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Abstract 25 
Wearable movement sensors are powerful tools for objectively characterizing and quantifying 26 
movement. They enhance the precise characterization of gait, balance, and motor symptoms 27 
in Parkinson’s disease and related disorders, facilitating in-clinic and remote assessments, 28 
disease management, and therapeutic intervention development. Access to high-quality data 29 
from these sensors can accelerate discoveries in this clinical population. The WearGait-PD 30 
open-access dataset contains raw inertial measurement unit (IMU) and sensorized insole data 31 
from individuals with PD and age-matched controls, synchronized to a gait walkway reference 32 
system. IMU data include 3-degree of freedom (DOF) acceleration, rotational velocity, 33 
magnetic field strength, and orientation for each of 13 sensors on the participant’s body. 34 
Sensor insole data include absolute pressure from 16 sensors in each insole and 3-DOF 35 
acceleration and rotational velocity. Walkway data include 2D position and relative pressure 36 
for each active sensor during every footfall. Frame-by-frame annotation of participant actions 37 
during gait and balance tasks was incorporated using synchronized video cameras. All data 38 
were associated with demographic information and clinical evaluations (e.g., medications, 39 
DBS-status, MDS-UPDRS scores). 40 
 41 
Background & Summary 42 
 Parkinson’s disease (PD) is a progressive neurodegenerative disorder that often 43 
impairs gait and balance, resulting in reduced mobility and independence, and diminished 44 
quality of life1-3. Wearable movement sensors have emerged as powerful tools for objectively 45 
characterizing and quantifying movement. These offer the potential to enhance the precise 46 
characterization of gait, balance, and motor symptoms in Parkinson’s disease (PD) and related 47 
disorders, facilitating in-clinic and remote assessments, disease management, and therapeutic 48 
intervention development4-7. In contrast, current clinical assessments of gait and balance are 49 
semi-quantitative but remain largely qualitative, relying on subjective observations and 50 
patient reports8-10. Wearable sensors promise to improve care by enabling quantitative 51 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:Kimberly.Kontson@fda.hhs.gov


 
 

assessments as part of routine clinical practice11, remote patient monitoring12,13, and objective 52 
endpoint measures for the regulatory evaluation of new drugs and medical devices14. By 53 
providing continuous, high-resolution data on mobility-related health, these sensors and their 54 
associated algorithms can identify motor signs of PD, track disease progression, and offer a 55 
more complete picture of an individual’s functional status15-17. This data-driven approach can 56 
potentially transform PD treatment, ultimately improving patient outcomes and quality of life. 57 
 58 
Despite the potential of wearable movement sensors to improve the treatment of PD, their 59 
translation and widespread clinical adoption have been limited due to various scientific, 60 
technical, economic, and regulatory issues18-20. However, efforts are underway across 61 
academia, the medical device industry, and regulatory bodies to overcome these limitations. 62 
For instance, academic-led consortiums, such as Mobilise-D, are working to establish, verify, 63 
and validate digital mobility outcomes, creating a framework for their use in clinical settings21. 64 
Medical device developers have created wrist-worn devices that monitor the presence of 65 
upper limb symptoms of PD and incorporate these measurements into clinician-facing 66 
dashboards in an aim to improve treatment decisions22,23. Additionally, the FDA has issued 67 
guidance on using digital health technologies for remote data acquisition in clinical 68 
investigations24 and participates in the Digital Health Measurement Collaborative Community 69 
(DATAcc) by the Digital Medicine Society, while the European Medicines Agency recently 70 
approved a digitally-derived measure for use in Duchenne Muscular Dystrophy clinical trials14.  71 
These activities indicate a growing recognition by regulatory organizations of the 72 
transformative potential of the technology. 73 
 74 
The need for high-quality, diverse, and well-annotated data remains a significant obstacle to 75 
the development, validation, and clinical translation of wearable sensor digital health 76 
technologies. As digital health technologies rely on a combination of computing platforms, 77 
sensors, and algorithms24, data are a fundamental requirement at every stage of development, 78 
from prototyping through clinical trials25. However, obtaining high-quality movement data 79 
from people with PD is challenging due to the high costs associated with data collection, the 80 
fragility of the population, and the necessity for skilled clinicians to score and annotate the 81 
data. These barriers create a development landscape where only well-funded organizations, 82 
public or private, have the resources to participate in the innovation process, limiting the 83 
diversity of ideas and approaches explored. 84 
 85 
Open-access datasets offer one solution to the challenge posed by the lack of data in the 86 
development of wearable technologies for PD. By providing high-value clinical datasets to the 87 
research and development communities, open-access data efforts can democratize the 88 
innovation process, enabling a wider range of researchers and developers to contribute to 89 
advancing these technologies. Open-access datasets also promote reproducibility by allowing 90 
researchers and developers to validate their findings independently and with diverse data.  91 
While several open-access wearable sensor and smartphone datasets for PD already exist26-33, 92 
their overall utility may be limited by: (1) a primary focus on wrist-based monitoring, which 93 
may not capture the full spectrum of gait and balance impairments, (2) a lack of associated 94 
clinical information, such as disease severity scales and medication status, (3) insufficient 95 
contextual information surrounding the data, such as time-series descriptions of specific 96 
locomotor activities, and (4) a lack of reference measurements for the analytical validation of 97 
algorithms25. Addressing these limitations is crucial for streamlining the integration of 98 
wearable sensors for clinical use in PD. 99 
 100 
In response to these limitations, we present a large, multi-site, multi-modal open dataset 101 
(WearGait-PD) of older adults with and without PD, engaged in both structured and semi-102 
structured gait and balance tasks while wearing a full-body suite of sensors (Figure 1). This 103 



 
 

dataset fills several vital gaps in the field, as it: (1) provides data from a full-body sensor suite 104 
of inertial measurement units and sensorized insoles, (2) includes comprehensive clinical 105 
information, such as Movement Disorder Society – Unified Parkinson’s Disease Rating Scale 106 
(MDS-UPDRS) scores and demographic details for each participant, (3) offers frame-by-frame, 107 
human-readable annotations applied by two expert reviewers based on video assessment, 108 
with clinician annotation of PD-specific symptoms such as freezing of gait, and (4) incorporates 109 
ground truth measurements from a pressure-sensing walkway for independent validation of 110 
digitally-derived metrics. By making this dataset publicly available to the research and medical 111 
product development communities, we aim to accelerate innovation and ultimately access to 112 
effective digital health technologies for assessing gait and balance in PD. 113 
 114 

 115 
Figure 1: Overview of data workflow for the WearGait-PD dataset.  Sensor data were collected 116 
via a set of wearable sensors (IMUs and sensorized insoles) and reference systems (cameras 117 
and a sensorized walkway). The sensor data were processed, time synchronized, visualized, 118 
and reviewed before uploaded to the public repository. Clinical data included demographic 119 
information and results from clinical tests when possible. 120 
 121 
 122 
Methods 123 
Participants 124 
At the time of submission, 126 participants were included in the dataset. Sixty-one PD 125 
participants (25F/36M) with an average age of 66 ± 9 years and modified Hoehn & Yahr score 126 
of 2.15 ± 0.48 were included. The total MDS-UPDRS Part III score for these participants ranged 127 
from 6-46, with a mean and standard deviation of 24 ± 10. The protocol did not require 128 
participants to perform tasks in a specific medication state (i.e., ON or OFF). Instead, the time 129 
elapsed since their last PD medication dose was recorded as a proxy.  A total of 41 freezing of 130 
gait events were captured across five unique PD participants. Within the PD group, 158 stagger 131 
events were captured. Sixty-five control participants (40F/25M) with an average age of 76 ± 9 132 
years were also included. Within this control group, 163 staggering events were captured.  133 
 134 
Inclusion/Exclusion Criteria 135 
The study included adults (≥18 years) with physician-diagnosed PD and controls without PD. 136 
Exclusion criteria encompassed conditions that could prevent safe task performance, including 137 
non-neurological disorders significantly affecting speech, vision, or balance, cognitive or 138 
psychological impairments, or pregnancy. These criteria allowed for the inclusion of 139 
participants with a wide variety of typical and mildly pathological movement characteristics 140 
within the control group (e.g., individuals with essential tremor were not excluded, as we 141 
aimed to avoid spectrum bias by having only controls). 142 
 143 



 
 

Consent and Ethics 144 
Written informed consent was obtained from all study participants, including permission to 145 
publish de-identified data openly. These data were collected under the Johns Hopkins School 146 
of Medicine (JHM) IRB00234370 with an IRB Authorization Agreement (95-CDRH-2021-12-18) 147 
and VA IRB01702255 with an IRB Authorization Agreement (2023-CDRH-095), for which FDA 148 
is the relying institution.   149 
 150 
Sensor Systems 151 
The following sensor systems were used during the collection of data for this study. All study 152 
sites used the same acquisition software versions to maintain consistency. 153 
 154 
Movella/Xsens MTw Awinda Inertial Measurement Units (IMUs): MTw Awinda is a wireless 155 
human motion tracking sensor suitable for real-time applications. Each sensor was 47 x 30 x 156 
13 mm. Each sensor communicated wirelessly with one of two base stations. Each base station 157 
was connected to a computer running the MT Manager 2019.1.1 acquisition software.  158 
 159 
Moticon OpenGo Sensor Insoles: Moticon OpenGo is a wireless in-shoe system with 160 
Bluetooth™- and Wi-Fi-enabled electronics. Each sensor insole is designed to be used inside a 161 
shoe and measures plantar pressure distribution at the sole of foot with sixteen distributed 162 
pressure sensors. An on-board sensor at the center of the insole measures acceleration and 163 
rotation of the foot along three axes. The insoles slip into the shoes of the participant and a 164 
mobile Android application (OpenGo Mobile App Version 03.11.00) was used to control data 165 
acquisition. 166 
 167 
ProtoKinetics Pressure Walkway: The 16-foot x 2-foot ProtoKinetics Zeno™ Walkway Gait 168 
Analysis System detects pressure data and uses that data to define foot contacts. The walkway 169 
was equipped with over 18,000 individual sensors that each registered 16 different activation 170 
levels. Each sensor was 0.5” x 0.5” (1.27 cm x 1.27 cm). The ProtoKinetics Movement Analysis 171 
Software (PKMAS) 6.00c3 was used for data acquisition and raw data export. 172 
 173 
GoPro HERO10 Black Video Camera: Two GoPro cameras were used in this study to film the 174 
participants from the frontal and sagittal planes as they completed each task. Each camera 175 
recorded video at 50 fps with a resolution of 1080p using either the linear or wide camera 176 
lens. The video compression was set to H.264 + HEVC.  The cameras were triggered wirelessly 177 
via remote control by experimenters during gait and balance tasks. 178 
 179 
Experimental Protocol 180 
 181 
Study Sites 182 
Data were collected across four study sites: FDA Office of Science and Engineering Labs (FDA), 183 
Johns Hopkins Outpatient Center (JHOC), Johns Hopkins Bayview Campus (Bayview), and the 184 
VA Puget Sound Health Care System Center for Limb Loss and Mobility (VA-Seattle). Subject 185 
identifiers specific to each study site were used to denote the location at which data were 186 
collected. The prefix ‘FHC‘ is associated with the FDA site, ‘NLS’ is associated with the JHOC 187 
site, prefix ‘HC’ is associated with the Bayview site, and prefixes ‘WPD’ and ‘WHC’ are 188 
associated with the VA-Seattle site. Staff at each study site were trained on the same 189 
equipment and the same experimental protocol was used across all sites. 190 
 191 
Participant Preparation 192 
IMU sensors were attached to the participant’s body at the following locations (see Figure 2): 193 

• Mid forehead 194 
• Xiphoid process of sternum 195 



 
 

• L4/L5 of lower back  196 
• Right/left wrist halfway between the ulnar and radial styloid processes 197 
• Right/left lateral thigh, midway between greater trochanter of femur and head of 198 

fibula  199 
• Right/left lateral shank, midway between head of fibula and center of lateral malleolus  200 
• Right/left ankle, just above the lateral malleolus 201 
• Right/left dorsum of feet 50% of distance between 1st and 5th metatarsal bases and 202 

50% of distance between distal end of 3rd metatarsal and center of anterior aspect of 203 
talus.  204 

 205 
 206 

 207 
Figure 2: (Left) Locations and orientations of IMU sensors on the body and (Right) the 208 
reference frames for both the IMUs and insoles.  209 
 210 
The sensor locations and orientations were standardized and consistently applied across all 211 
participants and study sites. Each participant was fitted with Moticon OpenGo sensor insoles 212 
placed directly in the shoes. 213 
 214 
Tasks 215 
Once prepped with all study equipment, participants were video-recorded and asked to 216 
perform specific tasks. Most tasks required the participants to make several passes along the 217 
16-foot pressure walkway, where a pass constituted walking one length of the walkway. A list 218 
of the tasks performed is below, with the abbreviations used in data file names in parentheses.  219 
Throughout these task descriptions, the term ‘mat’ is synonymous with ‘walkway’. 220 
 221 

• SelfPace (SP): Participants started approximately 5 feet off the mat, walked at a self-222 
selected pace across the mat and approximately 5 feet off the other side of the mat. 223 
Participants turned around off the mat and repeated this pass until a total of 4 224 
passes were made. 225 

• HurriedPace (HP): Participants started approximately 5 feet off the mat, walked at a 226 
hurried pace across the mat and approximately 5 feet off the other side of the mat. 227 
Participants turned around off the mat and repeated this pass until a total of 4 228 
passes were made. 229 

• SelfPace_mat (SPm): Participants repeated the SelfPace walking task as above but 230 
remained on the mat the entire time. Participants started on the mat, walked at a 231 
self-selected pace across the mat, stopped, and turned around at the other end of 232 
the mat. Participants repeated this until a total of 4 passes were made. 233 



 
 

• HurriedPace_mat (HPm): Participants repeated the HurriedPace walking task as 234 
above but remained on the mat the entire time. Participants started on the mat, 235 
walked at a hurried pace across the mat, stopped, and turned around at the other 236 
end of the mat. Participants repeated this until a total of 4 passes were made. 237 

• SelfPace_matTURN (SPmT): Participants repeated the SelfPace_mat walking task as 238 
above but were instructed to alternate between left and right turns. Participants 239 
started on the mat, walked at a self-selected pace across the mat, stopped, and 240 
turned around at the other end of the mat. Participants repeated this until a total of 241 
5 passes were made so that two turns in each direction were captured.  242 

• TandemGait (TG): Participants made 2 full passes on the mat while doing a tandem 243 
gait walk (walking heel to toe). Participants remained on the mat the entire time and 244 
turned around naturally after the first pass. 245 

• Timed Up and Go (TUG): Participants started seated in a chair with armrests with 246 
their back against the chair. The participant rose from the chair, walked to the other 247 
end of the mat at a comfortable, self-selected pace, and turned at a line taped on 248 
the mat 3m (9ft 10in) from the chair front. From there, they walked back to the 249 
chair, and sat down. Participants were instructed to only use the armrests as 250 
needed. Participants did NOT need to cross their arms when standing and sitting. 251 
The front legs of the chair were placed on the starting line on the mat and turns 252 
were made on the mat. The participant completed 3 trials of the TUG test within one 253 
continuous recording. 254 

• Balance (B): Participants started this task off the mat, typically near the midpoint of 255 
the mat on the side. For each of 6 subtasks, the participant was asked to step onto 256 
the mat, complete the balance subtask for 10 seconds, and then step off the mat.  257 

o Standing with eyes open and feet shoulder width apart 258 
o Standing with eyes closed and feet shoulder width apart 259 
o Standing with eyes open and feet together 260 
o Standing with eyes closed and feet together 261 
o Standing with eyes open and right foot heel touching the left foot toe 262 
o Standing with eyes open and left foot heel touching the right foot toe 263 

 264 
• SelfPace_doorpat (SPdoorpat): A mock door frame approximately 3 ft x 8 ft was 265 

placed across the center of the mat over a pattern of lines perpendicular to the 266 
direction of travel. Participants started approximately 5 feet off the mat, walked at a 267 
self-selected pace across the mat through the mock door frame and approximately 5 268 
feet off the other side of the mat. Participants turned around off the mat and 269 
repeated this pass until a total of 4 passes were made.  270 

 271 
• FreeWalk (FW): Participants started approximately 5 feet off the mat, walked at a 272 

self-selected pace across the mat and out of the session room into the hallway. 273 
Participants proceeded to walk through a defined path within the research facility as 274 
they navigated hallways, a small staircase (if available), and sitting down/rising from 275 
a chair before returning to the session room. Each study site had a unique free walk 276 
path, which is described in greater detail in the Synapse repository.  277 

 278 



 
 

Tasks were completed sequentially in the order listed above.  279 
 280 
Clinical Information and Assessments 281 
In coordination with the clinical collaborator at each study site, information about medication 282 
usage and clinical evaluations was obtained from the most recent patient visit when available. 283 
If medical records were not available, medication usage and any other relevant medical history 284 
were obtained by participant self-report. The MDS-UPDRS was used as the main 285 
clinician/patient reported outcome measure. When possible, the MDS-UPDRS evaluation was 286 
completed by a trained specialist the day of the session to ensure the evaluation corresponded 287 
with the data collected. For instances where the MDS-UPDRS was not captured the day of data 288 
collection, the most recent MDS-UPDRS evaluation was used with the date captured denoted 289 
in the clinical spreadsheet. 290 

Additional clinical information collected included:  291 

• Time since first diagnosis  292 
• Current medication type and dose  293 
• Time since last medication dose  294 
• Current physical/occupational therapy status and frequency of visits  295 
• DBS (if patient has it); Bilateral vs unilateral; location of electrodes; date of surgery  296 
• Basic demographics (age, gender, sex, height, weight, race) 297 
• Modified Hoehn and Yahr scale score 298 
 299 
Data Processing 300 
 301 
Movella/Xsens MTw Awinda Inertial Measurement Units (IMUs): During data collection, each 302 
MTw IMU internally sampled data at 1000 Hz, applied factory calibration, and low pass filtered 303 
at 184 Hz. An onboard stap-down integration algorithm processed these samples, computing 304 
orientation and velocity increments that were transmitted wirelessly at 100 Hz. The MT 305 
Manager software was used for post-processing, applying the manufacturer’s XKF3-hm 306 
Kalman filter to generate 100 Hz outputs of acceleration, angular velocity, orientation, and 307 
gravity-compensated (free) acceleration. For a detailed description of the system’s signal 308 
processing architecture, refer to the MTw Awinda whitepaper34.  309 
 310 
ProtoKinetics Pressure Walkway: After data collection, the ProtoKinetics software 311 
automatically labels groups of active sensor cells as belonging to either the left or right foot. 312 
Additional manual preprocessing of the walkway data was completed to ensure left and right 313 
footfalls were correctly identified. Partial footfalls on the walkway were labeled as ‘Other’ 314 
rather than left or right. After the footfall labeling was completed, a research staff member 315 
conducted a review of the labeling to ensure no mistakes or mislabeled footfalls exist. 316 
 317 
Moticon OpenGo Sensor Insoles: Sensor insole waveforms were reviewed visually. Although 318 
infrequent, instances of desynchronization occurred during wireless communication between 319 
the sensor insoles and the Moticon acquisition App. This resulted in asynchronous data 320 
capture or prolonged recording from one insole even after the ‘Stop’ command was issued. 321 
When such desynchronization was detected, the data from the insoles were adjusted—shifted 322 
and/or trimmed—within the OpenGo Software to ensure proper alignment between both 323 
insoles and to accurately synchronize the cessation of recording with the conclusion of the 324 
data stream. 325 
 326 



 
 

GoPro HERO10 Black Video Camera: Manual annotation of the participant’s activity using the 327 
video data was also completed. After the data collection session ended, the videos recorded 328 
for each trial from the side and front views were combined and deidentified. The result was a 329 
single video with both views shown side-by-side, where each view had the participant’s face 330 
cropped out. On some occasions, only a single video camera view was available. The primary 331 
annotation process of the session videos used the Video Labeler application in MATLAB to 332 
provide a frame-by-frame annotation of general and clinical events for the duration of each 333 
task video, with clinical events being labeled concurrently with general events. 334 

After the primary annotations were completed, a research staff member conducted a review 335 
of the existing annotations to ensure no mistakes or mislabeled events existed. If any clinical 336 
events were identified by the research staff during primary annotation or review, those events 337 
were reviewed by at least one neurologist collaborator at Johns Hopkins or the VA to confirm 338 
or reject the annotation of the clinical event.  339 

Detailed definitions of the general and clinical gait events used in this dataset can be found in 340 
the Data Description – Video Annotation section of the Wiki.. These definitions were provided 341 
to ensure consistency across annotators.  342 

Data Synchronization and Alignment 343 
Each task included four main data sources: IMUs, sensor insoles, walkway, and video cameras. 344 
The walkway served as the primary clock for all system synchronization and alignment. Upon 345 
starting a recording in the PKMAS walkway software, a 3.3 V TTL square wave signal was sent 346 
from the ProtoKinetics walkway interface box to the Sync In port of each MTw Awinda base 347 
station. The MT Manager software for the MTw Awinda IMUs was configured to start 348 
recording upon receipt of the TTL signal from the walkway. Synchronization between the 349 
sensor insoles and walkway was achieved by setting the Moticon OpenGo App to produce an 350 
audible beep during recording start/stop. The audio signal from the phone was converted to 351 
a 3.3 V square wave via custom electronics from Moticon, which was read into the 352 
ProtoKinetics walkway interface box and subsequently the walkway acquisition software. 353 
Walkway, sensor insole, and IMU systems were all set to record data at 100 Hz.  354 

Two video cameras set up perpendicular and parallel to the direction of participant travel 355 
collected data to facilitate frame-by-frame annotation of participant movement. A green light 356 
connected to the ProtoKinetics walkway interface box was programmed to turned on for five 357 
seconds when recording was initiated. The video cameras started recording prior to the 358 
walkway to ensure each video camera captured the green light turning on. The green light was 359 
then used to align the two video streams to each other as well as the walkway. For each task, 360 
the general order of operations for collecting synchronized data were as follows: 361 

1. Prime IMU acquisition software on computers to accept a sync signal. 362 
2. Start the video cameras using a remote control. 363 
3. Start the trial in walkway acquisition software (which simultaneously starts 364 

recording IMU data and triggers green light). 365 
4. Start recording sensor insole data in phone app. 366 

After a participant completed a task, the opposite order of operations was taken to stop 367 
recording data: 368 

1. Stop recording sensor insole data in phone app. 369 
2. Stop recording the trial walkway acquisition software (which simultaneously 370 

stops the IMU recording). 371 

https://www.synapse.org/Synapse:syn52540892/wiki/623758


 
 

3. Stop the video cameras using the remote control. 372 

Figure 3 shows a schematic of the overall hardware synchronization approach. 373 

 374 

Figure 3: Synchronization approach across the walkway, IMU, sensor insole, and camera 375 
systems. 376 

MATLAB scripts were written to read in the raw data from each sensor modality, align the data 377 
in time, and export to the MAT and CSV file formats. A brief description of the subroutines 378 
implemented to generate these aligned MAT and CSV files follows.  379 

Align walkway and IMU data  Since the IMU system received a hardwired sync signal from 380 
the walkway system (primary clock) at the beginning of recording, the data from the IMU 381 
sensors and walkway were concatenated without further alignment. Occasionally, the IMU 382 
sensor data contained more or fewer time points than the walkway data. When shorter, 383 
padding of NaN was added to the end of the IMU data. When longer, the data that extended 384 
past the end of the length of the walkway data were discarded. Benchtop characterization 385 
confirmed the walkway and IMU data were aligned within 2 frames at 100 Hz.  386 

Align walkway and sensor insole data  Custom electronics enabled a square-wave sync signal 387 
to be sent from the sensor insole system to the walkway system that denoted the start and 388 
stop of sensor insole recording. The end of the square wave (denoting sensor insole recording 389 
stop) was used as the alignment point as it was more consistent. The last frame of the sensor 390 
insole data was aligned with the last transition point of the sync square-wave in the walkway 391 
data. Padding of the beginning and end of sensor insole data with NaN was added to keep 392 
arrays the same size. 393 

During pilot work, visual inspection of the aligned walkway and sensor insole data revealed a 394 
consistent time delay in the sensor insole signals relative to the walkway signals. We attributed 395 
this delay to the non-deterministic nature of the Android operating system running the 396 
Moticon Open Go App, which led to lag between stopping the sensor insole recording and the 397 
sync signal being sent to the walkway acquisition software. Benchtop experiments were 398 
conducted to characterize this delay across all study sites, sensor insole sizes, and data 399 
collection sessions. Results indicated site-specific, consistent delays that were independent of 400 
insole size and data collection session. These site-specific corrections were applied to the 401 
sensor insole data during initial import and alignment processing to address the constant bias 402 
component of the delay. However, cross-correlation analyses indicated that the delay 403 



 
 

between walkway and insole waveforms has both a constant component and small random 404 
components. Dataset users should proceed with caution when interpreting data that depends 405 
on precise alignment of the sensor insoles with the walkway and IMU systems. For relevant 406 
analyses, users may consider first aligning the insole total force waveforms to the walkway 407 
foot pressure waveforms using cross-correlation or other methods. More details on the 408 
system characterization can be found in the Data Description – Sensor insole sync 409 
characterization section of the Wiki.    410 

 411 

Align walkway and video annotation data  The annotation file exported from MATLAB’s 412 
Video Labeler App was formatted such that the string variable for each annotation event at a 413 
given time point was listed under a ‘GeneralEvent’ or ‘ClinicalEvent’ column. The annotation 414 
data were resampled from 50 Hz to 100 Hz. Alignment between the walkway and video 415 
annotation data was achieved using the green light connected to the walkway system. A 416 
MATLAB script automatically detected the first video frame in which the green light turned on 417 
and used this to align the video annotation data with the start of the walkway data. All video 418 
data before the green light turned on were discarded. 419 

The output of these processes is a set of aligned time-series data across each data collection 420 
source (Figure 4A), as well as the spatial information collected by the walkway (Figure 4B).  421 

 422 
Figure 4: (A) Time series data from a participant with Parkinson’s disease, during which a 423 
freezing of gait (FoG) episode occurred. The data include annotation of activities captured via 424 
camera, 3-DOF accelerometer and gyroscope data from an IMU, and force data from a pair 425 
of sensorized insoles. The portion of the data with a gray background corresponds to the 426 
spatial information in part b.  (B) Spatial data from a participant with Parkinson’s disease, 427 
during one pass across a sensorized walkway. Blue regions indicate areas of walkway 428 
activation, with darker colors corresponding to higher forces. 429 
 430 

Data Records  431 
Detailed descriptions of the experimental set-up, data collection approach, processing, and 432 
data quality control for the WearGait-PD dataset are provided in the main Wiki page on the 433 
Synapse platform (SAGE Bionetworks) The Data Access tab within the Wiki provides further 434 
instructions on how to gain access to the data.   435 

https://www.synapse.org/Synapse:syn52540892/wiki/625988
https://www.synapse.org/Synapse:syn52540892/wiki/625988
https://www.synapse.org/Synapse:syn52540892/wiki/623751
https://www.synapse.org/Synapse:syn52540892/wiki/623752


 
 

 436 
There are two main parts to the data: the clinical/demographic information and the sensor 437 
data. All clinical and demographic information is available for all PD patients and control 438 
participants and can be found in CSV spreadsheets. In these spreadsheets, each row 439 
constitutes one participant, with the first column listing the participant ID. All participant IDs 440 
are alphanumeric, with the letters denoting the study site at which the participant was 441 
recorded. All columns are labelled with the variable name. The clinical and demographic 442 
information contained within these spreadsheets was briefly described in the Methods – 443 
Clinical Information and Assessments section of this paper. When available, the response to 444 
each question of the MDS-UPDRS was included, allowing for maximum flexibility in use of the 445 
scores. 446 
 447 
Formatting scripts were written to align all wearables and reference sensor data and save data 448 
as MAT files and comma-separated value (CSV) files. For a given participant, there are 8 CSV 449 
files (1 file/task) that contain the annotation events, walkway data, insole data, and IMU data. 450 
The CSV files follow the naming convention of <SubjectID>_<Task Name>.csv (see Methods – 451 
Tasks section of this paper for task descriptions).  These data can be found in a folder labelled 452 
‘CSV files’ in the Synapse repository. Of note, the use of the word ‘mat’ in the task names 453 
refers to participants performing a task entirely on the walkway mat.  454 
 455 
The same data for each participant is also represented as one MATLAB MAT file that contains 456 
8 structure variables for each task, with each task containing 8 fields (Figure 5). 457 
 458 

  459 
Figure 5: Sample MAT file structure for one participant. 460 
 461 
A brief description of the fields within each task structure variable is below: 462 

• Annotation:  tx2 timetable containing video annotation information 463 
• Walkway: tx8 timetable containing sensor and contact walkway data 464 
• Insole:  tx38 timetable containing insole data 465 
• IMU_acc: tx84 timetable containing Acc and FreeAcc variables for each IMU 466 

and insole 467 
• IMU_gyr: tx45 timetable containing gyroscope data for each IMU and insole 468 
• IMU_mag: tx39 timetable containing magnetometer data for each IMU 469 
• IMU_velInc: tx39 timetable containing Δv data for each IMU 470 
• IMU_orient: tx91 timetable containing Δq and roll, pitch, yaw data for each IMU 471 

 472 
For missing numeric data due to connectivity issues, sensor malfunctions, or lack of 473 
instrumentation for a given participant/task, NaN values were used. The data alignment 474 
process also used NaN values at the beginning and/or end to pad the time series, so NaN 475 
values in these locations are expected. Sensors not available during a given data collection 476 
were excluded from CSV output files but represented as NaN columns in the MAT files. For the 477 



 
 

GeneralEvent and ClinicalEvent variables containing frame-by-frame annotations, the string 478 
“unlabeled” was used to represent portions of a trial that did not match any annotation 479 
category (e.g., shuffling at the end of a trial instead of standing). In total, there were 346 480 
variables associated with each task. A description of all the variables as well as reference 481 
coordinate systems for the IMUs, walkway, and sensor insoles is provided in the Data 482 
Description section of the Wiki. 483 
 484 
Technical Validation 485 
Data quality is of the utmost importance in the curation of an open-access dataset. A quality 486 
assurance process was implemented to ensure consistent and accurate data collection. 487 
Specifically, a core experimental protocol was developed and reviewed by each researcher, 488 
including cross-site review of how the protocol was executed by various researchers. This 489 
protocol detailed the steps involved in system set-up, participant preparation, data collection, 490 
and data processing and export. All files were renamed to include the participant ID and task 491 
abbreviation immediately after data collection to minimize the risk of file loss due to incorrect 492 
folder allocation. For those modalities that required more manual processing (i.e., walkway 493 
data and video annotation data), a second researcher reviewed the primary processing 494 
completed by the first researcher to ensure proper footfall identification and conformance 495 
with the agreed upon annotation event definitions. An Excel spreadsheet accessible to all 496 
researchers was also used to track the progression of data processing, from initial collection 497 
to MAT and CSV file generation.  498 
 499 
After MAT and CSV files were created, a data quality control process on those files was 500 
implemented through a series of automatic and manual data checks that involved visual 501 
inspection of data streams by a researcher to identify data cleanliness and validity issues.  502 
 503 
Specifically, this process identified issues related to: 504 

• Processing and inclusion of all tasks in the MAT and CSV files 505 
• Integrity of individual IMU sensor data, including the identification of sensor values 506 

outside of expected ranges 507 
• Unexpected missing columns of data 508 
• Unexpected large gaps in data 509 
• Expectations around the variable type for a given data variable (e.g., annotations 510 

contain no numeric data, IMU data does not contain any errant non-numeric data) 511 
• Video annotation events and expectations surrounding the inclusion of specific events 512 

for specific tasks 513 
• Alignment of all data, with a particular focus on walkway pressure and sensor insole 514 

force data 515 
 516 
If an issue was identified, a second researcher was assigned to review and address the issue. 517 
Once an issue was addressed, the relevant files were put through the data quality control 518 
process again to confirm that all issues were resolved before the final MAT file and final set of 519 
CSVs files were generated and included in the dataset. 520 
 521 

https://www.synapse.org/Synapse:syn52540892/wiki/623753
https://www.synapse.org/Synapse:syn52540892/wiki/623753


 
 

 522 
Figure 6: Quality control results for each trial, applied prior to inclusion of data to the 523 
WearGait-PD dataset.  A trial is defined by a single task performed by a single participant.  524 
Category values add up to greater than 968 as the ‘False Flag’, ‘Correctable Issues’, and ‘Partial 525 
Data Loss’ categories were not mutually exclusive. 526 
 527 
Of the 968 total trials that comprised the initial release of data, the majority of files passed all 528 
quality checks (651 trials) and another portion were flagged as potential issues but required 529 
no corrective action (58 trials) (Figure 6). Of the remaining trials with confirmed issues, 99 530 
trials contained fixable issues such as the placement of files in the wrong location, missed 531 
annotation frames, or insole desynchronization. Each of these passed subsequent quality 532 
checks. The remaining 173 files had significant data loss (data dropout of 7 frames or greater, 533 
or loss of a sensor), either from connectivity or battery issues. While these data could not be 534 
recovered, the remaining data present in these trials were checked to confirm they were clean 535 
and valid. Overall, 82% of trials were considered complete, while the remaining 18% of trials 536 
passed all quality control checks with the exception that they were missing some data from 537 
either the insoles or IMUs. 538 
 539 
Usage Notes 540 
To access the data on Synapse, users must first register with Synapse.org.  Users register by 541 
providing a name and valid e-mail address and agreeing to the Synapse Terms and Conditions 542 
of Use and reviewing the Privacy Policy and Code of Conduct. As part of the registration 543 
process, users must agree to each of the terms of the Synapse Pledge, recapitulating the 544 
themes of the Synapse Terms and Conditions of Use, Privacy Policy, and Code of Conduct.  545 
Specifically, this pledge requires users to confirm they will (1) adhere to the community 546 
standards of inclusion and respect, (2) adhere to all conditions and data use limitations, (3) act 547 
ethically and responsibly, (4) use appropriate physical, technical, and administrative measures 548 
to keep data secure and protect participant’s privacy, (5) support open access best practices, 549 
(6) credit research participants and all data sources, (7) confirm the data will not be used for 550 
marketing and/or advertising, and (8) report suspected data breaches and/or misuse to the 551 
Synapse team.   552 
   553 
 554 
Code Availability 555 
Using MATLAB 2023a, we developed code to implement the quality control process detailed 556 
in the Technical Validation section. This code is available in the ‘Code’ folder under ‘Files’ on 557 
the Synapse repository.   558 
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