Adjusting for specificity of symptoms reveals higher prevalence of asymptomatic SARS-CoV-2 infections than previously estimated =============================================================================================================================== * Akshay Tiwari * Shreya Chowdhury * Ananthu James * Budhaditya Chatterjee * Narendra M. Dixit ## ABSTRACT Accurate estimates of the prevalence of asymptomatic SARS-CoV-2 infections, *ψ*, have been important for understanding and forecasting the trajectory of the COVID-19 pandemic. Two-part population-based surveys, which test the infection status and also assess symptoms, have been used to estimate *ψ*. Here, we identified a widely prevalent confounding effect that compromises these estimates and devised a formalism to adjust for it. The symptoms associated with SARS-CoV-2 infection are not all specific to SARS-CoV-2. They can be triggered by a host of other conditions, such as influenza virus infection. By not accounting for the source of the symptoms, the surveys may misclassify individuals experiencing symptoms from other conditions as symptomatic for SARS-CoV-2, thus underestimating *ψ*. We developed a rigorous formalism to adjust for this confounding effect and derived a facile formula for the adjusted prevalence, *ψ**adj*. We applied it to data from 50 published serosurveys, conducted on the general populations from 28 nations. We found that *ψ**adj* was significantly higher than the reported prevalence, *ψ**c* (P=3×10−8). The median *ψ**adj* was ∼60%, whereas the median *ψ**c* was ∼40%. In several instances, *ψ**adj* exceeded *ψ**c* by >100%. These findings suggest that asymptomatic infections have been far more prevalent than previously estimated. Our formalism can be readily deployed to obtain more accurate estimates of *ψ* from standard population-based surveys, without additional data collection. The findings have implications for understanding COVID-19 epidemiology and devising more effective interventions. ## INTRODUCTION Asymptomatic SARS-CoV-2 infections have been a major contributor to the spread of the COVID-19 pandemic, with nearly a quarter of all transmission events attributed to them1. They also represent a key outcome of COVID-19 vaccination; vaccine efficacies have been estimated as the fraction of potentially symptomatic infections rendered asymptomatic by vaccination in clinical trials2-4. Accurate estimation of the prevalence of asymptomatic infections, *ψ*, is thus important for understanding COVID-19 epidemiology and for designing and assessing public health interventions. A large number of surveys, conducted throughout the pandemic, have offered estimates of *ψ*5,6. Here, we recognized an important confounding factor that compromises these estimates and devised a formalism to adjust for it. The surveys contain two parts: 1) a nucleic acid or an antibody test to detect SARS-CoV-2 infection, and 2) a questionnaire to assess the symptoms experienced. Individuals who test positive for the infection but declare no symptoms are deemed asymptomatically infected. *ψ* is thus estimated as the fraction of test-positive cases that reports no symptoms. The confounding effect arises from the symptoms assessed not being specific to COVID-19. Symptoms such as cough and fever, which are part of nearly all COVID-19 surveys, can be triggered not only by SARS-CoV-2 infection but also by a host of other infections including influenza and circulating coronaviruses. It is possible, therefore, that some individuals who reported symptoms in the surveys may have had them due to the other conditions. Such individuals should be classified as asymptomatic for SARS-CoV-2 but get misclassified as symptomatic, resulting in a systematic underestimation of *ψ*. Evidence of this misclassification exists in the data gathered by the surveys: The surveys identify individuals who test negative for SARS-CoV-2 but report symptoms. For instance, a survey from The Netherlands reported that ∼62% of the individuals who tested negative for SARS-CoV-2 displayed symptoms7. The number was as high as 80% in a survey in the US8,9. These individuals must have had their symptoms arise from causes other than SARS-CoV-2 infection. The high prevalence of such individuals in these surveys implies that at least some of the test-positive, symptomatic cases may have had their symptoms arise from non-COVID conditions. Adjusting for this confounding effect is important to obtain accurate estimates of *ψ*. The adjustment is challenging because of the two-part survey methodology, with the tests used in the first part, to assess SARS-CoV-2 infection, limited by their own sensitivities and specificities. Thus, the test-negative, symptomatic individuals, discussed above, may not all have been uninfected; some who had the infection may have been classified as test-negative because the antigen (or antibody) levels in them were below assay detection limits. Indeed, the symptoms they experienced may well have arisen from SARS-CoV-2 infection. Thus, the adjustment for the non-specificity of the symptoms must also simultaneously account for the sensitivity and specificity of the SARS-CoV-2 test. Here, we developed a formalism that accomplished that. We applied our formalism to data from 50 published serosurveys, conducted in 28 countries across continents, and found that the adjusted *ψ* was significantly higher than previously reported. Indeed, in several instances, the previous estimates had to be revised upward by over 100%. ## RESULTS ### Formalism to adjust for symptom specificity We developed our formalism for the general scenario where the goal is to estimate the prevalence of asymptomatic infections caused by a pathogen of interest when another pathogen that could trigger similar symptoms is also circulating in the population, confounding the estimates. We assumed that data relating to the pathogen of interest was gathered following the two-part survey methodology described above. The detailed derivation is presented in Methods. Here, we let the pathogen of interest be SARS-CoV-2 and the other pathogen represent the collection of all other conditions with symptoms that overlap with those of SARS-CoV-2 infection. Remarkably, we obtained a closed-form expression for the adjusted prevalence of asymptomatic SARS-CoV-2 infections, *ψ**adj*: ![Formula][1] Here, *α* and *β* are the SARS-CoV-2 test sensitivity and specificity, respectively, *ψ**c* is the crude (or unadjusted) prevalence of asymptomatic cases among test-positive individuals, *ρ**c* is the crude fraction of test-positive cases among the sampled individuals, and *ϕ**c* is the crude proportion of symptomatic cases among test-negative individuals. Thus, given the set of quantities *S* = {*α, β, ρ**c*, *ϕ**c*, *ψ**c*}, all of which are typically reported in surveys, *ψ**adj* can be readily calculated. ### Adjusted estimates of *ψ* from serosurveys To apply our formalism, we collated data from published serosurveys (Table S1)7-56. Although our method applies also to surveys using nucleic acid-based (PCR) testing, serosurveys have been preferred for assessing asymptomatic SARS-CoV-2 infections because nucleic acid-based testing could miss presymptomatic individuals, who do not display symptoms at the time of testing but develop them later5,57. Serosurveys seek symptoms experienced during a longer ‘recall period’, which renders them more susceptible to confounding from other conditions with overlapping symptoms, highlighting the need for the present adjustment. We considered serosurveys in the early phase of the pandemic, before vaccination programs began, to eliminate any confounding effect of symptoms elicited by vaccines. We restricted our analysis to studies with a sample size of ≥ 500, as smaller datasets could introduce significant uncertainties in our calculations58. We excluded studies on samples biased by symptom status, such as hospitalized patients or long-term care facilities, and focused instead on studies sampling the general population. We, of course, also excluded studies that did not provide all the quantities in *S* required for the adjustment. With these criteria, we identified 50 serosurveys that were amenable to our analysis. Three of these studies13,39,56 estimated *ψ* at three different time points, resulting in a total of 56 estimates of *ψ* (Table S1). The selected studies spanned 28 countries across Asia, the Americas, Europe, and Africa, covering a broad spectrum of epidemiological settings. To first assess the prevalence and scale of the confounding effect due to the non-specificity of symptoms, we examined the fraction, *ϕ**c*, of seronegative individuals who reported symptoms across the surveys. *ϕ**c* varied from 0 to 0.8 with a median of 0.31 (Figure 1A), indicating that overlapping symptoms commonly arose from other conditions and could therefore significantly affect estimates of *ψ*. Furthermore, although most surveys employed antibody tests with high sensitivity and specificity, several reported sensitivities ≤0.85 (Table S1), potentially amplifying the confounding effect. ![Figure 1.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/09/12/2024.09.11.24313462/F1.medium.gif) [Figure 1.](http://medrxiv.org/content/early/2024/09/12/2024.09.11.24313462/F1) Figure 1. Adjusted estimates of the prevalence of asymptomatic SARS-CoV-2 infections are higher than crude estimates. Distributions of **(A)** fraction of test-negative individuals showing symptoms, *ϕ**c*, and **(B)** crude seroprevalence, *ρ**c*, from 50 serosurveys. **(C)** The corresponding distributions of the reported crude prevalence of asymptomatic infections, *ψ**c* (orange), and the adjusted prevalence, *ψ**adj* (red), the latter obtained using equation (1). The dashed lines in (A)-(C) are medians. **(D)** Individual estimates of *ψ**adj* versus *ψ**c*. Error bars indicate 95% confidence intervals calculated using the Wilson’s score interval59. **(E)** Histogram of the number of surveys with *η*, the percentage increase of *ψ**adj* over *ψ**c*, in the ranges shown. The correlations between *η* and **(F)** *ϕ**c*, and **(G)** test-specificity, *β. r**s* denotes Spearman’s correlation coefficient. The crude seroprevalence, *ρ**c*, varied from 0.01 to 0.58 across the studies, with a median of 0.11, representing a wide range of the extent of spread of the infection in the populations studied at the time of the surveys (Figure 1B). The surveys reported widely varying estimates of the crude prevalence of asymptomatic infections, *ψ**c*, spanning the range from 0.068 to 1 with a median of 0.40 (Figure 1C, orange). Using equation (1), we calculated the adjusted prevalence, *ψ**adj*, for all the 56 estimates of *ψ**c*. *ψ**adj* varied from 0.04 to 1.00 with a median of 0.60 (Figure 1C, red). We found overall that *ψ**adj* was significantly larger than *ψ**c* (P=3×10−8 using the Wilcoxon signed rank test; Figure 1D). We defined *η* = 1 × (*ψ**adj* − *ψ**c*)/*ψ**c* as the percentage increase in *ψ* due to the adjustment. Out of the 56 estimates, 9 had *η*>100%, 10 had *η* in the range of 50-100%, 12 in the range 25-50%, 21 between 0% and 25%, and 4 had *η*<0% (Figure 1E). ### Factors contributing to the adjustment To identify the quantities in *S* most responsible for the adjustment in the datasets we considered, we calculated pairwise correlations of *η* with each quantity in *S*. We found that *ϕ**c* was strongly positively correlated with *η* (Spearman’s coefficient *r**s* = 0.86, P < 10−16) (Figure 1F). *β* showed a moderate positive correlation with *η* (*r**s* = 0.30, P = 0.026) (Figure 1G). The other quantities were not significantly correlated with *η* (Figure S1). Thus, the non-specificity of the symptoms was the major contributor to the adjustment. Indeed, for the 9 estimates with *η*>100%, *ϕ**c* was >50%. Our expression in equation (1) reduced when *α* = *β* = 1 to ![Graphic][2], showing how *ϕ**c* would contribute to the adjustment even with a perfect antibody test and explaining the positive correlation between *ψ**adj* and *ϕ**c*. For imperfect antibody tests, where *α*<1 and/or *β*<1, *ψ**adj* displayed a more complex dependency on the quantities in *S* (equation (1)). In the absence of symptom overlap (*ϕ**c* =0), equation (1) reduced to ![Graphic][3] allowing *ψ**adj* to be larger or smaller than *ψ**c* depending on the specific values of *α, β*, and *ρ**c*. When *α* = 1, for instance, ![Graphic][4]. (The latter inequality follows because (1 − *β*)(1 − *ρ*) > and hence ![Graphic][5]) Indeed, the reduction in *ψ* due to imperfect test sensitivity and specificity may dominate the increase due to overlapping symptoms, explaining the few instances with *η* < 0% above. Nonetheless, in all but 4 of the 56 instances we studied, we found *ψ**adj* ≥ *ψ**c*, highlighting the dominant effect of the adjustment due to symptom overlap. We conclude therefore that *ψ* has been substantially underestimated by existing serosurveys, primarily due to the confounding effect of the non-specificity of the symptoms elicited by SARS-CoV-2. Our formalism enables adjusting for this effect and arriving at more accurate estimates of *ψ*. ## DISCUSSION Our formalism makes important advances in addressing confounding effects in the estimation of *ψ*. A general formalism to adjust for antibody (or nucleic acid) test sensitivity and specificity was developed earlier60, which has been applied to obtain accurate SARS-CoV-2 prevalence estimates during the pandemic7. The formalism has been extended to estimate *ψ*, but without accounting for the specificity of the symptoms46. The importance of symptom specificity has been recognized earlier: For instance, an increase in the proportion of asymptomatic cases of influenza virus infection resulted after accounting for overlapping symptoms caused by other infections61,62. The adjustment in the latter studies, which relied on regression techniques, did not account, however, for the infection test sensitivity and specificity. Here, we accounted for the infection test sensitivity and specificity as well as the specificity of the symptoms. Furthermore, we derived a closed-form expression for the adjustment (equation (1)) which enables facile application of our formalism. We foresee several implications of our study. First, the refined estimates of *ψ* that our formalism yields would help reassess the contribution of asymptomatic infections to COVID-19 transmission and spread1,63. They would also form inputs to models of COVID-19 epidemiology64-66, enabling more reliable forecasting of disease spread and the design of effective control strategies. Second, the formalism could aid COVID-19 vaccine development efforts67 by enabling more accurate estimation of vaccine efficacies, which are often based on comparing estimates of *ψ* in the vaccinated and unvaccinated arms of clinical trials2-4. Third, estimates of *ψ* will inform efforts underway to unravel genetic, immunological, and demographic underpinnings of asymptomatic infections68-72. Finally, we anticipate our formalism to be applicable to settings beyond COVID-19 that involve asymptomatic infections, such as influenza61,62. It would be particularly important to epidemiological studies that employ extended symptom recall periods, which increase the likelihood of contracting other infections during the recall period and, consequently, the confounding effect of symptom overlap. Our study has limitations. First, we assumed that symptoms caused by SARS-CoV-2 and by other infections are independent. While co-infection can potentially influence the severity of SARS-CoV-2 infection, such instances appear rare73. Further justification of our assumption comes from studies that found influenza vaccination not to offer significant protection against SARS-CoV-2 symptoms74. Second, our selection of serosurveys is not exhaustive. Our aim was to demonstrate the wide applicability and relevance of our formalism and not to provide a global estimate of *ψ*. Future studies may conduct a more systematic search and meta-analysis using our formalism to obtain such a global estimate of *ψ*. ## METHODS ### Formalism to adjust for specificity of symptoms We consider the scenario where infection by the pathogen of interest, denoted *X*, can trigger symptoms that may also be triggered by other pathogens (or conditions), the latter collectively denoted *Y*. Surveys aim to assess the prevalence of asymptomatic infections by *X*. A test, de-noted *T*, assesses whether an individual undertaking the test is infected by *X*. Simultaneously, a questionnaire inquires into the symptoms, denoted *S*, experienced by the individual during a pre-defined recall period. We recognize that the symptoms may also be triggered by *Y*. We distinguish between these possibilities by letting *S**X* and *S**Y* represent events associated with the symptoms being triggered by *X* and *Y*, respectively. The aim is to estimate the fraction of individuals infected by *X* who do not experience symptoms triggered by *X*. We arrive at this estimate as follows. We define *P*[*X*+] and *P*[*T*+] as the probability with which an individual is infected by *X* and the probability that the infection test yields a positive result, respectively. Clearly, *P*[*T*+] = *ρ**c*, the crude prevalence estimated by the survey as the fraction of individuals tested who show a positive result. *P*[*X*+] = *ρ**adj* is the actual prevalence, obtained after adjusting for test sensitivity and specificity. The test sensitivity is *α* = *P*[*T*+|*X*+], the probability of the test yielding a positive result given the infection by *X*. The test specificity is *β* = *P*[*T*−|*X*−], the probability that the test yields a negative result, given that the tested individual is not infected by *X*. The total probability of the test yielding a positive result can thus be written as ![Formula][6] Recognizing that *P*[*T*+|*X*+] = 1 − *P*[*T*−|*X*−] and *P*[*X*−] = 1 − *P*[*X*+] and substituting the definitions above in equation (2), it follows that ![Formula][7] We next consider events related to the occurrence of symptoms. The crude prevalence of asymptomatic individuals, *ψ**c* = *P*[*S*−|*T*+], is the probability that an individual who tests positive reports no symptoms. It is thus measured in the surveys as the fraction of test-positive cases who declare no symptoms. Accounting for the test sensitivity and specificity, we again write, ![Formula][8] which, upon recognizing that *P*[*X*−|*T*+] = 1 − *P*[*X*+|*T*+] and invoking Bayes’ theorem, ![Formula][9] Yields ![Formula][10] Given the simultaneous presence of *X* and *Y* in circulation, the absence of symptoms implies the absence of symptoms triggered by both *X* and *Y*. In other words, ![Graphic][11]. This yields, ![Formula][12] where ![Graphic][13] is the probability that an individual infected by *X* does not experience symptoms triggered by *X*, which is the adjusted prevalence of asymptomatic infections, the key quantity of interest here. Similarly, in the absence of infection by *X*, we may write ![Formula][14] where the latter equality follows from ![Graphic][15] an individual not infected by *X* cannot have symptoms triggered by *X*. Combining equations (6) − (8) yields ![Formula][16] We next assume that experiencing symptoms triggered by *Y* or not is independent of infection by *X*, so that ![Formula][17] To estimate the latter probabilities, we invoke their relationship with test results as follows. We recognize that *ω**c* = *P*[*S*−|*T*−] is the probability of not experiencing symptoms given test-negative status, which represents the crude proportion of asymptomatic cases among test-negative individuals. Following the arguments above, the symptoms must arise neither from *X* nor *Y*, so that ![Formula][18] Invoking test sensitivity and specificity, we write the first term on the right hand side of equation (11) as ![Formula][19] where the latter equality follows because ![Graphic][20] and *P*[*X*−|*T*−] = 1 − *P*[*X*+|*T*−]. Using Bayes’ theorem and the definitions of the quantities above, we obtain ![Formula][21] Combining equations (11) − (13) and rearranging terms yields ![Formula][22] Following a similar procedure, we write the second term on the right hand side of equation (11) as ![Formula][23] where the latter equality follows because ![Graphic][24] and *P*[*X*+|*T*−] = 1 − *P*[*X*−|*T*−]. Combining equations (14) and (15) with equation (11) and rearranging terms, we obtain ![Formula][25] Finally, combining equations (9), (1), (11), and (1), and letting *ϕ**c* = 1 − *ω**c*, the fraction of symptomatic cases in the test-negative subpopulation, we obtain equation (1): ![Formula][26] ## Supporting information Supplementary materials combined [[supplements/313462_file02.pdf]](pending:yes) ## Data Availability All data produced in the present work are contained in the manuscript ## AUTHOR CONTRIBUTIONS A.T. and N.M.D. designed the study and developed the mathematical formalism. A.T. collated data from serosurveys, performed the analysis, and wrote the first draft. S.C., A.J., B.C. and N.M.D. contributed to the analysis and edited the draft. A.T. and S.C. had access to all the data. All authors approved the final draft and submission. ## COMPETING INTERESTS The authors declare that no competing interests exist. ## ACKNOWLEDGEMENTS We thank Jeremie Guedj and Shreyas Joshi for helpful discussions. This study did not receive any funding. * Received September 11, 2024. * Revision received September 11, 2024. * Accepted September 12, 2024. * © 2024, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at [http://creativecommons.org/licenses/by-nc-nd/4.0/](http://creativecommons.org/licenses/by-nc-nd/4.0/) ## REFERENCES 1. 1.Johansson, M.A., Quandelacy, T.M., Kada, S., Prasad, P.V., Steele, M., Brooks, J.T., Slayton, R.B., Biggerstaff, M., and Butler, J.C. (2021). SARS-CoV-2 transmission from people without COVID-19 symptoms. JAMA Netw. Open 4, e2035057. doi:10.1001/jamanetworkopen.2020.35057. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamanetworkopen.2020.35057&link_type=DOI) 2. 2.Khoury, D.S., Cromer, D., Reynaldi, A., Schlub, T.E., Wheatley, A.K., Juno, J.A., Subbarao, K., Kent, S.J., Triccas, J.A., and Davenport, M.P. (2021). Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 27, 1205–1211. doi:10.1038/s41591-021-01377-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41591-021-01377-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34002089&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) 3. 3.Khoury, D.S., Docken, S.S., Subbarao, K., Kent, S.J., Davenport, M.P., and Cromer, D. (2023). Predicting the efficacy of variant-modified COVID-19 vaccine boosters. Nat. Med. 29, 574–578. doi:10.1038/s41591-023-02228-4. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41591-023-02228-4&link_type=DOI) 4. 4.Padmanabhan, P., Desikan, R., and Dixit, N.M. (2022). Modeling how antibody responses may determine the efficacy of COVID-19 vaccines. Nat. Comput. Sci. 2, 123–131. doi:10.1038/s43588-022-00198-0. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s43588-022-00198-0&link_type=DOI) 5. 5.Oran, D.P., and Topol, E.J. (2021). The proportion of SARS-CoV-2 infections that are asymptomatic : A systematic review. Ann. Intern. Med. 174, 655–662. doi:10.7326/M20-6976. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7326/M20-6976&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33481642&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) 6. 6.Sah, P., Fitzpatrick, M.C., Zimmer, C.F., Abdollahi, E., Juden-Kelly, L., Moghadas, S.M., Singer, B.H., and Galvani, A.P. (2021). Asymptomatic SARS-CoV-2 infection: A systematic review and meta-analysis. Proc. Natl. Acad. Sci. USA 118, e2109229118. doi:10.1073/pnas.2109229118. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxODoiMTE4LzM0L2UyMTA5MjI5MTE4IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDkvMTIvMjAyNC4wOS4xMS4yNDMxMzQ2Mi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 7. 7.Vos, E.R.A., den Hartog, G., Schepp, R.M., Kaaijk, P., van Vliet, J., Helm, K., Smits, G., Wijmenga-Monsuur, A., Verberk, J.D.M., van Boven, M., et al. (2020). Nationwide seroprevalence of SARS-CoV-2 and identification of risk factors in the general population of the Netherlands during the first epidemic wave. J Epidemiol. Community Health 75, 489–495. doi:10.1136/jech-2020-215678. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiamVjaCI7czo1OiJyZXNpZCI7czo4OiI3NS82LzQ4OSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA5LzEyLzIwMjQuMDkuMTEuMjQzMTM0NjIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 8. 8.Sullivan, P.S., Siegler, A.J., Shioda, K., Hall, E.W., Bradley, H., Sanchez, T., Luisi, N., Valentine-Graves, M., Nelson, K.N., Fahimi, M., et al. (2022). Severe acute respiratory syndrome coronavirus 2 cumulative incidence, United States, August 2020-December 2020. Clin. Infect. Dis. 74, 1141–1150. doi:10.1093/cid/ciab626. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/ciab626&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34245245&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) 9. 9.Chamberlain, A.T., Toomey, K.E., Bradley, H., Hall, E.W., Fahimi, M., Lopman, B.A., Luisi, N., Sanchez, T., Drenzek, C., Shioda, K., et al. (2022). Cumulative incidence of SARS-CoV-2 infections among adults in Georgia, United States, August to December 2020. J. Infect. Dis. 225, 396–403. doi:10.1093/infdis/jiab522. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/infdis/jiab522&link_type=DOI) 10. 10.Menezes, A.M.B., Victora, C.G., Hartwig, F.P., Silveira, M.F., Horta, B.L., Barros, A.J.D., Mesenburg, M.A., Wehrmeister, F.C., Pellanda, L.C., Dellagostin, O.A., et al. (2021). High prevalence of symptoms among Brazilian subjects with antibodies against SARS-CoV-2. Sci Rep 11, 13279. doi:10.1038/s41598-021-92775-y. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41598-021-92775-y&link_type=DOI) 11. 11.Silva, A.A.M.D., Lima-Neto, L.G., Azevedo, C., Costa, L., Bragança, M., Barros Filho, A.K.D., Wittlin, B.B., Souza, B.F., Oliveira, B., Carvalho, C.A., et al. (2020). Population-based seroprevalence of SARS-CoV-2 and the herd immunity threshold in Maranhao. Rev. Saude Publica 54, 131. doi:10.11606/s1518-8787.2020054003278. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.11606/s1518-8787.2020054003278&link_type=DOI) 12. 12.Terças-Trettel, A.C.P., Muraro, A.P., Andrade, A.C.S., and Oliveira, E.C. (2022). Self-reported symptoms and seroprevalence against SARS-CoV-2 in the population of Mato Grosso: a household-based survey in 2020. Rev. Assoc. Med. Bras. (1992) 68, 928–934. doi:10.1590/1806-9282.20220078. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1590/1806-9282.20220078&link_type=DOI) 13. 13.Albuquerque, J.O.M., Kamioka, G.A., Madalosso, G., Costa, S.A., Ferreira, P.B., Pino, F.A., Sato, A.P.S., Carvalho, A.C.A., Amorim, A.B.P., Aires, C.C., et al. (2021). Prevalence evolution of SARS-CoV-2 infection in the city of Sao Paulo, 2020-2021. Rev. Saude Publica 55, 62. doi:10.11606/s1518-8787.2021055003970. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.11606/s1518-8787.2021055003970&link_type=DOI) 14. 14.Nwosu, K., Fokam, J., Wanda, F., Mama, L., Orel, E., Ray, N., Meke, J., Tassegning, A., Takou, D., Mimbe, E., et al. (2021). SARS-CoV-2 antibody seroprevalence and associated risk factors in an urban district in Cameroon. Nat. Commun. 12, 5851. doi:10.1038/s41467-021-25946-0. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41467-021-25946-0&link_type=DOI) 15. 15.Vial, P.A., González, C., Apablaza, M., Vial, C., Lavín, M.E., Araos, R., Rubilar, P., Icaza, G., Florea, A., Pérez, C., et al. (2022). First wave of SARS-CoV-2 in Santiago Chile: Seroprevalence, asymptomatic infection and infection fatality rate. Epidemics 40, 100606. doi:10.1016/j.epidem.2022.100606. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.epidem.2022.100606&link_type=DOI) 16. 16.Vial, P., González, C., Icaza, G., Ramirez-Santana, M., Quezada-Gaete, R., Núñez-Franz, L., Apablaza, M., Vial, C., Rubilar, P., Correa, J., et al. (2022). Seroprevalence, spatial distribution, and social determinants of SARS-CoV-2 in three urban centers of Chile. BMC Infect. Dis. 22, 99. doi:10.1186/s12879-022-07045-7. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12879-022-07045-7&link_type=DOI) 17. 17.Li, Z., Guan, X., Mao, N., Luo, H., Qin, Y., He, N., Zhu, Z., Yu, J., Li, Y., Liu, J., et al. (2021). Antibody seroprevalence in the epicenter Wuhan, Hubei, and six selected provinces after containment of the first epidemic wave of COVID-19 in China. Lancet Reg. Health. West. Pac. 8, 100094. doi:10.1016/j.lanwpc.2021.100094. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.lanwpc.2021.100094&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33585828&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) 18. 18.Garay, E., Serrano-Coll, H., Rivero, R., Gastelbondo, B., Faccini-Martínez, A., Berrocal, J., Pérez, A., Badillo, M., Martinez-Bravo, C., Botero, Y., et al. (2022). SARS-CoV-2 in eight municipalities of the Colombian tropics: high immunity, clinical and sociodemographic outcomes. Trans. R. Soc. Trop. Med. Hyg. 116, 139–147. doi:10.1093/trstmh/trab094. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/trstmh/trab094&link_type=DOI) 19. 19.Serrano-Coll, H., Miller, H., Rodríguez-Van Der Hamen, C., Gastelbondo, B., Novoa, W., Oviedo, M., Rivero, R., Garay, E., and Mattar, S. (2021). High prevalence of SARS-CoV-2 in an Indigenous community of the Colombian Amazon region. Trop. Med. Infect. Dis. 6. doi:10.3390/tropicalmed6040191. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/tropicalmed6040191&link_type=DOI) 20. 20.Espenhain, L., Tribler, S., Svaerke Jørgensen, C., Holm Hansen, C., Wolff Sönksen, U., and Ethelberg, S. (2021). Prevalence of SARS-CoV-2 antibodies in Denmark: Nationwide, population-based seroepidemiological study. Eur. J. Epidemiol. 36, 715–725. doi:10.1007/s10654-021-00796-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10654-021-00796-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34420152&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) 21. 21.Shaweno, T., Abdulhamid, I., Bezabih, L., Teshome, D., Derese, B., Tafesse, H., and Shaweno, D. (2021). Seroprevalence of SARS-CoV-2 antibody among individuals aged above 15 years and residing in congregate settings in Dire Dawa city administration, Ethiopia. Trop. Med. Health 49, 55. doi:10.1186/s41182-021-00347-7. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s41182-021-00347-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) 22. 22.Carrat, F., de Lamballerie, X., Rahib, D., Blanché, H., Lapidus, N., Artaud, F., Kab, S., Renuy, A., Szabo de Edelenyi, F., Meyer, L., et al. (2021). Antibody status and cumulative incidence of SARS-CoV-2 infection among adults in three regions of France following the first lockdown and associated risk factors: a multicohort study. Int. J. Epidemiol. 50, 1458–1472. doi:10.1093/ije/dyab110. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ije/dyab110&link_type=DOI) 23. 23.Rouquette, A., Descarpentry, A., Dione, F., Falissard, B., Legleye, S., Vuillermoz, C., Pastorello, A., Meyer, L., Warszawski, J., Davisse-Paturet, C., et al. (2023). Comparison of depression and anxiety following self-reported COVID-19-like symptoms vs SARS-CoV-2 seropositivity in France. JAMA Netw. Open 6, e2312892. doi:10.1001/jamanetworkopen.2023.12892. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamanetworkopen.2023.12892&link_type=DOI) 24. 24.Beaumont, A., Durand, C., Ledrans, M., Schwoebel, V., Noel, H., Le Strat, Y., Diulius, D., Colombain, L., Médus, M., Gueudet, P., et al. (2021). Seroprevalence of anti-SARS-CoV-2 antibodies after the first wave of the COVID-19 pandemic in a vulnerable population in France: A cross-sectional study. BMJ Open 11, e053201. doi:10.1136/bmjopen-2021-053201. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYm1qb3BlbiI7czo1OiJyZXNpZCI7czoxMzoiMTEvMTEvZTA1MzIwMSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA5LzEyLzIwMjQuMDkuMTEuMjQzMTM0NjIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 25. 25.Santos-Hövener, C., Neuhauser, H.K., Rosario, A.S., Busch, M., Schlaud, M., Hoffmann, R., Gößwald, A., Koschollek, C., Hoebel, J., Allen, J., et al. (2020). Serology- and PCR-based cumulative incidence of SARS-CoV-2 infection in adults in a successfully contained early hotspot (CoMoLo study), Germany, May to June 2020. Euro. Surveill. 25. doi:10.2807/1560-7917.ES.2020.25.47.2001752. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2807/1560-7917.ES.2020.25.47.2001752&link_type=DOI) 26. 26.Weis, S., Scherag, A., Baier, M., Kiehntopf, M., Kamradt, T., Kolanos, S., Ankert, J., Glöckner, S., Makarewicz, O., Hagel, S., et al. (2021). Antibody response using six different serological assays in a completely PCR-tested community after a coronavirus disease 2019 outbreak-the CoNAN study. Clin. Microbiol. Infect. 27, 470 e471-470 e479. doi:10.1016/j.cmi.2020.11.009. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cmi.2020.11.009&link_type=DOI) 27. 27.Merkely, B., Szabó, A.J., Kosztin, A., Berényi, E., Sebestyén, A., Lengyel, C., Merkely, G., Karády, J., Várkonyi, I., Papp, C., et al. (2020). Novel coronavirus epidemic in the Hungarian population, a cross-sectional nationwide survey to support the exit policy in Hungary. Geroscience 42, 1063–1074. doi:10.1007/s11357-020-00226-9. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11357-020-00226-9&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32677025&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) 28. 28.Murhekar, M.V., Bhatnagar, T., Selvaraju, S., Saravanakumar, V., Thangaraj, J.W.V., Shah, N., Kumar, M.S., Rade, K., Sabarinathan, R., Asthana, S., et al. (2021). SARS-CoV-2 antibody seroprevalence in India, August-September, 2020: Findings from the second nationwide household serosurvey. Lancet Glob. Health 9, e257–e266. doi:10.1016/S2214-109X(20)30544-1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S2214-109X(20)30544-1&link_type=DOI) 29. 29.Selvaraju, S., Kumar, M.S., Thangaraj, J.W.V., Bhatnagar, T., Saravanakumar, V., Kumar, C.P.G., Sekar, K., Ilayaperumal, E., Sabarinathan, R., Jagadeesan, M., et al. (2021). Population-based serosurvey for severe acute respiratory syndrome coronavirus 2 transmission, Chennai, India. Emerg. Infect. Dis. 27, 586–589. doi:10.3201/eid2702.203938. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3201/eid2702.203938&link_type=DOI) 30. 30.Kumar, D., Sidhu, M., Dogra, S., Kumar, B., Sahni, B., Yadav, A.K., Bala, K., Kumari, R., Mahajan, R., Bavoria, S., et al. (2022). Seroprevalence of anti SARS-CoV-2 IgG antibodies among adults in Jammu district, India: A community-based study. Indian J. Med. Res. 155, 171–177. doi:10.4103/ijmr.IJMR\_4489\_20. [CrossRef](http://medrxiv.org/lookup/external-ref?access\_num=10.4103/ijmr.IJMR_4489_20&link_type=DOI) 31. 31.Khan, S.M.S., Qurieshi, M.A., Haq, I., Majid, S., Ahmad, J., Ayub, T., Bhat, A.A., Fazili, A.B., Ganai, A.M., Jan, Y., et al. (2021). Seroprevalence of SARS-CoV-2-specific IgG antibodies in Kashmir, India, 7 months after the first reported local COVID-19 case: results of a population-based seroprevalence survey from October to November 2020. BMJ Open 11, e053791. doi:10.1136/bmjopen-2021-053791. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYm1qb3BlbiI7czo1OiJyZXNpZCI7czoxMjoiMTEvOS9lMDUzNzkxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDkvMTIvMjAyNC4wOS4xMS4yNDMxMzQ2Mi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 32. 32.Poustchi, H., Darvishian, M., Mohammadi, Z., Shayanrad, A., Delavari, A., Bahadorimonfared, A., Eslami, S., Javanmard, S.H., Shakiba, E., Somi, M.H., et al. (2021). SARS-CoV-2 antibody seroprevalence in the general population and high-risk occupational groups across 18 cities in Iran: a population-based cross-sectional study. Lancet Infect. Dis. 21, 473–481. doi:10.1016/S1473-3099(20)30858-6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1473-3099(20)30858-6&link_type=DOI) 33. 33.Heavey, L., Garvey, P., Colgan, A.M., Thornton, L., Connell, J., Roux, T., Hunt, M., O’Callaghan, F., Culkin, F., Keogan, M., et al. (2021). The study to investigate COVID-19 infection in people living in Ireland (SCOPI): A seroprevalence study, June to July 2020. Euro Surveill. 26, 2001741. doi:10.2807/1560-7917.ES.2021.26.48.2001741. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2807/1560-7917.ES.2021.26.48.2001741&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34857067&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) 34. 34.Pagani, G., Giacomelli, A., Conti, F., Bernacchia, D., Rondanin, R., Prina, A., Scolari, V., Rizzo, A., Beltrami, M., Caimi, C., et al. (2021). Prevalence of SARS-CoV-2 in an area of unrestricted viral circulation: Mass seroepidemiological screening in Castiglione d’Adda, Italy. PLoS One 16, e0246513. doi:10.1371/journal.pone.0246513. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0246513&link_type=DOI) 35. 35.Stefanelli, P., Bella, A., Fedele, G., Pancheri, S., Leone, P., Vacca, P., Neri, A., Carannante, A., Fazio, C., Benedetti, E., et al. (2021). Prevalence of SARS-CoV-2 IgG antibodies in an area of northeastern Italy with a high incidence of COVID-19 cases: a population-based study. Clin. Microbiol. Infect. 27, 633 e631–633 e637. doi:10.1016/j.cmi.2020.11.013. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cmi.2020.11.013&link_type=DOI) 36. 36.Abdul-Raheem, R., Moosa, S., Waheed, F., Aboobakuru, M., Ahmed, I.N., Rafeeg, F.N., and Saeed, M. (2021). A sero-epidemiological study after two waves of the COVID-19 epidemic. Asian Pac. J. Allergy Immunol. doi:10.12932/AP-040721-1177. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.12932/AP-040721-1177&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34953474&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) 37. 37.Sagara, I., Woodford, J., Kone, M., Assadou, M.H., Katile, A., Attaher, O., Zeguime, A., Doucoure, M., Higbee, E., Lane, J., et al. (2022). Rapidly increasing severe acute respiratory syndrome coronavirus 2 seroprevalence and limited clinical disease in 3 Malian communities: A prospective cohort study. Clin. Infect. Dis. 74, 1030–1038. doi:10.1093/cid/ciab589. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/ciab589&link_type=DOI) 38. 38.Basto-Abreu, A., Carnalla, M., Torres-Ibarra, L., Romero-Martínez, M., Martinez-Barnetche, J., Lopez-Martínez, I., Aparicio-Antonio, R., Shamah-Levy, T., Alpuche-Aranda, C., Rivera, J.A., et al. (2022). Nationally representative SARS-CoV-2 antibody prevalence estimates after the first epidemic wave in Mexico. Nat. Commun. 13, 589. doi:10.1038/s41467-022-28232-9. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41467-022-28232-9&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35105873&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) 39. 39.Arnaldo, P., Mabunda, N., Young, P.W., Tran, T., Sitoe, N., Chelene, I., Nhanombe, A., Ismael, N., Júnior, A., Cubula, B., et al. (2022). Prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in the Mozambican population: A cross-sectional serologic study in 3 cities, July-August 2020. Clin. Infect. Dis. 75, S285–S293. doi:10.1093/cid/ciac516. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/ciac516&link_type=DOI) 40. 40.Okpala, O.V., Dim, C.C., Ugwu, C.I., Onyemaechi, S., Uchebo, O., Chukwulobelu, U., Emembolu, C., Okoye, B., Igboekwu, C., Okoye, U.B., et al. (2021). Population seroprevalence of SARS-CoV-2 antibodies in Anambra State, South-East, Nigeria. Int. J. Infect. Dis. 110, 171–178. doi:10.1016/j.ijid.2021.07.040. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2021.07.040&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) 41. 41.Nisar, M.I., Ansari, N., Khalid, F., Amin, M., Shahbaz, H., Hotwani, A., Rehman, N., Pugh, S., Mehmood, U., Rizvi, A., et al. (2021). Serial population-based serosurveys for COVID-19 in two neighbourhoods of Karachi, Pakistan. Int. J. Infect. Dis. 106, 176–182. doi:10.1016/j.ijid.2021.03.040. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijid.2021.03.040&link_type=DOI) 42. 42.Huamaní, C., Velásquez, L., Montes, S., Mayanga-Herrera, A., and Bernabé-Ortiz, A. (2021). SARS-CoV-2 seroprevalence in a high-altitude setting in Peru: adult population-based cross-sectional study. PeerJ 9, e12149. doi:10.7717/peerj.12149. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7717/peerj.12149&link_type=DOI) 43. 43.Díaz-Vélez, C., Failoc-Rojas, V.E., Valladares-Garrido, M.J., Colchado, J., Carrera-Acosta, L., Becerra, M., Moreno Paico, D., and Ocampo-Salazar, E.T. (2021). SARS-CoV-2 seroprevalence study in Lambayeque, Peru. June-July 2020. PeerJ 9, e11210. doi:10.7717/peerj.11210. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7717/peerj.11210&link_type=DOI) 44. 44.Reyes-Vega, M.F., Soto-Cabezas, M.G., Cárdenas, F., Martel, K.S., Valle, A., Valverde, J., Vidal-Anzardo, M., Falcón, M.E., Munayco, C.V., and Peru COVID-19 Working Group (2021). SARS-CoV-2 prevalence associated to low socioeconomic status and overcrowding in an LMIC megacity: A population-based seroepidemiological survey in Lima, Peru. EClinicalMedicine 34, 100801. doi:10.1016/j.eclinm.2021.100801. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.eclinm.2021.100801&link_type=DOI) 45. 45.Moyano, L.M., Toledo, A.K., Chirinos, J., Vilchez Barreto, P.M.Q., Cavalcanti, S., Gamboa, R., Ypanaque, J., Meza, M., Noriega, S., Herrera, V., et al. (2023). SARS-CoV-2 seroprevalence on the north coast of Peru: A cross-sectional study after the first wave. PLoS Negl. Trop. Dis. 17, e0010794. doi:10.1371/journal.pntd.0010794. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pntd.0010794&link_type=DOI) 46. 46.Cantoe Castro, L., Pereira, A.H.G., Ribeiro, R., Alves, C., Veloso, L., Vicente, V., Alves, D., Domingues, I., Silva, C., Gomes, A., et al. (2021). Prevalence of SARS-CoV-2 antibodies after first 6 months of COVID-19 pandemic, Portugal. Emerg. Infect. Dis. 27, 2878. doi:10.3201/eid2711.210636. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3201/eid2711.210636&link_type=DOI) 47. 47.Kislaya, I., Gonçalves, P., Barreto, M., Sousa, R., Garcia, A.C., Matos, R., Guiomar, R., Rodrigues, A.P., and on Behalf of ISNCOVID-19 Group (2021). Seroprevalence of SARS-CoV-2 Infection in Portugal in May-July 2020: Results of the First National Serological Survey (ISNCOVID-19). Acta Med. Port. 34, 87–94. doi:10.20344/amp.15122. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.20344/amp.15122&link_type=DOI) 48. 48.Talla, C., Loucoubar, C., Roka, J.L., Barry, M.A., Ndiaye, S., Diarra, M., Thiam, M.S., Faye, O., Dia, M., Diop, M., et al. (2022). Seroprevalence of anti-SARS-CoV-2 antibodies in Senegal: a national population-based cross-sectional survey, between October and November 2020. IJID Reg 3, 117–125. doi:10.1016/j.ijregi.2022.02.007. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ijregi.2022.02.007&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35720135&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) 49. 49.Karachaliou, M., Moncunill, G., Espinosa, A., Castano-Vinyals, G., Jiménez, A., Vidal, M., Santano, R., Barrios, D., Puyol, L., Carreras, A., et al. (2021). Infection induced SARS-CoV-2 seroprevalence and heterogeneity of antibody responses in a general population cohort study in Catalonia Spain. Sci. Rep. 11, 21571. doi:10.1038/s41598-021-00807-4. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41598-021-00807-4&link_type=DOI) 50. 50.Pérez-Gómez, B., Pastor-Barriuso, R., Pérez-Olmeda, M., Hernán, M.A., Oteo-Iglesias, J., Fernández de Larrea, N., Fernández-García, A., Martín, M., Fernández-Navarro, P., Cruz, I., et al. (2021). ENE-COVID nationwide serosurvey served to characterize asymptomatic infections and to develop a symptom-based risk score to predict COVID-19. J. Clin. Epidemiol. 139, 240–254. doi:10.1016/j.jclinepi.2021.06.005. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jclinepi.2021.06.005&link_type=DOI) 51. 51.Richard, A., Wisniak, A., Perez-Saez, J., Garrison-Desany, H., Petrovic, D., Piumatti, G., Baysson, H., Picazio, A., Pennacchio, F., De Ridder, D., et al. (2022). Seroprevalence of anti-SARS-CoV-2 IgG antibodies, risk factors for infection and associated symptoms in Geneva, Switzerland: a population-based study. Scand. J. Public Health 50, 124–135. doi:10.1177/14034948211048050. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/14034948211048050&link_type=DOI) 52. 52.Alsuwaidi, A.R., Al Hosani, F.I., Al Memari, S., Narchi, H., Abdel Wareth, L., Kamal, H., Al Ketbi, M., Al Baloushi, D., Elfateh, A., Khudair, A., et al. (2021). Seroprevalence of COVID-19 infection in the Emirate of Abu Dhabi, United Arab Emirates: a population-based cross-sectional study. Int. J. Epidemiol. 50, 1077–1090. doi:10.1093/ije/dyab077. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ije/dyab077&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) 53. 53.Lamba, K., Bradley, H., Shioda, K., Sullivan, P.S., Luisi, N., Hall, E.W., Mehrotra, M.L., Lim, E., Jain, S., Kamali, A., et al. (2021). SARS-CoV-2 cumulative incidence and period seroprevalence: Results from a statewide population-based serosurvey in California. Open Forum Infect. Dis. 8, ofab379. doi:10.1093/ofid/ofab379. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ofid/ofab379&link_type=DOI) 54. 54.Pathela, P., Crawley, A., Weiss, D., Maldin, B., Cornell, J., Purdin, J., Schumacher, P.K., Marovich, S., Li, J., Daskalakis, D., and NYC Serosurvey Team (2021). Seroprevalence of severe acute respiratory syndrome coronavirus 2 following the largest initial epidemic wave in the United States: Findings from New York City, 13 May to 21 July 2020. J. Infect. Dis. 224, 196–206. doi:10.1093/infdis/jiab200. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/infdis/jiab200&link_type=DOI) 55. 55.Kumar, M.S., Thangaraj, J.W.V., Saravanakumar, V., Selvaraju, S., Kumar, C.P.G., Sabarinathan, R., Jagadeesan, M., Hemalatha, M.S., Rani, D.S., Jeyakumar, A., et al. (2021). Monitoring the trend of SARS-CoV-2 seroprevalence in Chennai, India, July and October 2020. Trans. R. Soc. Trop. Med. Hyg. 115, 1350–1352. doi:10.1093/trstmh/trab136. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/trstmh/trab136&link_type=DOI) 56. 56.Sharma, N., Sharma, P., Basu, S., Saxena, S., Chawla, R., Dushyant, K., Mundeja, N., Marak, Z., Singh, S., Singh, G., and Rustagi, R. (2022). The seroprevalence of severe acute respiratory syndrome coronavirus 2 in Delhi, India: a repeated population-based seroepidemiological study. Trans. R. Soc. Trop. Med. Hyg. 116, 242–251. doi:10.1093/trstmh/trab109. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/trstmh/trab109&link_type=DOI) 57. 57.Meyerowitz, E.A., Richterman, A., Bogoch, II, Low, N., and Cevik, M. (2021). Towards an accurate and systematic characterisation of persistently asymptomatic infection with SARS-CoV-2. Lancet Infect. Dis. 21, e163–e169. doi:10.1016/S1473-3099(20)30837-9. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1473-3099(20)30837-9&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33301725&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) 58. 58.Ioannidis, J.P.A. (2021). Infection fatality rate of COVID-19 inferred from seroprevalence data. Bull. World Health Organ. 99, 19–33F. doi:10.2471/BLT.20.265892. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2471/BLT.20.265892&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) 59. 59.Wallis, S. (2013). Binomial confidence intervals and contingency tests: Mathematical fundamentals and the evaluation of alternative methods. J. Quant. Linguistics 20, 178–208. doi:10.1080/09296174.2013.799918. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/09296174.2013.799918&link_type=DOI) 60. 60.Rogan, W.J., and Gladen, B. (1978). Estimating prevalence from the results of a screening test. Amer. J. Epidemiol. 107, 71–76. doi:10.1093/oxfordjournals.aje.a112510. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/oxfordjournals.aje.a112510&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=623091&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1978EJ19400010&link_type=ISI) 61. 61.Leung, N.H.L., Xu, C., Ip, D.K.M., and Cowling, B.J. (2015). Review article: The fraction of influenza virus infections that are asymptomatic: A Systematic review and meta-analysis. Epidemiology 26, 862–872. doi:10.1097/ede.0000000000000340. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/EDE.0000000000000340&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26133025&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) 62. 62.Wang, T.E., Lin, C.Y., King, C.C., and Lee, W.C. (2010). Estimating pathogen-specific asymptomatic ratios. Epidemiology 21, 726–728. doi:10.1097/EDE.0b013e3181e94274. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/EDE.0b013e3181e94274&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20585253&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) 63. 63.Buitrago-Garcia, D., Egli-Gany, D., Counotte, M.J., Hossmann, S., Imeri, H., Ipekci, A.M., Salanti, G., and Low, N. (2020). Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis. PLoS Med. 17, e1003346. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pmed.1003346&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32960881&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F09%2F12%2F2024.09.11.24313462.atom) 64. 64.Bertozzi, A.L., Franco, E., Mohler, G., Short, M.B., and Sledge, D. (2020). The challenges of modeling and forecasting the spread of COVID-19. Proc. Natl. Acad. Sci. USA 117, 16732–16738. doi:10.1073/pnas.2006520117. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMjoiMTE3LzI5LzE2NzMyIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDkvMTIvMjAyNC4wOS4xMS4yNDMxMzQ2Mi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 65. 65.Loo, S.L., Howerton, E., Contamin, L., Smith, C.P., Borchering, R.K., Mullany, L.C., Bents, S., Carcelen, E., Jung, S.-m., Bogich, T., et al. (2024). The US COVID-19 and Influenza Scenario Modeling Hubs: Delivering long-term projections to guide policy. Epidemics 46, 100738. doi:10.1016/j.epidem.2023.100738. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.epidem.2023.100738&link_type=DOI) 66. 66.Kissler, S.M., Tedijanto, C., Goldstein, E., Grad, Y.H., and Lipsitch, M. (2020). Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 368, 860–868. doi:10.1126/science.abb5793. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNjgvNjQ5My84NjAiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNC8wOS8xMi8yMDI0LjA5LjExLjI0MzEzNDYyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 67. 67.Zhu, C., Pang, S., Liu, J., and Duan, Q. (2024). Current progress, challenges and prospects in the development of COVID-19 vaccines. Drugs 84, 403–423. doi:10.1007/s40265-024-02013-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s40265-024-02013-8&link_type=DOI) 68. 68.Augusto, D.G., Murdolo, L.D., Chatzileontiadou, D.S., Sabatino Jr, J.J., Yusufali, T., Peyser, N.D., Butcher, X., Kizer, K., Guthrie, K., and Murray, V.W. (2023). A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection. Nature 620, 128–136. doi:10.1038/s41586-023-06331-x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41586-023-06331-x&link_type=DOI) 69. 69.Marchal, A., Cirulli, E.T., Neveux, I., Bellos, E., Thwaites, R.S., Barrett, K.M.S., Zhang, Y., Nemes-Bokun, I., Kalinova, M., and Catchpole, A. (2024). Lack of association between classical HLA genes and asymptomatic SARS-CoV-2 infection. HGG Adv. 5, 100300. doi:10.1016/j.xhgg.2024.100300. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.xhgg.2024.100300&link_type=DOI) 70. 70.Chowdhury, S., Tiwari, A., James, A., Chatterjee, B., and Dixit, N.M. (2023). Asymptomatic SARS-CoV-2 infections tend to occur less frequently in developed nations. medRxiv, 2023.2012.2014.23299954. doi:10.1101/2023.12.14.23299954. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMy4xMi4xNC4yMzI5OTk1NHYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDkvMTIvMjAyNC4wOS4xMS4yNDMxMzQ2Mi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 71. 71.Owens, K., Esmaeili, S., and Schiffer, J.T. (2024). Heterogeneous SARS-CoV-2 kinetics due to variable timing and intensity of immune responses. JCI Insight 9, e176286. doi:10.1172/jci.insight.176286. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1172/jci.insight.176286&link_type=DOI) 72. 72.Chatterjee, B., Singh Sandhu, H., and Dixit, N.M. (2022). Modeling recapitulates the heterogeneous outcomes of SARS-CoV-2 infection and quantifies the differences in the innate immune and CD8 T-cell responses between patients experiencing mild and severe symptoms. PLoS Pathog. 18, e1010630. 73. 73.Pawlowski, C., Silvert, E., O’Horo, J.C., Lenehan, P.J., Challener, D., Gnass, E., Murugadoss, K., Ross, J., Speicher, L., Geyer, H., et al. (2022). SARS-CoV-2 and influenza coinfection throughout the COVID-19 pandemic: an assessment of coinfection rates, cohort characteristics, and clinical outcomes. PNAS Nexus 1. doi:10.1093/pnasnexus/pgac071. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/pnasnexus/pgac071&link_type=DOI) 74. 74.Almadhoon, H.W., Hamdallah, A., Elsayed, S.M., Hagrass, A.I., Hasan, M.T., Fayoud, A.M., Al-Kafarna, M., Elbahnasawy, M., Alqatati, F., Ragab, K.M., et al. (2022). The effect of influenza vaccine in reducing the severity of clinical outcomes in patients with COVID-19: a systematic review and meta-analysis. Sci. Rep. 12, 14266. doi:10.1038/s41598-022-18618-6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41598-022-18618-6&link_type=DOI) [1]: /embed/graphic-1.gif [2]: /embed/inline-graphic-1.gif [3]: /embed/inline-graphic-2.gif [4]: /embed/inline-graphic-3.gif [5]: /embed/inline-graphic-4.gif [6]: /embed/graphic-3.gif [7]: /embed/graphic-4.gif [8]: /embed/graphic-5.gif [9]: /embed/graphic-6.gif [10]: /embed/graphic-7.gif [11]: /embed/inline-graphic-5.gif [12]: /embed/graphic-8.gif [13]: /embed/inline-graphic-6.gif [14]: /embed/graphic-9.gif [15]: /embed/inline-graphic-7.gif [16]: /embed/graphic-10.gif [17]: /embed/graphic-11.gif [18]: /embed/graphic-12.gif [19]: /embed/graphic-13.gif [20]: /embed/inline-graphic-8.gif [21]: /embed/graphic-14.gif [22]: /embed/graphic-15.gif [23]: /embed/graphic-16.gif [24]: /embed/inline-graphic-9.gif [25]: /embed/graphic-17.gif [26]: /embed/graphic-18.gif