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ABSTRACT 18 

Accurate estimates of the prevalence of asymptomatic SARS-CoV-2 infections, 𝜓, have been 19 
important for understanding and forecasting the trajectory of the COVID-19 pandemic. Two-part 20 
population-based surveys, which test the infection status and also assess symptoms, have been 21 
used to estimate 𝜓. Here, we identified a widely prevalent confounding effect that compromises 22 
these estimates and devised a formalism to adjust for it. The symptoms associated with SARS-23 
CoV-2 infection are not all specific to SARS-CoV-2. They can be triggered by a host of other 24 
conditions, such as influenza virus infection. By not accounting for the source of the symptoms, 25 
the surveys may misclassify individuals experiencing symptoms from other conditions as 26 
symptomatic for SARS-CoV-2, thus underestimating 𝜓. We developed a rigorous formalism to 27 
adjust for this confounding effect and derived a facile formula for the adjusted prevalence, 𝜓𝑎𝑑𝑗. 28 

We applied it to data from 50 published serosurveys, conducted on the general populations from 29 
28 nations. We found that 𝜓𝑎𝑑𝑗 was significantly higher than the reported prevalence, 𝜓𝑐 30 

(P=3×10-8). The median 𝜓𝑎𝑑𝑗 was ~60%, whereas the median 𝜓𝑐 was ~40%. In several 31 

instances, 𝜓𝑎𝑑𝑗 exceeded 𝜓𝑐 by >100%. These findings suggest that asymptomatic infections 32 

have been far more prevalent than previously estimated. Our formalism can be readily deployed 33 
to obtain more accurate estimates of 𝜓 from standard population-based surveys, without 34 
additional data collection. The findings have implications for understanding COVID-19 35 
epidemiology and devising more effective interventions.                    36 

  37 
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INTRODUCTION 38 

Asymptomatic SARS-CoV-2 infections have been a major contributor to the spread of the 39 
COVID-19 pandemic, with nearly a quarter of all transmission events attributed to them1. They 40 
also represent a key outcome of COVID-19 vaccination; vaccine efficacies have been estimated 41 
as the fraction of potentially symptomatic infections rendered asymptomatic by vaccination in 42 
clinical trials2-4. Accurate estimation of the prevalence of asymptomatic infections, 𝜓, is thus 43 
important for understanding COVID-19 epidemiology and for designing and assessing public 44 
health interventions. A large number of surveys, conducted throughout the pandemic, have 45 
offered estimates of 𝜓5,6. Here, we recognized an important confounding factor that 46 
compromises these estimates and devised a formalism to adjust for it. 47 

The surveys contain two parts: 1) a nucleic acid or an antibody test to detect SARS-CoV-2 48 
infection, and 2) a questionnaire to assess the symptoms experienced. Individuals who test 49 
positive for the infection but declare no symptoms are deemed asymptomatically infected. 𝜓 is 50 
thus estimated as the fraction of test-positive cases that reports no symptoms. The confounding 51 
effect arises from the symptoms assessed not being specific to COVID-19. Symptoms such as 52 
cough and fever, which are part of nearly all COVID-19 surveys, can be triggered not only by 53 
SARS-CoV-2 infection but also by a host of other infections including influenza and circulating 54 
coronaviruses. It is possible, therefore, that some individuals who reported symptoms in the 55 
surveys may have had them due to the other conditions. Such individuals should be classified 56 
as asymptomatic for SARS-CoV-2 but get misclassified as symptomatic, resulting in a systematic 57 
underestimation of 𝜓. 58 

Evidence of this misclassification exists in the data gathered by the surveys: The surveys identify 59 
individuals who test negative for SARS-CoV-2 but report symptoms. For instance, a survey from 60 
The Netherlands reported that ~62% of the individuals who tested negative for SARS-CoV-2 61 
displayed symptoms7. The number was as high as 80% in a survey in the US8,9. These 62 
individuals must have had their symptoms arise from causes other than SARS-CoV-2 infection. 63 
The high prevalence of such individuals in these surveys implies that at least some of the test-64 
positive, symptomatic cases may have had their symptoms arise from non-COVID conditions. 65 
Adjusting for this confounding effect is important to obtain accurate estimates of 𝜓. 66 

The adjustment is challenging because of the two-part survey methodology, with the tests used 67 
in the first part, to assess SARS-CoV-2 infection, limited by their own sensitivities and 68 
specificities. Thus, the test-negative, symptomatic individuals, discussed above, may not all 69 
have been uninfected; some who had the infection may have been classified as test-negative 70 
because the antigen (or antibody) levels in them were below assay detection limits. Indeed, the 71 
symptoms they experienced may well have arisen from SARS-CoV-2 infection. Thus, the 72 
adjustment for the non-specificity of the symptoms must also simultaneously account for the 73 
sensitivity and specificity of the SARS-CoV-2 test. Here, we developed a formalism that 74 
accomplished that. We applied our formalism to data from 50 published serosurveys, conducted 75 
in 28 countries across continents, and found that the adjusted 𝜓 was significantly higher than 76 
previously reported. Indeed, in several instances, the previous estimates had to be revised 77 
upward by over 100%.   78 

 79 

RESULTS 80 
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Formalism to adjust for symptom specificity  81 

We developed our formalism for the general scenario where the goal is to estimate the 82 
prevalence of asymptomatic infections caused by a pathogen of interest when another pathogen 83 
that could trigger similar symptoms is also circulating in the population, confounding the 84 
estimates. We assumed that data relating to the pathogen of interest was gathered following the 85 
two-part survey methodology described above. The detailed derivation is presented in Methods. 86 
Here, we let the pathogen of interest be SARS-CoV-2 and the other pathogen represent the 87 
collection of all other conditions with symptoms that overlap with those of SARS-CoV-2 infection. 88 
Remarkably, we obtained a closed-form expression for the adjusted prevalence of asymptomatic 89 
SARS-CoV-2 infections, 𝜓𝑎𝑑𝑗: 90 

𝜓𝑎𝑑𝑗 = 1 − 
𝜌𝑐(1 − 𝜌𝑐)(𝜓𝑐 − 1 + 𝜙𝑐)(𝛼 + 𝛽 − 1)

(𝜌𝑐 + 𝛽 − 1)[𝜓𝑐𝜌𝑐(1 − 𝛼) − 𝛼(1 − 𝜙𝑐)(1 − 𝜌𝑐)]
(1) 91 

Here, 𝛼 and 𝛽 are the SARS-CoV-2 test sensitivity and specificity, respectively, 𝜓𝑐 is the crude 92 

(or unadjusted) prevalence of asymptomatic cases among test-positive individuals, 𝜌𝑐 is the 93 
crude fraction of test-positive cases among the sampled individuals, and 𝜙𝑐 is the crude 94 
proportion of symptomatic cases among test-negative individuals. Thus, given the set of 95 
quantities 𝑆 = {𝛼, 𝛽, 𝜌𝑐 , 𝜙𝑐, 𝜓𝑐}, all of which are typically reported in surveys, 𝜓𝑎𝑑𝑗 can be readily 96 

calculated. 97 

Adjusted estimates of 𝝍 from serosurveys  98 

To apply our formalism, we collated data from published serosurveys (Table S1)7-56. Although 99 
our method applies also to surveys using nucleic acid-based (PCR) testing, serosurveys have 100 
been preferred for assessing asymptomatic SARS-CoV-2 infections because nucleic acid-based 101 
testing could miss presymptomatic individuals, who do not display symptoms at the time of 102 
testing but develop them later5,57. Serosurveys seek symptoms experienced during a longer 103 
‘recall period’, which renders them more susceptible to confounding from other conditions with 104 
overlapping symptoms, highlighting the need for the present adjustment.  105 

We considered serosurveys in the early phase of the pandemic, before vaccination programs 106 
began, to eliminate any confounding effect of symptoms elicited by vaccines. We restricted our 107 
analysis to studies with a sample size of ≥ 500, as smaller datasets could introduce significant 108 
uncertainties in our calculations58. We excluded studies on samples biased by symptom status, 109 
such as hospitalized patients or long-term care facilities, and focused instead on studies 110 
sampling the general population. We, of course, also excluded studies that did not provide all 111 
the quantities in 𝑆 required for the adjustment. With these criteria, we identified 50 serosurveys 112 

that were amenable to our analysis. Three of these studies13,39,56 estimated 𝜓 at three different 113 

time points, resulting in a total of 56 estimates of 𝜓 (Table S1). The selected studies spanned 28 114 
countries across Asia, the Americas, Europe, and Africa, covering a broad spectrum of 115 
epidemiological settings. 116 

To first assess the prevalence and scale of the confounding effect due to the non-specificity of 117 
symptoms, we examined the fraction, 𝜙𝑐, of seronegative individuals who reported symptoms 118 
across the surveys. 𝜙𝑐 varied from 0 to 0.8 with a median of 0.31 (Figure 1A), indicating that 119 
overlapping symptoms commonly arose from other conditions and could therefore significantly 120 
affect estimates of 𝜓. Furthermore, although most surveys employed antibody tests with high 121 
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sensitivity and specificity, several reported sensitivities ≤0.85 (Table S1), potentially amplifying 122 
the confounding effect.   123 

 124 

 125 

Figure 1. Adjusted estimates of the prevalence of asymptomatic SARS-CoV-2 infections 126 
are higher than crude estimates. Distributions of (A) fraction of test-negative individuals 127 
showing symptoms, 𝜙𝑐, and (B) crude seroprevalence, 𝜌𝑐, from 50 serosurveys. (C) The 128 

corresponding distributions of the reported crude prevalence of asymptomatic infections, 𝜓𝑐 129 
(orange), and the adjusted prevalence, 𝜓𝑎𝑑𝑗 (red), the latter obtained using equation (1). The 130 

dashed lines in (A)-(C) are medians. (D) Individual estimates of 𝜓𝑎𝑑𝑗 versus 𝜓𝑐. Error bars 131 

indicate 95% confidence intervals calculated using the Wilson’s score interval59. (E) Histogram 132 
of the number of surveys with 𝜂, the percentage increase of 𝜓𝑎𝑑𝑗 over 𝜓𝑐, in the ranges shown. 133 

The correlations between 𝜂 and (F) 𝜙𝑐, and (G) test-specificity, 𝛽. 𝑟𝑠 denotes Spearman’s 134 
correlation coefficient. 135 
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The crude seroprevalence, 𝜌𝑐, varied from 0.01 to 0.58 across the studies, with a median of 0.11, 137 
representing a wide range of the extent of spread of the infection in the populations studied at 138 
the time of the surveys (Figure 1B).  139 

The surveys reported widely varying estimates of the crude prevalence of asymptomatic 140 
infections, 𝜓𝑐, spanning the range from 0.068 to 1 with a median of 0.40 (Figure 1C, orange). 141 
Using equation (1), we calculated the adjusted prevalence, 𝜓𝑎𝑑𝑗, for all the 56 estimates of 𝜓𝑐. 142 

𝜓𝑎𝑑𝑗 varied from 0.04 to 1.00 with a median of 0.60 (Figure 1C, red). We found overall that 𝜓𝑎𝑑𝑗 143 

was significantly larger than 𝜓𝑐 (P=3×10-8 using the Wilcoxon signed rank test; Figure 1D). We 144 
defined 𝜂 = 1  × (𝜓𝑎𝑑𝑗 − 𝜓𝑐)/𝜓𝑐 as the percentage increase in 𝜓 due to the adjustment. Out 145 

of the 56 estimates, 9 had 𝜂>100%, 10 had 𝜂 in the range of 50-100%, 12 in the range 25-50%, 146 
21 between 0% and 25%, and 4 had 𝜂<0% (Figure 1E).  147 

Factors contributing to the adjustment  148 

To identify the quantities in 𝑆 most responsible for the adjustment in the datasets we considered, 149 
we calculated pairwise correlations of 𝜂 with each quantity in 𝑆. We found that 𝜙𝑐 was strongly 150 
positively correlated with 𝜂 (Spearman’s coefficient 𝑟𝑠 = 0.86, P < 10-16) (Figure 1F). 𝛽 showed a 151 

moderate positive correlation with 𝜂 (𝑟𝑠 = 0.30, P = 0.026)  (Figure 1G). The other quantities were 152 
not significantly correlated with 𝜂 (Figure S1). Thus, the non-specificity of the symptoms was the 153 
major contributor to the adjustment. Indeed, for the 9 estimates with 𝜂>100%, 𝜙𝑐 was >50%.  154 

Our expression in equation (1) reduced when 𝛼 = 𝛽 = 1 to 𝜓𝑎𝑑𝑗 =
𝜓𝑐

1−𝜙𝑐
, showing how 𝜙𝑐 would 155 

contribute to the adjustment even with a perfect antibody test and explaining the positive 156 
correlation between 𝜓𝑎𝑑𝑗 and 𝜙𝑐. For imperfect antibody tests, where 𝛼  1 and/or 𝛽  1, 157 

𝜓𝑎𝑑𝑗  displayed a more complex dependency on the quantities in 𝑆 (equation (1)). In the absence 158 

of symptom overlap (𝜙𝑐 =  ), equation (1) reduced to 𝜓𝑎𝑑𝑗 = 1 − 
𝜌𝑐(1−𝜌𝑐)(𝜓𝑐−1)(𝛼+𝛽−1)

(𝜌𝑐+𝛽−1)[𝜓𝑐𝜌𝑐(1−𝛼)−𝛼(1−𝜌𝑐)]
, 159 

allowing 𝜓𝑎𝑑𝑗 to be larger or smaller than 𝜓𝑐 depending on the specific values of 𝛼, 𝛽, and 𝜌𝑐. 160 

When 𝛼 = 1, for instance, 𝜓𝑎𝑑𝑗 = 1 − (1 − 𝜓𝑐) 
𝜌𝑐𝛽

𝜌𝑐+𝛽−1
 𝜓𝑐. (The latter inequality follows 161 

because (1 − 𝛽)(1 − 𝜌𝑐) >   and hence 
𝜌𝑐𝛽

𝜌𝑐+𝛽−1
> 1.)   Indeed, the reduction in 𝜓 due to imperfect 162 

test sensitivity and specificity may dominate the increase due to overlapping symptoms, 163 
explaining the few instances with 𝜂 < 0% above. Nonetheless, in all but 4 of the 56 instances we 164 

studied, we found 𝜓𝑎𝑑𝑗 ≥ 𝜓𝑐, highlighting the dominant effect of the adjustment due to symptom 165 

overlap. 166 

We conclude therefore that 𝜓 has been substantially underestimated by existing serosurveys, 167 
primarily due to the confounding effect of the non-specificity of the symptoms elicited by SARS-168 
CoV-2. Our formalism enables adjusting for this effect and arriving at more accurate estimates 169 
of 𝜓.  170 

 171 

DISCUSSION 172 

Our formalism makes important advances in addressing confounding effects in the estimation of 173 
𝜓. A general formalism to adjust for antibody (or nucleic acid) test sensitivity and specificity was 174 
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developed earlier60, which has been applied to obtain accurate SARS-CoV-2 prevalence 175 
estimates during the pandemic7. The formalism has been extended to estimate 𝜓, but without 176 
accounting for the specificity of the symptoms46. The importance of symptom specificity has been 177 
recognized earlier: For instance, an increase in the proportion of asymptomatic cases of 178 
influenza virus infection resulted after accounting for overlapping symptoms caused by other 179 
infections61,62. The adjustment in the latter studies, which relied on regression techniques, did 180 
not account, however, for the infection test sensitivity and specificity. Here, we accounted for the 181 
infection test sensitivity and specificity as well as the specificity of the symptoms. Furthermore, 182 
we derived a closed-form expression for the adjustment (equation (1)) which enables facile 183 
application of our formalism. 184 

We foresee several implications of our study. First, the refined estimates of 𝜓 that our formalism 185 
yields would help reassess the contribution of asymptomatic infections to COVID-19 186 
transmission and spread1,63. They would also form inputs to models of COVID-19 187 
epidemiology64-66, enabling more reliable forecasting of disease spread and the design of 188 
effective control strategies. Second, the formalism could aid COVID-19 vaccine development 189 
efforts67 by enabling more accurate estimation of vaccine efficacies, which are often based on 190 
comparing estimates of 𝜓 in the vaccinated and unvaccinated arms of clinical trials2-4. Third, 191 
estimates of 𝜓 will inform efforts underway to unravel genetic, immunological, and demographic 192 
underpinnings of asymptomatic infections68-72. Finally, we anticipate our formalism to be 193 
applicable to settings beyond COVID-19 that involve asymptomatic infections, such as 194 
influenza61,62. It would be particularly important to epidemiological studies that employ extended 195 
symptom recall periods, which increase the likelihood of contracting other infections during the 196 
recall period and, consequently, the confounding effect of symptom overlap. 197 

Our study has limitations. First, we assumed that symptoms caused by SARS-CoV-2 and by 198 
other infections are independent. While co-infection can potentially influence the severity of 199 
SARS-CoV-2 infection, such instances appear rare73. Further justification of our assumption 200 
comes from studies that found influenza vaccination not to offer significant protection against 201 
SARS-CoV-2 symptoms74. Second, our selection of serosurveys is not exhaustive. Our aim was 202 
to demonstrate the wide applicability and relevance of our formalism and not to provide a global 203 
estimate of 𝜓. Future studies may conduct a more systematic search and meta-analysis using 204 
our formalism to obtain such a global estimate of 𝜓.  205 

 206 

METHODS 207 

Formalism to adjust for specificity of symptoms   208 

We consider the scenario where infection by the pathogen of interest, denoted 𝑋, can trigger 209 
symptoms that may also be triggered by other pathogens (or conditions), the latter collectively 210 
denoted 𝑌. Surveys aim to assess the prevalence of asymptomatic infections by 𝑋. A test, de-211 
noted 𝑇, assesses whether an individual undertaking the test is infected by 𝑋. Simultaneously, a 212 
questionnaire inquires into the symptoms, denoted 𝑆, experienced by the individual during a pre-213 
defined recall period. We recognize that the symptoms may also be triggered by 𝑌. We distin-214 

guish between these possibilities by letting 𝑆𝑋 and 𝑆𝑌 represent events associated with the symp-215 
toms being triggered by 𝑋 and 𝑌, respectively. The aim is to estimate the fraction of individuals 216 
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infected by 𝑋 who do not experience symptoms triggered by 𝑋. We arrive at this estimate as 217 
follows.    218 

We define 𝑃[𝑋+] and 𝑃[𝑇+] as the probability with which an individual is infected by 𝑋 and the 219 
probability that the infection test yields a positive result, respectively. Clearly, 𝑃[𝑇+] = 𝜌𝑐, the 220 
crude prevalence estimated by the survey as the fraction of individuals tested who show a pos-221 
itive result. 𝑃[𝑋+] = 𝜌𝑎𝑑𝑗 is the actual prevalence, obtained after adjusting for test sensitivity and 222 

specificity. The test sensitivity is 𝛼 = 𝑃[𝑇+|𝑋+], the probability of the test yielding a positive result 223 
given the infection by 𝑋. The test specificity is 𝛽 = 𝑃[𝑇−|𝑋−], the probability that the test yields 224 
a negative result, given that the tested individual is not infected by 𝑋. The total probability of the 225 
test yielding a positive result can thus be written as 226 

𝑃[𝑇+] = 𝑃[𝑇+|𝑋+]𝑃[𝑋+] + 𝑃[𝑇+|𝑋−]𝑃[𝑋−] ( ) 227 

Recognizing that 𝑃[𝑇+|𝑋+] = 1 − 𝑃[𝑇−|𝑋−] and 𝑃[𝑋−] = 1 − 𝑃[𝑋+] and substituting the defini-228 
tions above in equation (2), it follows that  229 

𝜌𝑎𝑑𝑗 = 
𝜌𝑐 + 𝛽 − 1

𝛼 + 𝛽 − 1
( ) 230 

We next consider events related to the occurrence of symptoms. The crude prevalence of 231 
asymptomatic individuals, 𝜓𝑐 = 𝑃[𝑆

−|𝑇+], is the probability that an individual who tests positive 232 
reports no symptoms. It is thus measured in the surveys as the fraction of test-positive cases 233 
who declare no symptoms. Accounting for the test sensitivity and specificity, we again write,   234 

𝑃[𝑆−|𝑇+] = 𝑃[𝑆−|𝑋+]𝑃[𝑋+|𝑇+] + 𝑃[𝑆−|𝑋−]𝑃[𝑋−|𝑇+] (4) 235 

which, upon recognizing that 𝑃[𝑋−|𝑇+] = 1 − 𝑃[𝑋+|𝑇+] and invoking Bayes’ theorem, 236 

𝑃[𝑋+|𝑇+] =
𝑃[𝑇+|𝑋+]𝑃[𝑋+]

𝑃[𝑇+]
=
𝛼𝜌𝑎𝑑𝑗

𝜌𝑐
(5) 237 

yields 238 

𝜓𝑐 = 𝑃[𝑆
−|𝑋+]

𝛼𝜌𝑎𝑑𝑗

𝜌𝑐
+ 𝑃[𝑆−|𝑋−] (1 −

𝛼𝜌𝑎𝑑𝑗

𝜌𝑐
) ( ) 239 

Given the simultaneous presence of 𝑋 and 𝑌 in circulation, the absence of symptoms implies 240 
the absence of symptoms triggered by both 𝑋 and 𝑌. In other words, {𝑆−} = {𝑆𝑋

−} ∩ {𝑆𝑌
−}. This 241 

yields,  242 

𝑃[𝑆−|𝑋+] = 𝑃[𝑆𝑋
−|𝑋+]𝑃[𝑆𝑌

−|𝑋+] (7) 243 

where 𝑃[𝑆𝑋
−|𝑋+] =  𝜓𝑎𝑑𝑗  is the probability that an individual infected by 𝑋 does not experience 244 

symptoms triggered by 𝑋, which is the adjusted prevalence of asymptomatic infections, the key 245 
quantity of interest here. 246 

Similarly, in the absence of infection by 𝑋, we may write 247 

𝑃[𝑆−|𝑋−] = 𝑃[𝑆𝑋
−|𝑋−]𝑃[𝑆𝑌

−|𝑋−] = 𝑃[𝑆𝑌
−|𝑋−] ( ) 248 
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where the latter equality follows from 𝑃[𝑆𝑋
−|𝑋−] = 1; an individual not infected by 𝑋 cannot have 249 

symptoms triggered by 𝑋. 250 

Combining equations ( ) − ( ) yields 251 

𝜓𝑐 = 𝜓𝑎𝑑𝑗 𝑃[𝑆𝑌
−|𝑋+]

𝛼𝜌𝑎𝑑𝑗

𝜌𝑐
+ 𝑃[𝑆𝑌

−|𝑋−] (1 −
𝛼𝜌𝑎𝑑𝑗

𝜌𝑐
) (9) 252 

We next assume that experiencing symptoms triggered by 𝑌 or not is independent of infection 253 
by 𝑋, so that  254 

𝑃[𝑆𝑌
−|𝑋+] = 𝑃[𝑆𝑌

−|𝑋−] (1 ) 255 

To estimate the latter probabilities, we invoke their relationship with test results as follows. We 256 
recognize that 𝜔𝑐 = 𝑃[𝑆

−|𝑇−] is the probability of not experiencing symptoms given test-negative 257 
status, which represents the crude proportion of asymptomatic cases among test-negative indi-258 
viduals. Following the arguments above, the symptoms must arise neither from 𝑋 nor 𝑌, so that 259 

𝜔𝑐 = 𝑃[𝑆
−|𝑇−] = 𝑃[𝑆𝑋

−|𝑇−]𝑃[𝑆𝑌
−|𝑇−] (11) 260 

Invoking test sensitivity and specificity, we write the first term on the right hand side of equation 261 
(11) as  262 

𝑃[𝑆𝑋
−|𝑇−] = 𝑃[𝑆𝑋

−|𝑋+]𝑃[𝑋+|𝑇−] + 𝑃[𝑆𝑋
−|𝑋−]𝑃[𝑋−|𝑇−]

   = 𝜓𝑎𝑑𝑗𝑃[𝑋
+|𝑇−] + (1 − 𝑃[𝑋+|𝑇−]) (1 )

 263 

where the latter equality follows because 𝑃[𝑆𝑋
−|𝑋−] = 1 and 𝑃[𝑋−|𝑇−] = 1 − 𝑃[𝑋+|𝑇−]. Using 264 

Bayes’ theorem and the definitions of the quantities above, we obtain   265 

𝑃[𝑋+|𝑇−] =
𝑃[𝑇−|𝑋+]𝑃[𝑋+]

𝑃[𝑇−]
=
(1 − 𝛼)𝜌𝑎𝑑𝑗

1 − 𝜌𝑐
(1 ) 266 

Combining equations (11) − (1 ) and rearranging terms yields 267 

𝑃[𝑆𝑋
−|𝑇−] = 𝜓𝑎𝑑𝑗

(1 − 𝛼)𝜌𝑎𝑑𝑗

1 − 𝜌𝑐
+
1 − 𝜌𝑐 − 𝜌𝑎𝑑𝑗 + 𝛼𝜌𝑎𝑑𝑗

1 − 𝜌𝑐
(14) 268 

Following a similar procedure, we write the second term on the right hand side of equation 269 
(11) as  270 

𝑃[𝑆𝑌
−|𝑇−] = 𝑃[𝑆𝑌

−|𝑋+]𝑃[𝑋+|𝑇−] + 𝑃[𝑆𝑌
−|𝑋−](𝑃[𝑋−|𝑇−]) = 𝑃[𝑆𝑌

−|𝑋+] (15) 271 

where the latter equality follows because 𝑃[𝑆𝑌
−|𝑋+] =  𝑃[𝑆𝑌

−|𝑋−] and 𝑃[𝑋+|𝑇−] = 1 − 𝑃[𝑋−|𝑇−]. 272 

Combining equations (14) and (15) with equation (11) and rearranging terms, we obtain 273 

𝑃[𝑆𝑌
−|𝑋+] =

𝜔𝑐(1 − 𝜌𝑐)

(𝜓𝑎𝑑𝑗 − 1)(1 − 𝛼)𝜌𝑎𝑑𝑗 + 1 − 𝜌𝑐
(1 ) 274 

Finally, combining equations (9), (1 ), (11), and (1 ), and letting 𝜙𝑐 = 1 − 𝜔𝑐, the fraction of 275 
symptomatic cases in the test-negative subpopulation, we obtain equation (1): 276 
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𝜓𝑎𝑑𝑗 = 1 − 
𝜌𝑐(1 − 𝜌𝑐)(𝜓𝑐 − 1 + 𝜙𝑐)(𝛼 + 𝛽 − 1)

(𝜌𝑐 + 𝛽 − 1)[𝜓𝑐𝜌𝑐(1 − 𝛼) − 𝛼(1 − 𝜙𝑐)(1 − 𝜌𝑐)]
  277 

 278 
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