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Abstract (46 words) 25 

This study compared the dynamics of SARS-CoV-2 viral shedding in saliva between wild-type virus-infected 26 

and Omicron-infected household cohorts. Pre-existing immunity in participants likely shortens duration of 27 

viral shedding and lowers viral load peaks. Dense saliva sampling can be a convenient tool to study viral 28 

load dynamics.  29 

Keywords: SARS-CoV-2, viral load, saliva, viral shedding, Omicron 30 
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Introduction (1671 words) 32 

SARS-CoV-2 has caused a pandemic with a large number of respiratory infections worldwide. Studying the 33 

viral load dynamics of SARS-CoV-2 infections is helpful for understanding pathogenesis and transmission 34 

of the virus. Viral load dynamics can be influenced by various clinical host-factors, the emergence of novel 35 

variants and immunization (1).  36 

SARS-CoV-2 infections are conventionally detected performing reverse transcriptase polymerase chain 37 

reaction (RT-PCR) on nasopharyngeal/oropharyngeal swabs (NP/OP). The cycle threshold (Ct) value of the 38 

PCR reaction cannot be directly translated to infectious virus particles (1), but nevertheless provides a 39 

valuable marker for viral load and thereby potentially for severity of infection and transmissibility. To date, 40 

NP/OP swabs is the gold standard for respiratory diagnostics (2), but since saliva can be self-sampled, it 41 

offers a convenient diagnostic method (3). Additionally, it is easier to facilitate longitudinal sampling of 42 

infected individuals and is especially beneficial for studying shedding in children, as it is non-invasive. 43 

Previous studies have found high sensitivity for SARS-CoV-2 detection in saliva compared to NP/OP swabs 44 

(4). Therefore, we hypothesize that shedding dynamics and underlying covariates could be effectively 45 

studied in saliva.  46 

To our best knowledge, data from longitudinal household studies using saliva to characterize viral shedding 47 

dynamics is limited. We conducted two identical household studies during two different pandemic phases: 48 

SARSLIVA1 (SL1) during the circulation of wild-type (ancestral) SARS-CoV-2 in 2020 (3); and SARSLIVA2 (SL2) 49 

during circulation of Omicron variants in 2022 in a population with pre-existing immunity(5). Thus, we aim 50 

to investigate shedding dynamics and impact of SARS-CoV-2 variants in saliva, and the role of host-immune 51 

status.  52 
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Methods 53 

Participants and sampling 54 

Two identical prospective household cohort studies were performed, named SARSLIVA 1 (SL1) and 55 

SARSLIVA 2 (SL2). SL1 took place during the circulation of wild-type SARS-CoV-2 from October to December 56 

2020 (3); and SL2 during circulation of Omicron variant, mainly BA.2, in March and April 2022 in a 57 

population with pre-existing immunity (5). Participants were recruited through community testing in the 58 

Netherlands as described (3). If these individuals (index cases) tested positive, were younger than 65 years 59 

old and had at least two other household members were willing to participate, their households were 60 

included. All participants completed questionnaires regarding medical history and updated their health 61 

status throughout the study. Dense interval self-sampling of saliva led to 10 samples in 42 days. Capillary 62 

serum samples were collected at day 1 and day 42 for SL2 and at day 42 for SL1. Index cases also indicated 63 

their date of symptom onset.  64 

Written informed consent was obtained from all participants. This study was reviewed and approved by 65 

the Medical Ethical Committee of the Amsterdam University Medical Centre, The Netherlands (reference 66 

number 2020.436 (SARSLIVA 1) and 2022.0073 (SARSLIVA 2.0)).  67 

 68 

Outcomes and definitions 69 

Primary outcomes are the viral load peak and viral shedding duration. The peak is defined as the minimum 70 

Ct-values observed during the testing period. Duration is defined as the number of days between the first 71 

positive and the midpoint between the last positive PCR result and first negative result. The last positive 72 

PCR result should be followed by at least two negative PCR results. Secondary outcomes are determinants 73 

that influence the viral load peak and shedding duration, which include sex, age, disease severity, weight 74 

class and pre- and post-infection antibody levels. 75 
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Laboratory assays: RT-PCR and serology 76 

RT-PCR for SARS-CoV-2 was performed on each self-sampled saliva specimen (6). Ct-values under 40 were 77 

considered SARS-CoV-2 positive. Sera were analyzed for presence of SARS-COV-2 specific antibodies by 78 

protein microarray for the spike protein, using dose-response curves from serial dilutions to determine 79 

fluorescent signal (7).  80 

Cohort comparisons 81 

Bayes t-tests were performed to compare the mean viral load peak and mean viral shedding duration 82 

between cohorts.  We assumed that there was strong evidence to support the alternate hypothesis (i.e. 83 

differences between cohorts) if the Bayes Factor (BF) exceeded 10. Sensitivity analyses were performed 84 

for our index cases only to correct for enrollment time by including interval between symptom onset and 85 

inclusion. 86 

Bayesian linear regression for viral load decline 87 

We used a Bayesian hierarchical linear regression model to estimate rates of viral load decline (8). We 88 

included all participants whose symptom onset dates were known. We estimated the response variable 89 

difference in Ct-value (Y) over time since symptom onset (t) for each sample (s):  90 

𝑌 =  𝛽𝑠𝑡 + 𝑐𝑠 91 

The full model details, including priors used, are described in Supplementary methods. 92 

Bayesian hierarchical ANOVA model for shedding duration and minimum Ct-value 93 

An Bayesian hierarchical ANOVA model was used to estimate effects of covariates on the viral load peak 94 

and shedding duration, separately for SL1 and SL2. Full model and prior details are described in 95 

Supplementary methods. 96 

 97 
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Results 98 

Participants and sampling 99 

The SL1 and SL2 cohort yielded 213 and 130 SARS-CoV-2 positive participants, of which 80 and 65 index 100 

cases, from 85 and 69 households, respectively (Supplemental table 1). In total, 3273 saliva samples were 101 

obtained, with an average of 9.5 of the 10 samples per participant included in our analyses. Of SL2 102 

participants, 73.2% were vaccinated (at least once) at inclusion. None of our participants was hospitalized. 103 

Viral load and shedding duration in different pandemic phases 104 

We observed a difference in inclusion time (i.e. time from NP/OP swab to first day of saliva sampling) 105 

between SL1 (median: 5 days) and SL2 (median: 3 days, BF > 100), which was corrected for in our sensitivity 106 

analysis, reported as the corrected mean.  107 

Shedding duration during SL1 (mean 25 days; corrected mean 29 days) was significantly longer as 108 

compared to SL2 (mean 15 days; corrected mean 17 days, initial and corrected BF>100). Minimum Ct-value 109 

(mean SL1: 26.3; SL2: 25.6; corrected mean: SL1: 26.2; SL2: 25.6), or viral load peak, were comparable 110 

between the two cohorts, and thus during these two stages of the pandemic.  Moreover, modeling the 111 

decrease in viral load over time (Figure 1a/b), revealed a faster decline of viral load for SL2 than for SL1 112 

(slope Ct-value per day SL1: 0.266; and SL2: 0.491). 113 

Covariates for shedding duration and viral load peak 114 

We analyzed the adjusted effects of sex, age, weight class, disease severity and pre- and post-infection 115 

immunity on shedding duration (Figure 1c/1d) and viral load peak (Figure 1e/1f). During SL1, males were 116 

more likely to shed virus longer than females (Figure 1c). Disease severity played a role in this early phase, 117 

as more severe disease showed a significant association with longer shedding duration and higher viral 118 

loads in SL1. In SL2, children shed shorter and had lower peak viral loads compared to adults.  119 
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Participants in both SL1 as SL2 with high viral loads developed higher SARS-CoV-2 specific antibody titers 120 

42 days post-infection. In SL1, longer duration of shedding was also associated with high antibody titers 121 

post-infection. Additionally, in SL2 we found that high baseline titers led to lower viral load and shorter 122 

shedding  (Figure 1 c-f, Supplementary Table 2). 123 

 124 
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Discussion 144 

We used dense saliva sampling to compare SARS-CoV-2 shedding dynamics between mildly infected 145 

household cohorts from the 2020, wild-type SARS-CoV-2 phase of the pandemic (SL1) and the 2022 146 

Omicron (post-immunization) phase (SL2). Duration of shedding of SARS-CoV-2 was shorter during SL2, 147 

but viral load peak was similar. Children in the SL2 cohort experienced lower viral loads and shorter 148 

shedding periods than adults, independent of covariates. Furthermore, we found that SARS-CoV-2 specific 149 

antibodies are protective against high viral loads and longer duration of shedding in saliva. 150 

Viral shedding dynamics differed in pandemic phases. It is difficult to distinguish between the effect of 151 

immunity and the intrinsic characteristics of the circulating variant, since the two are strongly correlated 152 

throughout time and inevitably intertwined. However, the presence of higher antibody titers in 153 

participants with low viral loads suggests a protective contribution of immunity, which is consistent with  154 

findings from other studies involving vaccinated participants (9). In contrast, the viral load peak was similar 155 

in our two cohorts, despite pre-existing immunity by vaccination or earlier confirmed infection for most 156 

participants in SL2, and no pre-existing immunity in SL1. We hypothesize that the protective effect of pre-157 

existing immunity against infection and severe disease is counteracted in the infected participants by 158 

properties of the Omicron variant, leading to a comparable shedding peak in both cohorts.  It is often 159 

suggested that high viral loads are associated with disease severity. Our study confirms this increased 160 

severity correlated to viral load for SL1. However, for SL2 we do not see this same effect, so despite similar 161 

peak viral load, no correlation is seen with disease severity in SL2, likely attributable to  both host immunity 162 

and characteristics of Omicron variant. 163 

This study showed that shedding duration in both cohorts was much longer than isolation advices stated 164 

over the course of the pandemic. During the pandemic, there has been debate about the correlation 165 

between shedding and viral transmission, partly because the detection of RNA does not directly translate 166 
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to the detection of infectious virus (1). Our study showed that children have lower viral loads and shed 167 

shorter than adults during the omicron phase. However, in the previous study that investigated 168 

transmission within the SL2 cohort (5), children contributed largely to transmission within households. 169 

This suggests that transmission is multifactorial, involving presence of immunity and behavioral factors. 170 

Consequently, we emphasize that transmission cannot be predicted solely by shedding dynamics, which 171 

should be considered in policy making based on these shedding dynamics.  172 

A limitation of this study was posed by the fluctuating Ct-values in saliva samples which affected the 173 

resolution of viral load curves. Nonetheless, we show that saliva is a reliable measure for viral load, as has 174 

been suggested before (1, 10, 11). Moreover, we observed a longer inclusion time in SL1 than SL2, due to 175 

delayed reporting of results and limited accessibility of testing in the first pandemic phase. However, we 176 

corrected for this difference in our sensitivity analysis, which showed that inclusion time did not affect the 177 

outcome on shedding duration. Although this study is not the first to compare viral loads of different 178 

variants(12), this study is the first to use dense, saliva sampling over a period of six weeks to compare 179 

shedding.    180 

To our best knowledge, we here describe a unique approach by analyzing saliva to compare viral shedding 181 

dynamics in different stages of the COVID-19 pandemic using two household cohorts separated in time 182 

but with identical study designs. Saliva specimens provide a convenient, non-invasive and adaptable 183 

method to study the effect of SARS-CoV-2 variant and immunity on shedding dynamics, which might 184 

contribute to future early surveillance for epidemic outbreaks.  185 

 186 

 187 

 188 
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Figure 1. Viral shedding dynamics for two cohorts. (a/b) Bayesian model shows the linear decrease of 190 

viral load (increase of Ct-value) over time using inverted Ct-value on the y-axis. The two models for SL1 (a) 191 

and SL2 (b) show a steeper decline for SL2. (c/d) Visualization of covariates included that might influence 192 

duration of shedding for the two different cohorts, based on a Bayesian ANOVA model.  SL1 (c) shows that 193 

men have prolonged duration of shedding and antibody titers at day 42 are higher when shedding is longer. 194 

In SL2 (d) high baseline titer affects shedding duration and children shed shorter. (e/f) Models show the 195 

effect size of covariates when comparing the minimum Ct-value (viral load peak) in the different cohorts. 196 

In both cohorts, children had lower viral load than adults. Also, antibodies were higher at day 42 in 197 

participants with high viral loads. We found that increase in disease severity correlated with higher peak 198 

viral load peak in SL1, but not in SL2 (f). In SL2 higher baseline antibody titers were associated with lower 199 

viral loads.  200 

  201 
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