of ORNJ was 

approximately 32.6 months. The detailed breakdown of patient, disease, and treatment 

characteristics is provided in Appendix A.  

Radiomic Features  

A total of 1316 radiomic features were initially extracted from 300 ROIs representing ORNJ 

(n=150) and contralateral healthy mandibles (n=150). The training set comprised 240 ROIs (120 

ORNJ and 120 healthy), while the testing set consisted of 60 ROIs, equally divided between ORNJ 

and healthy mandibles. The correlation analysis led to the exclusion of 810 features with high 

collinearity (Pearson correlation coefficient > 0.95), leaving 506 features for model development. 

Following the RF with RFE-CV modeling process, a final set of 67 optimal features were identified 

(see Appendix B), where features with zero importance were discarded. The cumulative 

importance of the features in this final set is shown in Figure 4A. These features were ranked by 

their importance in the classification process of the RF model, the top 20 features are shown in 

Figure 4B.  

Model Performance 

Model performance was assessed in terms of discrimination and calibration. The 5-fold cross-

validation conducted on the training dataset resulted in an average AUC of 0.94 (range 0.90 to 

0.96). For the independent test dataset, the RF model achieved an accuracy of 88% and an AUC 

of 0.96 (Figure 5A). The sensitivity for correctly identifying ORNJ cases was 93%, with 28 out of 

30 ORNJ ROIs accurately predicted. For healthy mandibular tissue, the RF model correctly 

predicted 25 out of 30 cases, resulting in a specificity of 83%. The trained RF classifier was overall 

reasonably well calibrated (Log Loss 0.296, ECE 0.125) with a slight over and under confidence 

of the model’s predictions at low and high probabilities, respectively (Figure 5B). 
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A. 

 

 

B. 

 

 

Figure 4. A) The cumulative sum of feature importance as determined by the Random Forest model. The 

horizontal line represents the threshold where cumulative importance reaches 100%, and the vertical line 

indicates the number of features required to achieve this cumulative importance. B) The top 20 features 

ranked by their importance in the classification process of the RF model. The length of each bar reflects 

the relative importance of each feature in the model's decision-making process, highlighting which features 

are most influential in differentiating between ORNJ and healthy mandibular tissues. 
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A. 

 

B. 

 

Figure 5. Model performance evaluation. A) Receiver operating characteristic (ROC) curves (mean and per 

CV fold) of the Random Forest trained on the selected extracted radiomic features (n=67) from ORN and 

healthy mandible VOIs on CECT. B) Reliability curve for the Random Forest classifier. Actual outcome 

probabilities are plotted against predicted probabilities. The thick grey diagonal line represents an ideal 

calibration, where predicted probabilities align perfectly with the observed outcome frequencies. Deviations 

from this line indicate overconfidence (points below the diagonal) or underconfidence (points above the 

diagonal) in the model's predictions. The tick marks along the x-axis show the distribution of predicted 

probabilities. A high concentration of ticks in a certain region indicates that many predictions fall within that 

probability range. 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.11.24313485doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.11.24313485
http://creativecommons.org/licenses/by/4.0/


10 
 

Model Explainability Analysis 

As shown in Figure 6, the SHAP analysis demonstrated the strong variability of the topmost 

important feature values between ORNJ and normal mandibular tissues. Notably, higher values 

of Wavelet-LLH First-order Mean and Median, and Wavelet-LLL First-order Interquartile Range 

and 90th Percentile were strongly associated with ORNJ.  Conversely, normal mandibular tissue 

was associated with higher Exponential GLDM Dependence Entropy, Wavelet-LLL First-order 

Interquartile Range and 90th Percentile as well as lower Square First-order Kurtosis.   

 

 

 

Figure 6. SHAP values for the top 20 most influential radiomic features. The y-axis lists each feature, 

ordered by the average magnitude of their SHAP values. Each dot represents the SHAP value for each 

individual subject in the dataset illustrating the extent of each feature's impact on the model's prediction for 

differentiating between ORNJ and healthy mandibular tissue. The color gradient, ranging from blue to red, 

indicates the range of feature values, with red signifying higher values. 
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Discussion 

The use of radiomics in oncology has been increasingly recognized for its potential in various 

aspects of cancer care, including predicting treatment outcomes, assessing response to therapy, 

and detecting early complications. However, its application in the specific context of ORNJ has 

been less explored. Traditional methods of diagnosing ORNJ rely heavily on clinical assessment 

and conventional imaging findings, which may not detect early subclinical changes. By contrast, 

the high-throughput analysis of radiomic features offers a more nuanced and comprehensive 

assessment of tissue characteristics. 

In this study, we have developed and validated a CECT-based radiomics model for differentiating 

ORNJ from healthy mandibular tissue in head and neck cancer patients after RT. The predictive 

performance of the developed model comprising 67 features demonstrated significant accuracy, 

sensitivity, and specificity.  

The SHAP analysis provided a detailed understanding of feature contributions towards the RF 

model's decision-making process. The wavelet-LLH_firstorder_Mean and wavelet-

LLH_firstorder_Median features, which represent the average and median pixel intensities in the 

LLH wavelet-transformed image, showed a positive SHAP value. This suggests that higher values 

of these features are strongly associated with the presence of ORN, potentially indicating regions 

with specific texture characteristics or density variations that are captured in this wavelet sub-

band. Conversely, gldm_DependenceEntropy, capturing the complexity of texture in terms of 

exponential intensity levels and spatial dependence, demonstrated a negative SHAP value. Lower 

values of this feature contribute to an ORNJ classification, hinting at reduced complexity and 

dependence in the spatial arrangement of pixel intensities in ORNJ regions compared to controls.  

Both interquartile and 90th percentile first order features describing the spread of the pixel intensity 

values in the LLL wavelet domain, also exhibited negative SHAP values. The association of lower 

values of these features with ORNJ suggests that the intensity distribution within the LLL wavelet-

transformed image is more homogenous or lacks extreme values in the ORNJ affected regions. 

These findings emphasize the importance of wavelet-based texture features in differentiating 

ORNJ from non-ORN tissue. The variation in the SHAP values for these features underscores 

the heterogeneity inherent in ORN-affected tissues on CECT images. Overall, the SHAP values 

provide an interpretable explanation of a relatively complex radiomic signature of ORNJ compared 

to the healthy mandible. The quantitative evidence supports the potential utility of CECT-based 

radiomic profiling in the non-invasive assessment and possible early detection of ORNJ post-RT 

in head and neck cancer patients.  

Several studies have validated binary classification models to predict normal tissue complications 

of RT based on CECT texture analysis alone. For example, van Dijk et al. [4] analyzed the CECT 

textural features of normal salivary gland tissue that developed RT-induced xerostomia, another 

common complication of RT. In that study, the investigators used CECT textural features of 

salivary glands to create multivariable logistic regression models to predict RT-induced 

xerostomia. With regard to the utility of radiomic features for early detection of subclinical ORNJ 

specifically, we previously established a model to characterize temporal evolution of bone tissue 

prior to ORNJ development versus normal bone using CECT radiomic features change over 
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time26. As a continuation of our efforts to characterize ORNJ using CECT radiomic features, the 

present study focused on the most important radiomic features that classify ORNJ (i.e., after 

diagnosis confirmation) compared with self-controlled normal mandibular tissue.  

There are several limitations to our study. First, although the accuracy of our statistical model is 

highly satisfactory, it is notable that this accuracy is in the case of an already-established ORNJ 

versus control normal tissue that received minimal radiation. Therefore, these models may 

become less accurate in the case of pre-ORN mandibular subvolumes versus a neighboring 

control tissue that received a similar dose of radiation. To address this limitation, we will try to 

recruit more cases in our upcoming studies to maintain the same level of accuracy. We 

acknowledge the lack of a clinician-based accuracy benchmark for detecting ORN from imaging 

alone. Ongoing work is focused on establishing this benchmark, which will allow for a direct 

comparison to determine whether computerized methods offer a meaningful improvement over 

clinician evaluations. Given the potential for these computational approaches to outperform 

clinician assessments, this benchmark is essential for validation. Second, although all our cases 

were diagnosed by multiple radiologists, there is significant variability in the grade and severity of 

ORNJ. Finally, in this study we considered images that corresponded to the time of ORNJ clinical 

diagnosis, with the proportions of ORNJ grades skewed in favor of more advanced stages, when 

mandible damage was therefore very visible both to the clinical eye and on the CECT images. 

Expanding our study to include earlier images, prior to clinical diagnosis of ORNJ, will allow 

evaluation of subclinical tissue characteristics of ORNJ regions and subsequently enable earlier 

detection of mandibular damage.  

Since we identified the most important radiomic features that differentiate ORNJ versus normal 

tissue, we plan to validate the utility of these features in the identification of at-risk areas well 

before the clinical or radiologic detection of ORNJ using a large-scale dataset. The next step 

would be to test the correlation between the temporal evolution of these radiomic features and 

the development of ORNJ. Successful prospective validation of an accurate statistical model to 

predict ORNJ would allow us to test the effect of early intervention via medical treatment and/or 

hyperbaric oxygen therapy to decrease the risk of ORNJ in susceptible patients.  

Despite these limitations and the need for external validation of our results, this study yielded 

significant results, and we are hopeful that CECT texture analysis will likely also prove to be valid 

for early detection and/or prediction of ORNJ before clinical/radiologic diagnosis.  
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