1 Whole genome sequencing of hepatitis B virus (HBV) using tiled amplicon 2 (HEP-TILE) and probe-based enrichment on Illumina and Nanopore 3 platforms.

4

-	
5	Sheila F Lumley ^{1,2} , Chris Kent ³ , Daisy Jennings ¹ , Haiting Chai ¹ , George Airey ¹ , Elizabeth Waddilove ⁴ ,
6	Marion Delphin ⁴ , Amy Trebes ^{5,6} , Anna L McNaughton ⁷ , Khadija Said Mohammed ⁴ , Sam Wilkinson ³ ,
7	Yanxia Wu ⁵ , George MacIntyre-Cockett ⁵ , Beatrice Kimono ⁸ , Moses Kwizera ⁸ , Kevin Ojambo ⁸ ,
8	Tongai G Maponga ⁹ , Catherine de Lara ¹ , Jacqueline Martin ² , James Campbell ⁴ ,
9	Marije Van Schalkwyk ¹⁰ , Dominique Goedhals ^{11,12} , Robert Newton ^{8,13} , Eleanor Barnes ¹ ,
10	Nicholas J Loman ³ , Paolo Piazza ⁵ , Joshua Quick ³ , M Azim Ansari ^{*1} , Philippa C Matthews ^{*4,14,15}

11

12 *Joint senior and corresponding authors

13

14 **Affiliations**

- 15 1. Nuffield Department of Medicine, University of Oxford, Oxford, UK
- 16 2. Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS
- 17 Foundation Trust, John Radcliffe Hospital, Oxford, UK
- 18 3. Institute of Microbiology and Infection, University of Birmingham, UK
- 19 4. The Francis Crick Institute, London, UK
- 20 5. Centre for Human Genomics, Nuffield Department of Medicine, University of Oxford, UK
- 21 6. Genewiz UK Ltd, Azenta Life Sciences, Stratton Court, Abingdon, UK
- 22 7. Population Health Sciences, Bristol Medical School, University of Bristol, UK
- 23 8. MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- 9. Division of Medical Virology, Stellenbosch University / National Health Laboratory Service
- 25 Tygerberg, Cape Town, South Africa
- 26 10. Division of Infectious Diseases, Department of Medicine, Stellenbosch University, Cape Town,
- 27 South Africa
- 28 11. University of the Free State, Bloemfontein, South Africa
- 29 12. PathCare, Pretoria, South Africa
- 30 13. Department of Health Sciences, University of York, UK
- 31 14. Division of Infection and Immunity, University College London, London, UK
- 32 15. Department of Infection, University College London Hospitals, London, UK
- 33
- 34
- 35

It is made available under a CC-BY-NC 4.0 International license .

36 Abstract

37

38 Hepatitis B virus (HBV) whole genome sequencing (WGS) is currently limited as the DNA viral loads (VL) of many clinical samples are below the threshold required to generate full genomes 39 40 using current sequencing methods. We developed two pan-genotypic viral enrichment methods, 41 using probe-based capture and tiled amplicon PCR (HEP-TILE) for HBV WGS. We demonstrate 42 using mock samples that both enrichment methods are pan-genotypic (genotypes A-J). Using 43 clinical samples, we demonstrate that HEP-TILE amplification successfully amplifies full genomes at the lowest HBV VL tested (30 IU/ml), and the PCR products can be sequenced using both 44 45 Nanopore and Illumina platforms. Probe-based capture with Illumina sequencing required VL 46 >300,000 IU/ml to generate full length HBV genomes. The capture-Illumina and HEP-TILE-47 Nanopore pipelines had consensus sequencing accuracy of 100% in mock samples with known 48 DNA sequences. Together, these protocols will facilitate the generation of HBV sequence data, 49 enabling a more accurate and representative picture of HBV molecular epidemiology, cast light on persistence and pathogenesis, and enhance understanding of the outcomes of infection and 50 51 its treatment.

52

53 Keywords

54 Hepatitis B virus (HBV), whole genome sequencing, Nanopore, Illumina

- 55
- 56

It is made available under a CC-BY-NC 4.0 International license .

57 Manuscript

58

59 **1. Introduction**

60

61 Worldwide an estimated 254 million people are living with chronic HBV infection (CHB) [1]. 62 Despite the availability of prophylactic vaccines and suppressive antiviral therapies, the annual 63 toll of approximately 1.1 million HBV-related deaths in 2022 [1] highlights the persistent global 64 challenge faced. HBV whole genome sequencing (WGS) provides genetic insights into the 65 pathogen at population and individual levels [2]. At a population level, WGS improves our 66 understanding and monitoring of HBV drug resistance, vaccine efficacy, diagnostic escape and 67 tracking of outbreaks. In individuals, WGS has the potential to contribute to personalised 68 healthcare, e.g. informing modification of antiviral regimens to take into account antiviral 69 resistance associated mutations (RAMs), and risk-stratified hepatocellular carcinoma (HCC) 70 surveillance [3].

71

72 There are several challenges associated with HBV WGS. Target enrichment using probe based 73 capture, HBV specific polymerase chain reaction (PCR) or rolling circle amplification (RCA) [4,5] 74 is required when performing HBV WGS due to frequently low DNA viral loads (VL) [6], the tiny 75 genome (3.2kB), and abundant host nucleic acid background. Sequencing low VL samples, 76 although challenging, is important at both an individual and population level, in order to 77 understand mechanisms of transmission, persistence, immunological control and clearance, 78 breakthrough viraemia on treatment, and for characterising occult HBV infection. HBV has ten 79 distinct genotypes (A–J), with >8% nucleotide divergence, which are geographically distributed and associated with infection outcomes [7]. This diversity leads to challenges in designing pan-80 81 genotypic capture probes and PCR primers. The structure of the HBV genome also presents 82 challenges for WGS. In the blood, HBV DNA is present predominantly in a relaxed-circular (rc-83 DNA) form, a circular, partially double-stranded (ds)DNA configuration (Figure 1A) [8]; neither 84 positive nor negative DNA strand is continuous.

85

We set out to optimise and validate workflows for HBV WGS. Due to limitations in sensitivity of our RCA protocol [4] (related to difficulty in generating a fully circular template), we initially used probe-based enrichment, a strategy which has previously been validated across diverse pathogens [9–11]. The method is based on the design of biotinylated single-stranded DNA probes, designed to hybridise with target viral sequences within a sequencing library, and selectively capture HBV DNA, thereby enriching the final library for HBV DNA and increasing ontarget sequencing yield (**Figure 1B**).

93

94 Second, due to limitations in sensitivity of probe-based enrichment, we developed a tiled amplicon 95 approach for HBV whole genome sequencing (HEP-TILE) (Figure 1C) using HBV-specific 96 primers designed using PrimalScheme3, successor to PrimalScheme [12,13]. PrimalScheme3 97 includes key updates to allow the generation of WGS from pathogens with circular genomes, with 98 primers able to deal with greater pathogen diversity. The HBV sequencing wet and dry lab 99 workflows build on the widely used ARTIC-Network nCoV-2019 sequencing protocol [14] and

fieldbioinformatics [15], both of which have been used extensively worldwide during the SARS-CoV-2 pandemic.

102

Scale up of WGS requires development of open access, easily deployable sequencing methods ideally building on existing infrastructure and expertise. By developing the protocols described here, we aim to facilitate the generation of HBV sequence data globally, to obtain a more accurate and representative picture of HBV genetics and molecular epidemiology.

- 107
- 108
- 109
- 110 2. Methods
- 111
- 112
- 113 **2.1 Samples**
- 114

115 **2.1.1 Mock samples**

We prepared mock HBV samples using plasmids containing ~1.3 copies of the HBV genome representing genotypes A-J in a pUC57 backbone, (genotypes A-F from [16], G-J designed inhouse and produced by GeneArt) (**Supplementary table 1**). We spiked plasmids into noninfected human serum (Merck, H5667) at a concentration of 10⁵ plasmid copies/ml.

120

121 2.1.2 Clinical samples

We used 63 plasma samples collected between 2011-2023 from adults with CHB in three settings: (1) outpatient clinics in Oxford (UK) [6,17], (2) outpatient clinics in Tygerberg Hospital, Cape Town (Stellenbosch University) and public sector hospital services in Bloemfontein (University of the Free State), South Africa [6], and (3) participants of the Uganda Liver Disease Study (Kalungu District, south west Uganda [18,19]). We selected samples to represent a range of VL and genotypes; methods were developed iteratively and based on available samples. (Figure 2, Supplementary table 2).

129

- 130 Written informed consent was provided by participants at enrollment. Approval for this work was 131 provided as follows, all methods were performed in accordance with the relevant protocols:
 - UK patients: Oxford Research Ethics Committee A (ref. 09/H0604/20)
- South Africa / Stellenbosch patients: Stellenbosch University (ref. N17/01/013) and
 OxTREC (ref 1-18)
- South Africa / Bloemfontein patients: University of the Free State (ref. UFS-HSD2018/0193-0001) and OxTREC (ref 1-18)
- Uganda patients: Uganda Virus Research Institute Research and Ethics Committee (ref.
 GC/127/19/04/711), Uganda National Council for Science and Technology, and Oxford
 Tropical Research Ethics Committee (ref 50-18)
- 140
- 141 We collected blood samples in EDTA tubes. To separate plasma, we centrifuged whole blood at
- 142 1800 rpm for 10 minutes. We harvested the supernatant and stored it at -80°C.

It is made available under a CC-BY-NC 4.0 International license .

143

Quantification of HBV DNA VL was performed on the clinically validated Abbott M2000 platform by Oxford University Hospitals (OUH) diagnostic microbiology laboratory for UK samples, and with the Cobas Ampliprep/Taqman HBV test for Ugandan and South African samples (performed by by the Clinical Diagnostic Laboratories for MRC/UVRI/LSHTM Research Institute Uganda and the NHLS Tygerberg Virology Laboratory respectively). VL ranged from 1.5 to > 8.3 log₁₀ IU/ml (i.e. above the assay limit of quantification) (Supplementary table 2).

150 151

152 **2.1.3 Host depletion and nucleic acid extraction**

For mock and clinical samples initially being enriched by capture, we performed host depletion with micrococcal nuclease (NEB catalogue number M0247S, 250µl plasma with 1.25µl MNase and 23.75µl MNase buffer incubated for 20 mins at 37°C) followed by extraction using the Kingfisher Apex Magmax viral/pathogen nucleic acid isolation kit (two aliquots of MNase-treated plasma eluted into 50µl of kit elution buffer, combined followed by a SPRIselect bead clean up to reduce volume to 40µl).

159

For samples from UK and Uganda for HEP-TILE Nanopore sequencing, we extracted DNA using the QIAgen MinElute Virus Spin kit from either 200μ L or 400μ L input plasma. Double volume (400μ I) extraction was used if VL was <3 log₁₀ IU/mI (with double volume protease, ethanol and buffer AL). We used carrier RNA as per manufacturer's instructions, and eluted into 45μ I H₂O. The sample volume and extraction method used for each sample is detailed in **Supplementary** table 2.

- 166
- 167
- 168

169 2.2 Public data for probe/primer design

We based our probe and primer design on downloads of all available HBV non-recombinant whole genomes from the Hepatitis B Virus Database (HBVdb) [20] on 31st January 2019 for probe design and 15th February 2024 for primer design (**Supplementary table 3**). In addition for HEP-

173 TILE, genomes for genotypes I and J were sourced from McNaughton et. al [7].

- 174
- 175

176 2.3 HBV probe based enrichment

177

178 **2.3.1. Probe design**

We used RaxML [21] with a general time reversible model with Gamma model of rate heterogeneity ("-m GTRGAMMA" option in RAxML) to infer a maximum likelihood phylogeny of HBV full genomes. Next, we used RAxML to infer the ancestral sequences and as input we used the midpoint rooted tree and the sequence of our isolates with the GTRGAMMA option. We used the ancestral sequence at the root of the tree to design the first set of probes assuming that this sequence on average has the least amount of divergence relative to all other isolates.

It is made available under a CC-BY-NC 4.0 International license .

186 As the HBV genome is circular, we added 120 bases from the beginning of the ancestral root 187 sequence to the end of the sequence to ensure that capture probes cover the break point which 188 is used to present the genome linearly. We then divided the ancestral root sequence into 120 189 nucleotide (nt) segments with 60 bases overlap which resulted in an initial set of 55 probes 190 (Figure 1B). Genotype G has an insertion of 36 bases relative to other genotypes in the core 191 gene. As the ancestral root sequence contained this insertion, we also designed a probe of 120 192 nt which lacked this insertion. Furthermore, genotype D has a deletion of 33 bases in the pre-S1 193 region relative to all other genotypes. To ensure a probe covers this region for genotype D, we 194 designed a probe of 120 nt that lacked this region.

195

196 Our previous work in HCV probe-based sequence capture demonstrated that probes of 120 bases 197 long can tolerate up to 20% divergence relative to their target sequence before the efficiency of 198 capture drops [11]. To ensure that the designed probes are within a maximum of 20% divergence 199 of each viral sequence, we divided the dataset based on genotype and created a consensus 200 sequence for each genotype. We then aligned the probes to each viral sequence and measured 201 the proportion of mismatches between each probe and the isolate. For each viral sequence, if a 202 continuous region of ≥ 60 bases diverged from the probe sequences by $\geq 20\%$, a new probe was 203 designed for the region using the genotype consensus sequence. As a guality control step, we 204 removed any potential sequences that contained an "N" as we assumed that the sequence may 205 be of low guality. Additionally we counted the number of ambiguous nucleotides and any viral 206 sequence containing ≥ 5 ambiguous nucleotides was also removed. The final probe set contained 207 74 probes.

208

The probe sequences and the set of HBV genome sequences that were used for their design are presented in **supplementary table 4** and can also be downloaded from the following webpage: https://figshare.com/articles/dataset/HBV probe sequences/22127015

212

213 **2.3.2.** Library preparation, hybrid capture and sequencing protocol

214 We prepared libraries for Illumina sequencing using the NEBNext Ultra II FS DNA library 215 preparation kit (protocol for use with inputs <100ng). We used an input of 26µL extracted DNA for 216 the fragmentation/end preparation reaction and fragmented for 3 minutes, with a negative 217 (mastermix only) control. We performed indexing PCR using NEBNext multiplex Oligos UDI and 218 13 amplification cycles. We pooled the amplified libraries corresponding to each aliquot in 219 equivolume proportions to generate a final multiplex library. We purified the pool using SPRIselect 220 beads, eluted into a final volume of 20µL and subsequently quantified using High Sensitivity 221 dsDNA Qubit assay (Invitrogen) and Agilent 2100 Bioanalyzer high sensitivity DNA protocol.

222

We concentrated a 4.4µg aliquot of the final multiplexed library using the manufacturer's AMPure XP Bead DNA concentration protocol, then enriched for HBV using the custom-designed probe panel (IDT Technologies) and xGen Hybridization and Wash Kit (IDT Technologies) following manufacturer's 'tube protocol'. We amplified the final enriched library (12 cycles on-bead PCR), repurified (eluting into 12µL EB), quantified using High Sensitivity dsDNA Qubit assay (Invitrogen) and Agilent 2100 Bioanalyzer high sensitivity DNA protocol, then sequenced on the Miseq v3 with 2x300nt paired-end reads or on a partial lane of Novaseq X 2x150nt paired-end reads.

It is made available under a CC-BY-NC 4.0 International license .

230

231 2.3.3. Data analysis - capture Illumina pipeline

232 We trimmed de-multiplexed sequence read-pairs of low-quality bases using QUASR (version 233 7.01) [22], trimmed adapter sequences with CutAdapt (version 4.8) [23] and Skewer (version 234 0.2.2) [24] and subsequently discarded if either read had <50bp sequence remaining. We mapped 235 the cleaned read pairs to human reference genome hg19 using Bowtie2 (version 2.2.4) [25] and 236 excluded from further analyses. All nonhuman read pairs were mapped using BWA (version 237 0.7.10) [26,27] to a set of 44 HBV references covering all known HBV genotypes and 238 subgenotypes to choose an appropriate reference [7]. We chose the HBV reference with the 239 greatest number of HBV reads mapping to it as the genetically closest reference to the sequenced 240 isolate. Next, we re-mapped all non-human read pairs to the closest HBV reference. We then 241 used Picard markduplicates tool (version 1.111) [28] to remove duplicate read pairs (where read 242 pairs starting in the same place and ending in the same place on the genome are assumed to be 243 PCR duplicates). A base was called at the consensus level if allele depth was above x5, with HBV 244 genome coverage calculated by determining the percentage of bases called at the consensus 245 level.

- 246
- 247

248 2.4 HBV tiled amplicon scheme (HEP-TILE)

249

250 2.4.1 PrimalScheme 3

We developed a pan-genotypic HBV scheme using an early version of PrimalScheme3 (https://github.com/ChrisgKent/primalscheme3), the successor to PrimalScheme [13], a webbased primer design tool for developing multiplex primer schemes. A number of changes were made in PrimalScheme3 to enable us to generate an overlapping (tiled) amplicon scheme which covered the circular HBV genome, utilising a number of discrete primers at each position to handle intraspecies diversity.

257

Usually an amplicon scheme results in a short sequence at each end of the reference genome which is not covered due to primer placement constraints and downstream primer-trimming. With the conventionally designated 'start site' for the circular HBV genome being within the overlapping surface and reverse transcriptase genes (**Figure 1**), this results in the loss of epidemiologically and clinically relevant information. PrimalScheme3 introduces an option to add an amplicon spanning the start/end of circular genomes, resulting in 100% genome coverage.

264

265 Intra-species diversity has posed an issue for amplicon sequencing, as variation within the primer 266 binding sites reduces primer binding efficacy. The original PrimalScheme identified conserved 267 primer binding sites by heavily penalising those with variation within the input genomes. This 268 approach is effective for closely related genomes, such as outbreak strains, but for diverse inputs 269 a different approach is needed. PrimalScheme3 handles diversity with the use of 'primer clouds' 270 i.e. a discrete set of 3'-anchored primers which cover all mutations above a user-specified 271 frequency, without the use of ambiguous bases. This approach reduces the negative effects of 272 adding additional primers to a multiplexed PCR, such as primer-primer interactions, and 273 mispriming.

It is made available under a CC-BY-NC 4.0 International license .

- 274
- 275

276 2.4.2 Multiplex primer pool design for HBV (HEP-TILE)

We aligned HBVdb HBV genomes from each genotype (A-H) separately using MAFFT [29], and
phylogenetically downsampled each genotype to 0.95 relative tree length using TreeMMer [30].
We combined each downsampled genptype's genomes with genotype I and J sequences from[7],
aligned with MAFFT [29], and input into PrimalScheme3 command line tool, with the options; -ampliconsize 600, --minbasefreq 0.02, --backtrack and -minoverlap 20.

282

283 Initially, developed 500bp, we а eight amplicon scheme 284 (https://labs.primalscheme.com/detail/hbv/500/v1.1.0) [31], however when trialled, one amplicon 285 spanning 1700-2000 nt consistently dropped out in samples with VL <5 log₁₀ IU/ml 286 (Supplementary figure 1A and 1B). We hypothesise that is explained by the structure of HBV 287 DNA: in low VL samples only rc-DNA is present, which has discontinuities in both the positive and 288 negative DNA strands in that region leading to amplicon dropout. In contrast, in higher VL 289 samples, covalently closed circular DNA (cccDNA) is also present in the plasma [32,33]. cccDNA 290 has continuous positive and negative strands which act as a template for this amplicon. We 291 identified a suitable location for primers spanning this region, taking into account the structure of 292 rc-DNA, and re-designed a 600bp primer scheme (hbv/600/v2.1.0) (Supplementary figure 1C-293 E), resulting in a six amplicon scheme with amplicons ~600-715bp long, generating a theoretical 294 100% HBV genome coverage (Figure 1C). This scheme uses 131 primers to cover the HBV 295 diversity present in our reference dataset.

296

297 2.4.3 HEP-TILE PCR and sequencing protocol

298 Amplification and library preparation were performed by adapting the nCoV-2019 LoCost v3 299 sequencing protocol [14], with the removal of the reverse transcriptase step (full protocol on 300 protocols.io [34]). Extract from samples with VL >6 log_{10} IU/ml were diluted 10 fold prior to PCR. 301 Negative (mastermix only) controls were added at the PCR and library prep stages. We used the 302 native barcoding kit SQK-NBD114.96 and R10.4.1 MinION flowcells (Oxford Nanopore 303 Technologies, ONT), multiplexing up to 96 samples per run and sequencing for 72 hours. For 304 Illumina sequencing of tiled amplicons, we fragmented the amplicons and performed library 305 preparation using the NEBNext Ultra II FS DNA kit, multiplexing up to 96 samples per run and 306 sequenced on a partial lane of Novaseq X 150PE.

307

308 2.4.4 Data analysis - HEP-TILE Nanopore pipeline

309 We basecalled reads and demultiplexed data using dorado (0.7). We generated a novel pipeline 310 hbv-fieldbioinformatics [35] to produce consensus genomes. Reads are mapped against 311 representative genomes from all genotypes [7], with the genome with the most mapped reads being selected as the primary reference. To handle the circular genome, an intermediate circular 312 313 primary reference genome is created, where the sequence of the circular amplicon is appended 314 to the 3' end of the reference. Reads are then remapped to the circular reference with minimap2 315 (2.26), primers are trimmed, followed by variant calling by LongShot and Medaka (0.4.5, 1.11.3). 316 Variants and read depth for the appended region are then mapped back to their corresponding 317 position on the original reference. A base was called at the consensus level if allele depth was

It is made available under a CC-BY-NC 4.0 International license .

318 over x20, with HBV genome coverage calculated by determining the percentage of called 319 consensus bases.

- 320
- 321

322 2.4.5 Data analysis - HEP-TILE Illumina pipeline

323 Similar to the capture-based Illumina pipeline, we initially used QUASR (version 7.01) [22] to filter 324 out poor de-multiplexed sequencing reads. We then trimmed primer sequences by using 325 CutAdapt (version 4.8) [23] and Skewer (version 0.2.2). Human-like reads were excluded with 326 Bowtie2 (version 2.2.4) [25]. We extended all 44 HBV genome references by adding their first 300 327 bases to the end and mapped the remaining non-human reads to these new HBV reference 328 sequences to identify the genetically closest HBV isolate. In the next two rounds, we mapped the 329 deduplicated reads to 1) the closest HBV isolate and 2) a fine-tuned consensus sequence based 330 on mapping in 1). In the final stage, we cut reads that cross the conventional genome end and 331 combined mappings in the conventional and appended regions. A base was called at the 332 consensus level if allele depth was over x5, with HBV genome coverage calculated by determining 333 the percentage of called consensus bases.

334

335 **2.5 Determining clinically relevant mutations**

HBV genotypes, including recombinants, were determined using the online NCBI genotyping tool
[36]. Subgenotypes, resistance associated mutations and vaccine escape mutations were called
using the online Geno2pheno HBV tool [37].

339

340 2.6 Software

341 Graphs were produced using R version 4.2.2 [38], figures were produced with Biorender with a 342 licence to publish [39].

343

344 **2.7 Data availability**

Sequences for samples where full length genomes were generated were deposited to the
 European Nucleotide Archive (ENA) under the study PRJEB79403 for Nanopore data and
 PRJEB79773 for Illumina.

348

349 3. Results

350

351 **3.1 Targeted enrichment with probe based capture**

352

353 **3.1.1 Sequencing mock HBV samples enriched with probe based capture using Illumina**

We sequenced 10 mock samples (plasmids with genotypes A-J, 5 log₁₀ copies/ml) in duplicate, with/without probe-based capture on the Illumina Novaseq X, libraries were diluted to 10pM and pooled prior to sequencing. Without capture, a median of 391 (IQR 153 - 1858) HBV reads per million reads sequenced was generated across 20 mock samples. With capture a median of 563,956 (IQR 397523 - 896635) HBV reads per million reads sequenced was generated (Supplementary table 1). Enrichment with probe-based capture led to the generation of full length HBV consensus sequences for all genotypes (Figure 3A, Supplementary table 1).

It is made available under a CC-BY-NC 4.0 International license .

362 3.1.2 Sequencing clinical HBV samples enriched with probe based capture using Illumina

363 We enriched a subset of 23 clinical samples (HBV VL 4.21 to >7.20 log₁₀ IU/ml, as optimisation 364 work established $\sim 4 \log_{10} IU/ml$ as a conservative estimate for the threshold at which full genomes 365 could be obtained at x5 depth, (Figure 2) using probe based capture and sequenced the samples 366 on Illumina Novaseq X. A median of 22,377 (IQR 3267 - 135,184) HBV reads per million reads 367 sequenced was generated. The relationship between HBV VL and percentage reads on target is 368 shown in (Figure 4A, 4D). Full length (>98%) genomes at x1 coverage were generated in 18/23 369 samples, with partial genomes in 5/23. Full length genomes above a minimum x5 read depth 370 (minimum required by bioinformatic pipeline to call base at the consensus level) were generated 371 in 7/23 samples, all of which had VL >5.5 log₁₀ IU/ml (~300,000 IU/ml). Below VL 5.5 log₁₀ only 372 partial genomes at x5 depth were generated (Supplementary table 2). The negative controls 373 had 0% consensus coverage of the HBV genome.

374

375 3.2 Targeted enrichment with HEP-TILE tiled amplicon PCR

376

377 3.2.1 Sequencing mock HBV samples enriched with HEP-TILE using Nanopore and Illumina 378 We sequenced the same 10 mock samples in duplicate, enriching using the HEP-TILE tiled 379 amplicon scheme and sequenced on Nanopore MinION and Illumina Novaseg X. With HEP-TILE 380 Nanopore a median of 997,016 (IQR 994,669 - 999,427) HBV reads per million reads sequenced 381 was generated. With HEP-TILE Illumina a median of 977,441 (IQR 963,459 - 982,631) HBV reads 382 per million reads sequenced was generated (Supplementary table 1). Enrichment with HEP-383 TILE led to the generation of full-length HBV sequences across genotypes on both platforms 384 (Figure 3B, 3C).

385

386 3.2.2 Sequencing clinical HBV samples enriched with HEP-TILE using Nanopore

387 We enriched a subset of 50 clinical samples (HBV VL 1.50 to >8.23 log₁₀ IU/ml, Figure 2) using 388 the HEP-TILE protocol and sequenced on the Nanopore MinION. A median of 779,909 (IQR 389 590,906 - 676,536) HBV reads per million reads sequenced was generated. The relationship 390 between HBV VL and percentage reads on target is presented (Figure 4B, 4E).

391

392 Full genome coverage (x1 depth) was generated in 40/50 samples. Full-length HBV consensus 393 genomes at x20 depth (the minimum required to accurately call a mutation), were generated in 394 40/50 samples, down to the lowest VL tested (1.5 log₁₀ IU/ml). Partial genomes were obtained for the remaining 10 samples. These low coverage samples tended to have lower VL (Figure 4), 395 396 although this did not reach statistical significance (p = 0.16, Mann Witney U test). We did not 397 observe any relationship between HBV genotype and inability to produce whole genomes 398 (Supplementary figure 2). The negative controls had 0% consensus coverage of the HBV 399 genome.

400

401 3.2.3 Sequencing clinical HBV samples enriched with HEP-TILE using Illumina

402 We selected a subset of 10 samples (based on sample availability) for HEP-TILE amplification,

- 403 followed by fragmentation and sequencing on Illumina (Novaseg X 150PE partial lane) (Figure
- 404 2). A median of 956,800 (IQR 759,122 - 977,744) HBV reads per million reads sequenced was
- 405 generated. The relationship between HBV VL and percentage reads on target is shown in (Figure

4C, 4F). Full genome coverage (x1 depth) was generated in 7/10 samples. Full-length consensus
 HBV genomes (minimum x5 read depth) were generated in 7/10 samples, partial genomes were
 obtained for 2/10 samples and the pipeline failed to generate a consensus from 1 sample due to
 low read coverage and anomalous mapping mismatches. The negative controls had 0%
 consensus coverage of the HBV genome.

- 411
- 412
- 413

414 **3.3 Methods comparison**

415

416 **3.3.1 Accuracy of consensus genomes**

We sequenced all 10 mock samples using all three workflows, with each sample processed in duplicate (capture Illumina, HEP-TILE Illumina, HEP-TILE Nanopore). Comparison of consensus sequences generated from mock samples to the known plasmid sequence, demonstrated 100% accuracy of consensus genomes produced with capture-Illumina and HEP-TILE Nanopore and 99.98% with HEP-TILE Illumina (Table 1). Four samples sequenced with HEP-TILE Illumina had mismatches or bases designated 'N', however the median number of mismatches and N's was 0. There were no indels for any of the methods.

424

3.3.2 Comparison of capture vs. HEP-TILE ability to generate whole genomes from high viral load clinical samples

We sequenced a subset of 10 clinical samples (> 5 log₁₀ IU/ml) using all three workflows so that we could compare the ability of capture vs. HEP-TILE to generate HBV WGS at high VL. At x1 depth, capture-Illumina and HEP-TILE Nanopore generated full genomes in 8/10 samples, with HEP-TILE Illumina in 7/10 samples. At depths required to confidently call consensus (x5 for Illumina, x20 for Nanopore), full genomes were generated in 4/10 samples for capture-Illumina, 8/10 for HEP-TILE Nanopore and 7/10 for HEP-TILE Illumina (Supplementary table 2).

433

434 **3.4. Determining genotypes from HBV WGS data**

We identified samples of genotype A-E, in addition to genotype B/C and D/E recombinants (see methods) (**Supplementary table 2**). We were able to call polymorphisms at sites of previously reported resistance associated mutations (RAMs) and vaccine escape mutations (VEMs) [37] (details in **Supplementary text**).

- 439
- 440
- 441

- 443 **4. Discussion**
- 444 **4.1 Summary of outputs**
- We have developed two pan-genotypic viral enrichment methods for HBV WGS: HEP-TILE and probe based capture. Both techniques effectively enrich HBV genomes from all known genotypes
- 447 (A-J), as evidenced by application to mock samples, and increase the percentage of sequencing

It is made available under a CC-BY-NC 4.0 International license .

reads mapping to the HBV genome, therefore reducing the amount of sequence data needed to

obtain full genome coverage. We used HBV WGS to call HBV genotypes, including recombinants,

450 which may be missed with partial-genome sequencing. HEP-TILE capitalises on the rapid global

451 expansion of technical expertise and infrastructure for amplicon based WGS that occurred during

452 the SARS-CoV-2 pandemic. Having a toolbox of diverse sequencing methods allows the most

- 453 appropriate method to be selected according to local infrastructure, cost and throughput
- 454 requirements (Table 2).

455 **4.2 Comparison between methods**

456 HEP-TILE offers the greatest flexibility to sequence across a range of HBV VL, able to sequence 457 full genomes down to 1.50 log₁₀ IU/mI (~30 IU/mI, lowest tested here), using standard extraction 458 from 200µL - 400µL plasma. The primers are designed to be pan-genotypic (A-J), unlike other 459 current schemes designed for genotypes A-E [40,41]. The ~600-715bp amplicons used in HEP-460 TILE improve sensitivity compared to single amplicon schemes [42], enhancing sequencing 461 success from low VL or degraded samples. While HEP-TILE amplicons can be sequenced on 462 either Nanopore or Illumina, the use of the ONT native barcoding kit described here (ligation based) rather than ONT rapid barcoding kit or NEB-Ultra-II-FS kit (both requiring fragmentation) 463 464 enables the sequencing of whole amplicons. Although shorter amplicon schemes (300-600bp) 465 can facilitate transfer to Illumina platforms without amplicon fragmentation, HBV diversity and 466 genome structure prohibit the generation of a shorter pan-genotypic scheme (Supplementary 467 figure 1). Generally, shorter amplicons improve sensitivity and platform transferability, however 468 longer 1-2 amplicon schemes or schemes generating concatenated full genomes are useful for 469 haplotype reconstruction [4,40]. The use of two primer pools (instead of individual reactions for 470 each amplicon) simplifies the PCR step and eliminates the need for re-balancing of individual 471 primer pools post-PCR required by other methods [43].

We report percent genome coverage at x1 depth in addition to the percentage of the genome with consensus calls to allow comparison with other published methods presenting coverage at x1 depth. We use a higher threshold of x20 depth to call bases at a consensus level for Nanopore, and x5 for Illumina to improve certainty of the consensus base call (higher threshold for Nanopore used due to the higher error rate of Nanopore sequencing technology).

477 Table 2 compares the costs of each workflow, estimated per sample based on an initial batch of 478 1000 samples. Cost per sample decreases with multiplexing (e.g. 96 samples for Nanopore, more 479 possible for Illumina). Due to the initial cost of purchasing capture probes (~£6300 for this panel), 480 sequencing smaller sample sets with capture becomes prohibitively expensive. Costs for Illumina 481 sequencing vary significantly depending on whether the option of purchasing a partial lane on a 482 high throughput platform is available.

483 **4.3 Real world application of methods**

Although full genome HBV sequencing coverage should be achievable for the majority of samples
using HEP-TILE, if samples at extreme ends of the VL spectrum are pooled on the same run,
uneven read distribution is expected between samples, with loss of coverage for the lowest VL

487 samples. Therefore batching samples by VL and normalising the mass of PCR product being 488 taken forwards into library preparation is recommended. Viral enrichment by PCR is highly 489 sensitive to amplicon contamination from previous experiments therefore caution should be taken 490 to keep work areas, equipment and reagents free of contamination, and multiple negative controls 491 should be included. To avoid in-silico 'contamination' double barcoding is required when 492 demultiplexing to eliminate chimeric reads which may otherwise lead to mis-assignment of reads 493 to incorrect barcodes [44]. These wet lab and bioinformatic principles are also applicable to sequencing other targets. 494

Although our capture approach can be used to improve the efficiency of viral sequencing at VL
>~5.50 log₁₀ IU/ml, its efficacy for producing full-length consensus genomes diminishes at lower
VLs, as observed elsewhere [45]. Additional/alternative host depletion and high volume (e.g. 5ml
[46]) extraction is likely to be required to reliably obtain full consensus genomes using this method
in samples with VL <5.5 log₁₀ IU/ml.

500 **4.4 Caveats and limitations**

501 The results presented here are from an iterative set of experiments and protocol development, 502 rather than a pre-planned head-to-head comparison. This limits the direct comparability of 503 workflows due to insufficient sample volumes of the original South Africa sample set. This meant 504 we were unable to sequence all samples using all three enrichment approaches. Furthermore, 505 the extraction method changed over time. Nevertheless, these data showcase the capabilities of 506 each workflow.

507 Correlation between VL and percentage genome coverage was more variable than anticipated. 508 Factors such as storage duration, shipping conditions, and repeated freeze-thaw cycles may all 509 influence sample quality, although DNA is generally robust. Poor sample quality or inaccurate VL 510 reporting (different sample/timepoint tested or lab/reporting error) may explain instances where 511 samples that were initially reported to have high VL yielded lower coverage than expected (e.g. 512 sample 1116 for which VL was reported as 5.41 log₁₀ IU/ml but on repeat on our sample was 3 513 log₁₀ IU/ml).

514 The probes and primers were designed to be pan-genotypic, however only take into account the 515 diversity of sequences on HBVdb, which contains relatively few genotype F-H sequences, and 516 under-represents certain global populations [ref Delphin?]. A strength of our study is the use of 517 mock samples, which allowed us to assess performance across all genotypes, including rarer 518 genotypes F-J that were unlikely to be present in our cohorts, however might still be present in 519 other cohorts globally. Analysis of rarer genotypes is often missing in reports of sequencing 520 schemes, however will become increasingly important as more HBV WGS is performed from 521 diverse global regions, and known HBV sequence diversity expands. While we report these 522 methods as pan-genotypic using mock samples generated from plasmids containing HBV 523 genotypes A-J, it is important to note that we only tested one variant per genotype. Some 524 genotypes have multiple subtypes; future studies could test enrichment methods with a wider 525 range of subgenotypes.

526 Sequencing low VL samples has inherent stochasticity, depending on the presence of viral DNA 527 in a sample or extract, and assay chemistry. Future work will test HEP-TILE performance at viral 528 loads <1.5 log₁₀ IU/mI, using high volume extraction to increase the chance of sampling viral DNA 529 (e.g. extraction from 5ml serum/plasma [46]), increasing the number of PCR cycles from 35 to 40 530 and pooling products from PCRs performed in duplicate or triplicate. Future work could compare 531 the ability of capture or HEP-TILE to accurately quantify low abundance minority variants, 532 requiring a panel of control material at varying VLs with known variant percentages, sequenced 533 with multiple technical replicates. Finally, enrichment methods could be trialled on different 534 sample types, for example liver biopsies where high host background is a challenge.

535

536 **4.5 Conclusion**

537 Collectively, these protocols will facilitate the wider generation of HBV sequence data. This data 538 will lead to a more accurate and representative global picture of HBV molecular epidemiology, 539 cast light on persistence and pathogenesis, and enhance understanding of treatment responses 540 and clinical outcomes. These aspirations align with high profile international goals for elimination 541 of HBV as a public threat.

542

543

545 **References**

- 546 1. Global hepatitis report 2024: action for access in low- and middle-income countries.
- 547 World Health Organization; 9 Apr 2024 [cited 7 May 2024]. Available:
- 548 https://www.who.int/publications/i/item/9789240091672
- 549 2. Houldcroft CJ, Beale MA, Breuer J. Clinical and biological insights from viral genome 550 sequencing. Nat Rev Microbiol. 2017;15: 183–192.
- 3. Lok AS. Personalized treatment of hepatitis B. Clin Mol Hepatol. 2015;21: 1–6.
- 4. McNaughton AL, Roberts HE, Bonsall D, de Cesare M, Mokaya J, Lumley SF, et al.
 Illumina and Nanopore methods for whole genome sequencing of hepatitis B virus (HBV).
 Sci Rep. 2019;9: 7081.
- 5. Lumley SF, Jennings D, Waddilove E, Trebes A, Delphin M, Downs LO, et al. Pangenotypic probe-based enrichment to improve efficiency of Hepatitis B virus sequencing.
 bioRxiv. 2023. p. 2023.02.20.529276. doi:10.1101/2023.02.20.529276
- 558
 6. Downs LO, Vawda S, Bester PA, Lythgoe KA, Wang T, McNaughton AL, et al. Bimodal
 559
 distribution and set point HBV DNA viral loads in chronic infection: retrospective analysis of
 560
 cohorts from the UK and South Africa. Wellcome Open Res. 2020;5: 113.
- 561 7. McNaughton AL, Revill PA, Littlejohn M, Matthews PC, Ansari MA. Analysis of genomic562 length HBV sequences to determine genotype and subgenotype reference sequences. J
 563 Gen Virol. 2020;101: 271–283.
- McNaughton AL, D'Arienzo V, Ansari MA, Lumley SF, Littlejohn M, Revill P, et al.
 Insights From Deep Sequencing of the HBV Genome-Unique, Tiny, and Misunderstood.
 Gastroenterology. 2019;156: 384–399.
- 567 9. Briese T, Kapoor A, Mishra N, Jain K, Kumar A, Jabado OJ, et al. Virome Capture
 568 Sequencing Enables Sensitive Viral Diagnosis and Comprehensive Virome Analysis. MBio.
 569 2015;6: e01491–15.
- 570 10. Depledge DP, Palser AL, Watson SJ, Lai IY-C, Gray ER, Grant P, et al. Specific
 571 Capture and Whole-Genome Sequencing of Viruses from Clinical Samples. PLoS ONE.
 572 2011. p. e27805. doi:10.1371/journal.pone.0027805
- 573 11. Bonsall D, Ansari MA, Ip C, Trebes A, Brown A, Klenerman P, et al. ve-SEQ:
 574 Robust, unbiased enrichment for streamlined detection and whole-genome sequencing of
 575 HCV and other highly diverse pathogens. F1000Res. 2015;4: 1062.
- 576 12. PrimalScheme: primer panels for multiplex PCR. [cited 7 May 2024]. Available:
 577 https://primalscheme.com/
- 578 13. Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, et al.
 579 Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus
 580 genomes directly from clinical samples. Nat Protoc. 2017;12: 1261–1276.
- 581 14. Quick J. nCoV-2019 sequencing protocol v3 (LoCost) v3. 2020.
 582 doi:10.17504/protocols.io.bp2l6n26rgqe/v3

583 15. fieldbioinformatics: The ARTIC field bioinformatics pipeline. Github; Available: 584 https://github.com/artic-network/fieldbioinformatics

- 585 16. Bannister E, Sozzi V, Mason H, Locarnini S, Hardikar W, Revill PA. Analysis of
 586 the in vitro replication phenotype of African hepatitis B virus (HBV) genotypes and
 587 subgenotypes present in Australia identifies marked differences in DNA and protein
 588 expression. Virology. 2020;540: 97–103.
- 589 17. Downs LO, Smith DA, Lumley SF, Patel M, McNaughton AL, Mokaya J, et al.
 590 Electronic Health Informatics Data To Describe Clearance Dynamics of Hepatitis B Surface
 591 Antigen (HBsAg) and e Antigen (HBeAg) in Chronic Hepatitis B Virus Infection. MBio.
 592 2019;10. doi:10.1128/mBio.00699-19
- 593 18. O'Hara G, Mokaya J, Hau JP, Downs LO, McNaughton AL, Karabarinde A, et al.
 594 Liver function tests and fibrosis scores in a rural population in Africa: a cross-sectional
 595 study to estimate the burden of disease and associated risk factors. BMJ Open. 2020;10:
 596 e032890.
- 597 19. Asiki G, Murphy G, Nakiyingi-Miiro J, Seeley J, Nsubuga RN, Karabarinde A, et
 598 al. The general population cohort in rural south-western Uganda: a platform for
 599 communicable and non-communicable disease studies. Int J Epidemiol. 2013;42: 129–141.
- 60020.Hayer J, Jadeau F, Deléage G, Kay A, Zoulim F, Combet C. HBVdb: a601knowledge database for Hepatitis B Virus. Nucleic Acids Res. 2013;41: D566–70.
- 602 21. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-603 analysis of large phylogenies. Bioinformatics. 2014;30: 1312–1313.
- 604 22. Gaidatzis D, Lerch A, Hahne F, Stadler MB. QuasR: quantification and 605 annotation of short reads in R. Bioinformatics. 2015;31: 1130–1132.
- 60623.Martin M. Cutadapt removes adapter sequences from high-throughput607sequencing reads. EMBnet.journal. 2011;17: 10–12.
- 608 24. Jiang H, Lei R, Ding S-W, Zhu S. Skewer: a fast and accurate adapter trimmer 609 for next-generation sequencing paired-end reads. BMC Bioinformatics. 2014;15: 182.
- 610 25. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient 611 alignment of short DNA sequences to the human genome. Genome Biol. 2009;10: R25.
- 612 26. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler 613 transform. Bioinformatics. 2009;25: 1754–1760.
- 61427.Li H. bwa: Burrow-Wheeler Aligner for short-read alignment (see minimap2 for615long-read alignment). Github; Available: https://github.com/lh3/bwa
- 616 28. Picard. [cited 25 Jun 2024]. Available: http://broadinstitute.github.io/picard
- 617 29. Katoh K, Toh H. Parallelization of the MAFFT multiple sequence alignment 618 program. Bioinformatics. 2010;26: 1899–1900.
- 61930.Menardo F, Loiseau C, Brites D, Coscolla M, Gygli SM, Rutaihwa LK, et al.620Treemmer: a tool to reduce large phylogenetic datasets with minimal loss of diversity. BMC

- 621 Bioinformatics. 2018;19: 164.
- 622 31. primerschemes/hbv/500/v1.1.0 at main · quick-lab/primerschemes. Github;
- 623 Available: https://github.com/quick-
- 624 lab/primerschemes/tree/main/primerschemes/hbv/500/v1.1.0
- 625 32. Chen Y, Sze J, He M-L. HBV cccDNA in patients' sera as an indicator for HBV 626 reactivation and an early signal of liver damage. World J Gastroenterol. 2004;10: 82–85.
- 33. Takkenberg RB, Zaaijer HL, Molenkamp R, Menting S, Terpstra V, Weegink CJ,
 et al. Validation of a sensitive and specific real-time PCR for detection and quantitation of
 hepatitis B virus covalently closed circular DNA in plasma of chronic hepatitis B patients. J
 Med Virol. 2009;81: 988–995.
- 63134.Lumley S, Kent C, Quick J, Matthews P. HEP-TILE: HBV whole genome632sequencing (nanopore protocol) v1. 2024. doi:10.17504/protocols.io.5jyl82bedl2w/v1
- 633 35. Creators nickloman Will Rowe1 Radoslaw Poplawski Stephen Rudd2 Sam W3
 634 ChrisKBio3 Andrew Rambaut Trevor Bedford4 Karthik5 Jared Simpson Josh Quick3
 635 mattloose Show affiliations 1. @grailbio 2. @nanoporetech 3. University of Birmingham 4.
 636 Fred Hutchinson Cancer Research Center 5. The Scripps Research Institute.
 637 ChrisgKent/hbv-fieldbioinfomatics: zenodo release. doi:10.5281/zenodo.12626842
- 638 36. Genotyping. [cited 17 Jun 2024]. Available: 639 https://www.ncbi.nlm.nih.gov/projects/genotyping/formpage.cgi
- 640 37. Geno2pheno hbv. [cited 17 Jun 2024]. Available:
- 641 https://hbv.geno2pheno.org/index.php
- 64238.Ripley BD. The R project in statistical computing. MSOR Connect. 2001;1: 23–64325.
- 64439.Scientific image and illustration software. [cited 26 Jun 2024]. Available:645http://www.biorender.com
- 646 40. Stenbäck JB, Schmidt D, Noborg U, Gustafsson J, Norberg P, Andersson ME, et
 647 al. Accurate and cost-efficient whole genome sequencing of hepatitis B virus using
 648 Nanopore. medRxiv. 2024. p. 2024.08.12.24311345. doi:10.1101/2024.08.12.24311345
- 649 41. Tshiabuila D, Choga W, James SE, Maponga T, Preiser W, van Zyl G, et al. An
 650 Oxford Nanopore Technology-Based Hepatitis B Virus Sequencing Protocol Suitable For
 651 Genomic Surveillance Within Clinical Diagnostic Settings. medRxiv. 2024.
 652 doi:10.1101/2024.01.19.24301519
- 653 42. Günther S, Li BC, Miska S, Krüger DH, Meisel H, Will H. A novel method for
 654 efficient amplification of whole hepatitis B virus genomes permits rapid functional analysis
 655 and reveals deletion mutants in immunosuppressed patients. J Virol. 1995;69: 5437–5444.
- 43. Ringlander J, Andersson ME, Prakash K, Larsson SB, Lindh M. Deep
 sequencing of hepatitis B virus using Ion Torrent fusion primer method. J Virol Methods.
 2022;299: 114315.
- 44. Xu Y, Lewandowski K, Lumley S, Pullan S, Vipond R, Carroll M, et al. Detection

- of Viral Pathogens With Multiplex Nanopore MinION Sequencing: Be Careful With Cross Talk. Front Microbiol. 2018;9: 2225.
- 662 45. Berg MG, Olivo A, Forberg K, Harris BJ, Yamaguchi J, Shirazi R, et al. Advanced
 663 molecular surveillance approaches for characterization of blood borne hepatitis viruses.
 664 PLoS One. 2020;15: e0236046.
- 665 46. Fu MX, Simmonds P, Andreani J, Baklan H, Webster M, Asadi R, et al.
- 666 Ultrasensitive PCR system for HBV DNA detection: Risk stratification for occult hepatitis B 667 virus infection in English blood donors. J Med Virol. 2023;95: e29144.

668

670 Funding

- This research was funded in whole, or in part, by the Wellcome Trust [220549/Z/20/Z,
- 672 206298/B/17/Z, 220171/Z/20/Z]. For the purpose of Open Access, the author has applied a CC
- 673 BY public copyright licence to any Author Accepted Manuscript version arising from this
- 674 Submission.
- 675 SFL is funded by a Wellcome Doctoral Training Fellowship (grant number 220549/Z/20/Z).
- 676 JQ/NL/CK are funded by the Wellcome Trust through the ARTIC Network Collaborative Award
- 677 (Grant number 206298/B/17/Z). MAA is supported by a Sir Henry Dale Fellowship jointly funded
- by the Royal Society and Wellcome Trust (220171/Z/20/Z). PCM has funding from the UCLH
- 679 NIHR Biomedical Research Centre, and core funding from the Francis Crick Institute (ref
- 680 CC2223).
- 681

682 Author contributions

- 683 Conceptualization: SFL, JQ, MAA, PCM
- 684 Methodology: SFL, CK, DJ, HC, AT
- 685 Software: CK, HC, SW, JQ, MAA
- 686 Formal Analysis: CK, HC, SFL
- 687 Investigation: SFL, CK, DJ, HC, GA, EW, MD, AT, SW, YW, G M-C, MK, KO, JC
- 688 Resources: BK, TGM, CdL, JM, MVS, DG, RN, EB, PCM
- 689 Data curation: CK, HC, JQ, MAA
- 690 Writing (original draft): SL, CK
- 691 Writing (review and editing): all authors
- 692 Visualisation: SL, CK
- 693 Supervision: JQ, MAA, PCM
- 694 Funding acquisition: SFL, JQ, MAA, PCM
- 695

696 Data availability statement

- Data for this study is available within the manuscript, supplementary table and online links.
 Sequences for samples where full length genomes were generated were deposited to the
 European Nucleotide Archive (ENA) under the study PRJEB79403 for Nanopore data and
 PRJEB79773 for Illumina.
- 701

702 Competing interests

- 703 Chris Kent has received an honorarium from Illumina for a talk on PrimalScheme3
- 704

It is made available under a CC-BY-NC 4.0 International license .

707

Figure 1: Design of HBV targeted enrichment methods. (A) HBV genome structure: relaxed
circular DNA (rc-DNA). The complete negative strand is discontinuous, with a 'nick' and covalently
bound polymerase. The positive strand is incomplete with a variable length and RNA tail. (B)
Probe design schematic for HBV probe based enrichment. An initial set of probes are designed
based on non-recombinant whole genomes downloaded from HBVdb. Additional probes are

It is made available under a CC-BY-NC 4.0 International license .

713 added in regions of high diversity, using an extended reference sequence to account for the 714 circular genome, and to account for insertions/deletions, then the final probe panel confirmed. (C) 715 Multiplex tiling PCR for the circular HBV genome. Generation of tiled schemes from linear 716 reference genomes leaves a gap in coverage for a circular genome. An additional amplicon 717 spanning the start/end of the linear reference ensures a theoretical maximum 100% genome 718 coverage can be obtained. Primer positions and amplicon length for HBV tiled amplicon scheme. 719 Numbering of nt positions based on X02763 reference genome. Created in BioRender. Lumley, 720 S. (2024) BioRender.com/r40b439 721 722

It is made available under a CC-BY-NC 4.0 International license .

724 725

Figure 2: Overview of sequencing workflows. Numbers of samples sequenced at each stage indicated. Due to sample availability, project stage, and local infrastructure, we used different subsets of samples to validate each method. In the clinical sample set from South Africa, if residual extract was available after capture, two further aliquots were taken forward for HEP-TILE enrichment and sequencing on Nanopore and Illumina. Created in BioRender. Lumley, S. (2024) BioRender.com/k41p399

- 732
- 733

It is made available under a CC-BY-NC 4.0 International license .

Figure 3: HBV genomes for all HBV genotypes (A-J) in mock clinical samples enriched
using HBV probes and primers (A) Enriched with probe based capture, sequenced on Illumina;
(B) Enriched with HEP-TILE, sequenced on Nanopore; (C) Enriched with HEP-TILE, sequenced

- on Illumina.

It is made available under a CC-BY-NC 4.0 International license .

Figure 4: HBV WGS using capture and amplicon based target enrichment.

Top row: Relationship between viral load and percentage of reads on-target (ie. HBV) for (A)
 probe-based capture sequenced on Illumina, (B) HEP-TILE sequenced on Nanopore and (C)
 HEP-TILE sequenced on Illumina.

Bottom row: Relationship between viral load and percentage of genome with high confidence
consensus for (D) probe-based capture sequenced on Illumina (x5 minimum depth), (E) HEPTILE sequenced on Nanopore (x20 minimum depth) and (F) HEP-TILE sequenced on Illumina
(x5 minimum depth). Panels E and F show an outlier with viral load 5.41 log₁₀ IU/ml, with
disproportionately low percentage genome coverage. Repeat VL was 3 log₁₀ IU/ml.

It is made available under a CC-BY-NC 4.0 International license .

767

Genotype	Capture	- Illumina	HEP-TILE	- Nanopore	HEP-TILE - Illumina			
	No. mismatches	No. N's	No. mismatches	No. N's	No. mismatches	No. N's		
Α	0	0	0	0	0	0		
	0	0	0	0	0	0		
в	0	0	0	0	0	0		
	0	0	0	0	0	0		
с	0	0	0	0	0	0		
	0	0	0	0	0	0		
D	0	0	0	0	2	311*		
	0	0	0	0	0	0		
E	0	0	0	0	1	0		
	0	0	0	0	0	0		
F	0	0	0	0	77	0		
	0	0	0	0	0	0		
G	0	0	0	0	0	0		
	0	0	0	0	0	0		
н	0	0	0	0	0	0		
	0	0	0	0	0	0		
I	0	0	0	0	0	0		
	0	0	0	0	0	0		
J	0	0	0	0	1	0		
	0	0	0	0	0	0		
Median	0	0	0	0	0	0		
Percent accuracy	100%		100%		99.98%			

768

769 **Table 1: Comparison of sequencing errors when sequencing mock samples using three workflows.**

Each mock sample was sequenced in duplicate, one replicate per row.

* 311 base dropout of a continuous regio

It is made available under a CC-BY-NC 4.0 International license .

	Capture - Illumina	HEP-TILE - Nanopore	HEP-TILE - Illumina
Time required for enrichment and library prep	1.5 days (capture overnight)	1.5 days (PCR overnight)	1.5 days (PCR overnight)
Sensitivity (HBV DNA VL) for generating HBV WGS	> 5.5 log ₁₀ IU/ml	> 1.5 log ₁₀ IU/ml	> 1.5 log ₁₀ IU/ml
Consensus sequence accuracy*	100%	100%	99.98%
Cost per sample** (enrichment & library prep reagents)	£29	£17	£25
Cost per sample*** (sequencing)	£25 E.g.multiplexed on partial lane on Novaseq X, 1 million reads per sample	£5.60 E.g. 96 samples multiplexed per flow cell, bulk purchasing 12 flow cells, 100,000 reads per sample	£2.50 E.g. multiplexed on partial lane on Novaseq X, 100,000 reads per sample
Throughput	Platform dependent e.g. Miseq vs. Novaseq X	Platform dependent e.g. Minion vs. Promethion	Platform dependent e.g. Miseq vs. Novaseq X
Portability	No	Yes with MinION	No

Table 2: Summary of three HBV WGS pipelines, comparing time, cost and outputs.

All costs are based on cost of reagents in the UK in 2024 (GBP) and do not include staff or equipment costs.

*based on sequencing of mock samples with known sequence

** reagent costs for enrichment and library prep reagents calculated in GBP for first 1000

samples. Cost excludes extraction and QC (Qubit/Bioanalyser reagents).

*** NB price extremely variable - depends on platform used and whether performing in-house or

outsourcing commercially. Excludes hardware (i.e. Laptop/MinION for Nanopore, and

- Novaseg/Miseg for Illumina)

It is made available under a CC-BY-NC 4.0 International license .

788 Supplementary material

790 Supplementary figure 1: Modifications to primer positions to take into account HBV genome 791 structure. (A) Schematic of HBV relaxed circular DNA (rc-DNA), the HBV partially dsDNA genome has 5' 792 modifications to both the positive DNA strand (RNA tail) and negative DNA strand (covalently bound 793 polymerase). The negative strand is complete but not fully circular due to the presence of a 'nick' and 794 covalently bound polymerase. The partial positive strand is variable in length. (B) Depth of coverage for 795 amplicon scheme hbv/500/v1.1.0 - illustrating drop-out of the 'problem amplicon' (initially Amplicon 4) in 796 samples below a VL of 5 log₁₀ IU/ml (VL shown in red). (C) Amplicon B drops out in low-medium viral load 797 samples, the hypothesis is that neither the positive nor negative strands of the HBV relaxed circular genome 798 are complete in that region. The left hand primer only partially overlaps the 5' tail of the positive strand, the 799 negative strand contains a nick. (D) Attempt to solve issue by moving the amplicon B primer upstream, 800 however this has the knock on effect of the Amplion A right hand primer moving upstream, which now 801 means amplicon A falls across a non-continuous DNA region. (E) Solution requires the left hand primer for 802 amplicon B and right hand primer for amplicon A to be placed in a narrow 200bp window, to ensure 803 Amplicon B can be generated from the positive DNA strand, and amplicon A from the negative DNA strand. 804 Created in BioRender. Lumley, S. (2024) BioRender.com/I10u171

It is made available under a CC-BY-NC 4.0 International license .

Supplementary figure 2: Relationship between HBV genotype and performance of HEP-TILE Nanopore workflow. Percentage genome coverage shown at x20 depth.

			No enricr	nent - illumina	sequencing			Capture Illumina						HEP-TILE nanopore						HEP-TILE illumina				
Genotype	Reference genome	Total reads	Mapped reads	HBV reads per million sequenced	Percent reads mapped to HBV	Percent genome coverage	Total reads	Mapped reads	HBV reads per million sequenced	Percent reads mapped to HBV	Percent genome coverage (x1)	Percent genome coverage (x5)	Total reads	Mapped reads	HBV reads per million sequenced	Percent reads mapped to HBV	Percent genome coverage (x1)	Percent genome coverage (x20)	Total reads	Mapped reads	HBV reads per million sequenced	Percent reads mapped to HBV	Percent genome coverage (x1)	Percent genome coverage (x5)
	KU736919	2564112	10405	4058	0.41	100	7703618	6946222	901683	90.17	100	100	95199	94946	997342	99.73	100	100	4779606	4517282	945116	94.51	100	100
-		2135330	7887	3694	0.37	100	9257976	8358193	902810	90.28	100	100	100155	100099	999441	99.94	100	100	7560102	7056345	933366	93.34	100	100
R	not published	2545038	330	130	0.01	0	511478	149377	292050	29.2	100	100	79709	79284	994668	99.47	100	100	5013574	4923003	981935	98.19	100	100
		2030784	314	155	0.02	0	551530	172912	313513	31.35	100	100	53460	53283	996689	99.67	100	100	4757802	4633475	973869	97.39	100	100
C	MT111596	0	0	0	0.00	0	727296	309195	425130	42.51	100	100	67502	67463	999422	99.94	100	100	3920376	3773438	962519	96.25	100	100
U		2819740	449	159	0.02	0	667198	270331	405174	40.52	100	100	50962	50937	999509	99.95	100	100	4546038	4386640	964937	96.49	100	100
D	NC_003977	2594796	3433	1323	0.13	100	2359894	1997417	846401	84.64	100	100	777	777	1000000	100.00	100	100	7559004	7386456	977173	97.72	100	100
U		1787174	2604	1457	0.15	100	2365408	1999929	845490	84.55	100	100	151565	150757	994669	99.47	100	100	4595728	4581007	996797	99.68	90	90
E	KU736895	2456130	42317	17229	1.72	100	17116198	16524062	965405	96.54	100	100	2310	1363	590043	59.00	100	100	7866442	7537133	958137	95.81	100	100
-		2050518	36693	17895	1.79	100	17556920	16941576	964951	96.5	100	100	174563	174504	999662	99.97	100	100	7175694	6915732	963772	96.38	100	100
E	DQ823095	2446438	1418	580	0.06	98.48	1069550	776761	726250	72.63	100	100	64275	64029	996173	99.62	100	100	4011426	3770749	940002	94	100	100
· ·		1355114	750	553	0.06	83.05	981698	671782	684306	68.43	100	100	68247	68081	997568	99.76	100	100	4544664	4392756	966574	96.66	100	100
G	AB056513	2390022	357	149	0.01	0	605588	226835	374570	37.46	100	100	60886	60813	998801	99.88	100	100	4869602	4790237	983702	98.37	100	100
0		2083668	334	160	0.02	0	708842	290037	409170	40.92	100	100	78879	78761	998504	99.85	100	100	4110952	4048170	984728	98.47	100	100
	FJ356716	2382670	4789	2010	0.20	100	3247752	2906583	894952	89.5	100	100	83243	82928	996216	99.62	100	100	5613544	5488416	977710	97.77	100	100
		1250400	2260	1807	0.18	100	4593134	4154349	904469	90.45	100	100	95882	95846	999625	99.96	100	100	5122012	5020249	980132	98.01	100	100
	AB562463	2476292	530	214	0.02	0	612856	270695	441694	44.17	100	100	255721	254408	994865	99.49	100	100	3159806	3103797	982275	98.23	100	100
1		1342546	308	229	0.02	0	538454	238861	443605	44.36	100	100	289336	284791	984292	98.43	100	100	4547926	4499098	989264	98.93	100	100
	AB486012	2729238	357	131	0.01	0	470730	147289	312895	31.29	100	100	83559	81982	981127	98.11	100	100	3057900	3036911	993136	99.31	100	100
'		1779390	248	139	0.01	0	474726	129406	272591	27.26	100	100	553110	549429	993345	99.33	100	100	3149202	3092929	982131	98.21	100	100
۲	ledian	2259000	640	391	0.04	41.525	854497	490489	563956	56.40	100	100	81476	80633	997015.76	99.70	100	100	4676765	4549145	977441	97.75	100	100

- 820 Supplementary table 1: Sequencing metrics for mock HBV samples for capture-Illumina, HEP-TILE Nanopore and HEP-TILE
- 821 Illumina workflows vs. no enrichment

0	0	S
o	Ζ	Ζ

								-	Capt	ure Illumina	-				HEP-T	ILENanopore		-			HEP-	HEP-TILE Illumina			
Sample ID	Country	Year	HBV VL (log10 IU/ml)	Sample volume (ul)	Extraction method	Genotype	To tal reads	Reads mapped to HBV	HBV reads permillion sequenced	Percent reads mapped to HBV	Percent genome coverage (x1)	Percent genome coverage (x5)	To tal reads	Reads mapped to HBV	HBV reads permillion sequenced	Percent reads mapped to HBV	Percent genome coverage (x1)	Percent genome coverage (x20)	Total reads	Reads mapped to HBV	HBV reads permillion sequenced	Percent reads mapped to HBV	Percent genome coverage (x1)	Percent genome coverage (x5)	
1113	South Africa	2019	> 7.2	500	Mnase+KF	A	4177836	3579271	368492	36.85	100.00	100.00	32085	18893	588842	58.88	100.00	99.94	2799578	2740035	978731	97.87	100.00	100.00	
1162	South Africa	2019	7.00	500	Mnase+KF	A	3165736	257935	32931	3.29	100.00	91.76						100.00							
1143	South Africa	2019	6.73	500	Mnase + KF	A	513650	381579	287947	28.79	100.00	93.42	37594	25733	684498	68.45	100.00	100.00	3194506	3131012	980124	98.01	100.00	100.00	
11114	South Africa	2019	6.31	500	Mnase + KF	A	2219342	1887048	339437	33.94	100.00	100.00	/1000	55001	733230	75.55	100.00	100.00	4300700	4115000	330003	35.00	100.00	100.00	
251	South Africa	2018	6.29	500	Mnase+KF	A	31276	30765	1727	0.17	97.61	0	31326	20445	652653	65.27	100.00	99.69	2895860	2838728	980271	98.03	98.79	98.70	
1125	South Africa	2019	6.17	500	Mnase+KF	A	638778	530971	114791	11.48	100.00	100.00													
200	South Africa	2019	6.09	500	Mnase+KF	A	109738	103162	14252	1.43	99.81	0 04 22	14203	11333	797930	79.79	84.91	84.69	1767254	582508	329612	32.96	98.10	84.80	
11/3	South Africa	2019	5.69	500	Mnase + KF	A	966700	617788	143360	14.34	100.00	100.00	02380	36099	610/5/	61.08	100.00	100.00	3200324	2/443/0	833630	03.97	100.00	100.00	
218	South Africa	2018	5.59	500	Mnase+KF	A	1708810	1017820	256890	25.69	100.00	100.00	34885	22731	651598	65.16	100.00	100.00	4099128	3922030	956796	95.68	100.00	100.00	
1119	South Africa	2019	5.53	500	Mnase+KF	A	5746052	318907	1577	0.16	100.00	100.00	95703	35680	372820	37.28	100.00	100.00	4276904	3025569	707420	70.74	100.00	100.00	
1131	South Africa	2019	5.47	500	Mnase+KF	A	3851170	148765	6228	0.62	100.00	80.75	00100	11000	450000	45.00	100.00	100.00	1506600	1100105	790065	70.00	0.00	0.00	
11105	South Africa	2019	5.36	500	Mnase + KF	A	1057854	172593	2 80165	8.02	100.00	82.43	20102	11969	456260	45.63	100.00	100.00	1596600	1169135	/32205	73.23	0.00	0.00	
1115	South Africa	2019	5.34	500	Mnase+KF	A	434768	98510	40624	4.06	100.00	0	19235	4298	223447	22.34	37.75	37.72	2420162	2359125	974780	97.48	67.26	59.90	
1132	South Africa	2019	5.15	500	Mnase + KF	notdone	646084	30054	3984	0.40	99.53	0													
1147	South Africa	2019	5.09	500	Mnase + KF	notdone	5898812	36612	342	0.03	100.00	13.19													
1108	South Africa	2018	5.01	500	Mnase+KF Mnase+KF	notdone	43616	31822	22377	0.33	100.00	0													
1174	South Africa	2013	4.44	500	Mnase + KF	notdone	355378	13899	3264	0.33	91.34	0													
1134	South Africa	2019	4.32	500	Mnase+KF	notdone	1028776	36627	5168	0.52	95.19	0													
1170	South Africa	2020	4.21	500	Mnase+KF	notdone	5590660	26066	151	0.02	91.52	0													
HEP-1363	England	2018	5.64	200	QIA	B/C	-						61511	59051	960007	96.00	100.00	100.00							
HEP-1745	England	2018	4.82	200	OIA	D							77987	76054	975214	97.52	100.00	99.59							
HEP-0709	England	2019	4.51	200	QIA	B/C							9329	3982	426841	42.68	100.00	99.66							
HEP-1749	England	2019	4.49	200	QIA	D							33654	26561	789238	78.92	100.00	99.72							
HEP-1740	England	2018	4.4	200	QIA	A							1189	490	412111	41.21	100.00	99.60							
HEP-1727	England	2018	4.1	200	QIA	D/E							15312	9030	589734	58.97	100.00	100.00							
HEP-1765	England	2019	3.73	200	OIA	D/F							61411	45255	736920	73.69	100.00	99.50							
HEP-1747	England	2018	3.35	200	QIA	D/E							6324	757	119703	11.97	84.63	84.32							
HEP-1571	England	2018	3.16	200	QIA	B/C							3494	1115	319118	31.91	100.00	99.50							
HEP-1403	England	2019	3.01	200	QIA	B/C							6140	1898	309121	30.91	85.01	84.57							
HEP-1104	England	2018	2.63	400	QIA	D/E							86946	65473	753031	75.30	100.00	99.81							
HEP-1732	England	2019	2.55	400	OIA	C							216978	63134	290970	29.10	100.00	99.94							
HEP-1766	England	2019	2.18	400	QIA	E							78875	43793	555220	55.52	100.00	99.87							
HEP-1681	England	2019	1.9	400	QIA	С							4717	1342	284503	28.45	100.00	99.88							
HEP-1529	England	2018	1.62	400	QIA	E							46990	260	5533	0.55	35.54	35.54							
HEP-1/10	England	2018	1.5	200	QIA	A							81646	241/1	296046	29.60	100.00	99.81						-	
906667N	Uganda	2011	8.23	200	QIA	A							1644431	1634360	993876	99.39	100.00	99.97							
907906N	Uganda	2011	7.6	200	QIA	A							853932	853530	999529	99.95	100.00	99.91							
900603N	Uganda	2011	7.5	200	QIA	A							1214437	1212327	998263	99.83	100.00	99.97							
906116N	Uganda	2011	7.02	200	QIA	A							850846	830695	976317	97.63	100.00	99.75							
ULIDS-0973	Uganda	2023	6.13	200	QIA	Δ	-						1183724	1180867	997586	99.76	100.00	99.72						-	
907395N	Uganda	2011	4.05	200	QIA	A							155913	154865	993278	99.33	84.97	84.82							
901116N	Uganda	2011	3.9	200	QIA	A							233603	227036	971888	97.19	100.00	99.91							
ULIDS-0434	Uganda	2023	3.72	200	QIA	A							219108	195817	893701	89.37	87.92	87.71							
ULIDS-0001	Uganda	2023	3.63	200	QIA	A							814736	811945	996574	99.66	100.00	99.29						-	
903818N	Uganda	2023	3.53	50	OIA	A							105909	100711	950920	95.09	100.00	99.75						-	
ULIDS-0457	Uganda	2023	3.36	200	QIA	A							188262	145071	770580	77.06	83.24	83.17							
908210N	Uganda	2011	3.14	200	QIA	Α							357155	343993	963148	96.31	100.00	99.81							
ULIDS-0461	Uganda	2023	3.12	200	QIA	Α							210084	175393	834871	83.49	100.00	99.47							
907856N	Uganda	2011	2.97	200	QIA	A							137878	108840	789394	78.94	100.00	99.88							
ULIDS-0543	Uganda	2023	2.93	400	OIA	A							154700	3421/5	993012	99.98	100.00	99.81							
905960N	Uganda	2011	2.3	400	QIA	A							42816	31840	743647	74.36	100.00	99.97							
ULIDS-0955	Uganda	2023	2.29	400	QIA	D/E							157565	156910	995843	99.58	84.63	84.54							
Median							1057854	148765	22377	2.24	100.00	80.75	80261	56066	779909	77.99	100.00	99.75	3045183	2791553	956800	95.68	100.00	100.00	

823

824 Supplementary table 2: Metadata and sequencing outputs for clinical HBV samples sequenced with capture-Illumina, HEP-

825 **TILE Nanopore and HEP-TILE Illumina workflows.** Sequencing metrics for sequencing of HBV-positive clinical samples.

826 Key for extraction methods (see methods section for full details): "Mnase + KF" = host depletion with micrococcal nuclease followed by extraction

827 on Kingfisher apex, "QIA" = QiaAMP MinElute virus spin kit. Viral load conversion example: $2\log_{10} IU/mI = 100 IU/mI$, $3\log_{10} IU/mI = 1000 IU/mI$.

It is made available under a CC-BY-NC 4.0 International license .

Genotype	Cap (2019 HBVd	ture b download)	HEP-TILE (2024 HBVdb download)						
	Genomes in HBVdb	Genomes used	Genomes in HBVdb	Downsampled Genomes					
Α	506	506	1066	559					
В	1218	1218	2018	1143					
С	1447	1447	3095	1764					
D	823	823	1523	920					
E	254	254	397	254					
F	197	197	304	156					
G	28	28	50	18					
н	26	26	28	17					

830 Supplementary table 3 - Number of sequences downloaded from publicly available 831 sequence database HBVdb[20]

836	Supplementary table 4 - HBV probe sequences
837	
838	>probe 1
839	
840	CAGAAACAGAGAACCCTGTTCCGACTATTGCCTCTCTCACATCATC
841	
842	>probe 2
843	
844	TGGGGACCCTGCAATGAACATGGAGAACATCACATCAGGACTCCT
845	
846	>nrohe 3
847	
848	TGTTACAGGCGGGGTGTTTCTTGTTGACAAAAATCCTCACAATACC
8 <u>4</u> 0	
850	Sprobe 4
851	
852	
853	COTOCIOCOCIOCICA ATTICIA OCOCOCIOCOCOCIO CO
000	Naraha E
004	
000	
000	AGICULUAACUICUAAICACIACUICUIGICUICUAACIIG
001	
000	
809	
860	GATGTGTCTGCGGCGTTTTATCATCTTCCTCTTCATCCTGCTGCT
861	
862	>probe_/
863	
864	TTGGTTCTTCTGGACTATCAAGGTATGTTGCCCGTTTGTCCTCT
865	
866	>probe_8
867	ATGCCTCATCTTCTTGTTGGTTCTTCTGGACTATCAAGGTATGTTGCCCCGTTTGTCCTCTAATTCCAGGATCCACA
868	ACCACCAGCACGGGACCCTGCAAAACCTGCACGACTCCTGCTCA
869	
870	>probe_9
8/1	AATTCCAGGATCCACAACCACCAGCACGGGACCCTGCAAAACCTGCACGACTCCTGCTCAAGGAACCTCTATGT
872	TTCCCTCATGTTGCTGTACAAAACCTTCGGACGGAAATTGCACCTG
873	
874	>probe_10
875	AGGAACCTCTATGTTTCCCTCATGTTGCTGTACAAAACCTTCGGACGGA
876	ATCTTGGGCTTTCGGAAAATACCTATGGGAGTGGGCCTCAGCCCG
877	
878	>probe_11
879	TATTCCCATCCCATCATCTTGGGCTTTCGGAAAATACCTATGGGAGTGGGCCTCAGCCCGTTTCTCCTGGCTCAG
880	TTTACTAGTGCAATTTGTTCAGTGGTGCGTAGGGCTTTCCCCCAC
881	
882	>probe_12
883	TTTCTCCTGGCTCAGTTTACTAGTGCAATTTGTTCAGTGGTGCGTAGGGCTTTCCCCCACTGTCTGGCTTTCAGT
884	TATATGGATGATGTGGTATTGGGGGGCCAAATCTGTGCAGCATCTT
885	
886	>probe_13
887	TGTCTGGCTTTCAGTTATATGGATGATGTGGTATTGGGGGGCCAAATCTGTGCAGCATCTTGAGTCCCTTTATACC
888	GCTGTTACCAATTTTCTGTTGTCTGTGGGTATACATTTAAACACT
889	

890	>probe_14
891	GAGTCCCTTTATACCGCTGTTACCAATTTTCTGTTGTCTGTGGGTATACATTTAAACACTAACAAAAAAAA
892	GGGGTTATTCCCTAAATTTCATGGGTTATGTAATTGGAAGTTGG
893	
894	>probe_15
895	AACAAAACAAAAAGATGGGGTTATTCCCTAAATTTCATGGGTTATGTAATTGGAAGTTGGGGGGACATTGCCACAA
896	GAACATATTGTACAAAAAATCAAAGAATGTTTTCGAAAACTTCCT
897	
898	>probe_16
899	GGGACATTGCCACAAGAACATATTGTACAAAAAATCAAAGAATGTTTTCGAAAACTTCCTGTTAATAGGCCTATTG
900	ATTGGAAAGTCTGTCAACGAATTGTGGGTCTTTTGGGCTTTGCT
901	
902	>probe_17
903	GTTAATAGGCCTATTGATTGGAAAGTCTGTCAACGAATTGTGGGTCTTTTGGGCTTTGCTGCCCCTTTTACCCAAT
904	GTGGTTATCCTGCTCTAATGCCTTTGTATGCATGTATTAAAGCT
905	
906	>probe_18
907	GCCCCTTTTACCCAATGTGGTTATCCTGCTCTAATGCCTTTGTATGCATGTATTAAAGCTAAGCAGGCTTTTGCTT
908	TCTCGCCAACTTACAAGGCCTTTCTCTGTAAACAATACATGAAC
909	North All
910 011	
012	
012	GGCAACGGCCAGGCCTGTGCCAAGTGTTTGCTGACGCAACCCCC
01 <i>/</i>	Spraha 20
015	
916	
917	
918	>prohe 21
919	
920	GGAACTCCTAGCAGCTTGTTTCGCTCGCAGCCGGTCTGGAGCGAAA
921	
922	>probe 22
923	CCGATCCATACTGCGGAACTCCTAGCAGCTTGTTTCGCTCGC
924	CAACTCTGTTGTCCTCTCGGAAGTACACCTCCTTTCCATGGCTG
925	
926	>probe_23
927	CTTATCGGGACTGACAACTCTGTTGTCCTCTCGGAAGTACACCTCCTTTCCATGGCTGCTAGGCTGTGCTGCC
928	AACTGGATCCTGCGCGGGACGTCCTTTGTTTACGTCCCGTCGGCG
929	
930	>probe_24
931	CTAGGCTGTGCCGAACTGGATCCTGCGCGGGACGTCCTTTGTTTACGTCCCGTCGGCGCTGAATCCCGCGG
932	ACGACCCCTCTCGGGGTCGCTTGGGGGCTCTATCGCCCCCTTCTCCGT
933	
934	>probe_25
935	CTGAATCCCGCGGACGACCCCTCTCGGGGTCGCTTGGGGCTCTATCGCCCCCTTCTCCGTCTGCCGTTCCGGC
936	CGACGACGGGGGCGCACCTCTCTTACGCGGACTCCCCGTCTGTGCCT
937	
938	>probe_26
939	
940	ACCGTGTGCACTTCGCTTCACCTCTGCACGTCGCATGGAGACCACCG
941	Naraha 07
94Z	<pre>>probe_2/</pre>

943 944 945	TCTCATCTGCCGGACCGTGTGCACTTCGCTTCACCTCTGCACGTCGCATGGAGACCACCGTGAACGCCCCTCAG AGCTTGCCAAAGGTCTTACATAAGAGGACTCTTGGACTTTCAGCAA
946	>probe 28
947	
948 949	ATTGAGGAATACATCAAAGACTGTGTATTTAAGGACTGGGAGGAGT
950	>prohe 29
951	
952	TAGGTTAAAGGTCTTTGTATTAGGAGGCTGTAGGCATAAATTGGTCT
953	
954	>probe 30
955	TGGGGGGGGGGGGGGTTAGGTTAAAGGTCTTTGTATTAGGAGGCTGTAGGCATAAATTGGTCTGTGCACCAGCACCA
956	TGCAACTTTTTCACCTCTGCCTAATCATCTCTTGTTCATGTCCTAC
957	
958	>probe 31
959	GTGCACCAGCACCATGCAACTTTTTCACCTCTGCCTAATCATCTCTTGTTCATGTCCTACTGTTCAAGCCTCCAAG
960	CTGTGCCTTGGGTGGCTTTGGGGCATGGATAGAACAACTTTGCC
961	
962	>probe 32
963	TGTTCAAGCCTCCAAGCTGTGCCTTGGGTGGCTTTGGGGCATGGATAGAACAACTTTGCCATATGGCCTTTTTGG
964	CTTAGACATTGACCCTTATAAAGAATTTGGAGCTTCTGTGGAGTT
965	
966	>probe_33
967	ATATGGCCTTTTTGGCTTAGACATTGACCCTTATAAAGAATTTGGAGCTTCTGTGGAGTTACTCTCGTTTTTGCCT
968	TCTGACTTCTTCCCGTCTGTTCGGGACCTACTCGACACCGCTTC
969	
970	>probe_34
971	ACTCTCGTTTTTGCCTTCTGACTTCTTCCCGTCTGTTCGGGACCTACTCGACACCGCTTCAGCCCTGTACCGGGA
972	TGCCTTAGAGTCACCTGAACATTGCACACCTAACCATACAGCACT
973	
974	>probe_35
975	AGCCCTGTACCGGGATGCCTTAGAGTCACCTGAACATTGCACACCTAACCATACAGCACTCAGGCAAGCTATTC
976	TGTGCTGGGGTGAGTTAATGACTCTGGCTACCTGGGTGGG
977	
978	
9/9	
900	CAGULAGGGATTTAGTAGTCAATATGTCAATACTAATATGGGUUT
901	Naraha 97
902	
903	
085	TIGIGGTTCACATTCCTGCCTTACTTTGGAAGAGAAACTGT
986	Spraha 38
987	
988	TCTTTTGGAGTGTGGGATTCGCACTCCTCCTGCTTATAGACCACC
989	
990	>probe 39
991	
992	TCAACACTTCCGGAAACTACTGTTGTTAGACGACGGGACCGAGG
993	
994	>probe 40
995	AAATGCCCCTATCCTATCAACACTTCCGGAAACTACTGTTGTTAGACGACGGGACCGAGGCAGGTCCCCTAGAA
996	GAAGAACTCCCTCGCCTCGCAGACGAAGATCTCAATCGCCGCGTCG

997	
998	>probe 41
999	
1000	CTCCAGCTTCCCAATGTTAGTATTCCTTGGACTCATAAGGTGGGAA
1001	
1002	>nrohe 42
1002	
1003	
100-	
1005	Norobo 13
1000	
1007	
1000	TIGCATCAAGACATGATAAATAAATGTGAACAATTTGTAGGCC
1009	Number 44
1010	
1011	
1012	AAAGAGAAGATTAAAATTAATTATGCCAGCTAGATTITATCCTA
1013	
1014	>probe_45
1015	CTCTCACAGAAAATGAAAAGAGAAGATTAAAATTAATTATGCCAGCTAGATTTTATCCTAACGTTACCAAATATTTG
1016	CCTTTGGATAAAGGTATTAAACCTTATTATCCAGAGAATGTAG
1017	
1018	>probe_46
1019	ACGTTACCAAATATTTGCCTTTGGATAAAGGTATTAAACCTTATTATCCAGAGAATGTAGTTAATCATTACTTCAAA
1020	ACCAGACATTATTTACATACTCTATGGAAGGCGGGAATTCTAT
1021	
1022	>probe 47
1023	TTAATCATTACTTCAAAAACCAGACATTATTTACATACTCTATGGAAGGCGGGAATTCTATATAAGAGAGAAAACCAC
1024	ACGTAGCGCCTCATTTTGTGGGTCACCATATTCTTGGGAACAAG
1025	
1026	>probe 48
1027	ATAAGAGAGAAACCACACGTAGCGCCTCATTTTGTGGGTCACCATATTCTTGGGAACAAGAGCTACAGCATGGG
1028	AGCACCTCGGTCAACGCCTCGAAGGGGCATGGGAAAGAATCTTTCT
1029	
1030	>probe 49
1031	
1032	GGGATTCTTTCCAGACCACCAGTTGGATCCAGCATTCAGAGCAAAT
1032	
1034	Sprobe 50
1034	
1035	
1030	IGGGACIICAACACAAGGACAAIIGGCCAGAGGCAAACAAG
1037	Naraha 54
1030	
1039	
1040	GCTTCGGTCCAGGGTTCACACCCCCACACGGAGGCCTTCTGGGGTGG
1041	
1042	>probe_52
1043	GTAGGAGTGGGAGGCTTCGGTCCAGGGTTCACACCCCCACACGGAGGCCTTCTGGGGTGGAGCCCTCAGGCA
1044	CAGGGCATACTAACAACCTTGCCAGCAGATCCGCCTCCTGCCTCCACC
1045	
1046	>probe_53
1047	AGCCCTCAGGCACAGGGCATACTAACAACCTTGCCAGCAGATCCGCCTCCTGCCTCCACCAATCGGCGGTCAG
1048	GAAGGAAGCCAACCCCAGTCTCCACCTCTAAGAGACACTCATCCA
1049	
1050	>probe 54

1051 1052	AATCGGCGGTCAGGAAGGAAGCCAACCCCAGTCTCTCCACCTCTAAGAGACACTCATCCACAGGCCATGCAGT GGAACTCAACACAGTTCCACCAAGCTCTGCAAGATCCGAGAGTAAGG
1053	
1054	
1055	TGCTGGTGGCTCCAGTTCAGAACACAGAGAACCCTGTTCCGACAAGATCCGAGAGTAAGGGGCCTGTATTTTCC
1057	>Deletion_region1003_1039_removed probe
1059	
1060	AAAGAATTTGGAGCTTCTGTGGAGTTACTCTCGTTTTTGCCTTCT
1061	
1062	>Deletion Genotype D region2897 2929 removed probe
1063	ACGTAGCGCATCATTTTGCGGGTCACCATATTCTTGGGAACAAGAGCTACAGCATGGGAGCGAATCTTTCTGTTC
1064	CCAACCCTCTGGGATTCTTTCCCGATCATCAGTTGGACCCTGCAT
1065	
1066	>H_cons_seq_s2035_e2154_ConS2035
1067	CGAACATTGCACCCCCAACCACACTGCTCTCAGGCAAGCTATTTTGTGCTGGGGTGAGTTGATGACCTTGGCTT
1068	CCTGGGTGGGCAATAATTTAGAGGATCCTGCAGCAAGAGATCTAGT
1069	
1070	>G_cons_seq_s2845_e2964_ConS2845
1071	TTTGTGGGTCACCATATACTTGGGAACAAGATCTACAGCATGGGGCTTTCTTGGACGGTCCCTCTCGAGTGGGG
1072	AAAGAACCTTTCCACCAGCAATCCTCTAGGATTCCTTCCCGATCAC
1073	
1074	>G_cons_seq_s1651_e1770_ConS1651
1075	TATATAAGAGGACTCTTGGACTGTTTGTTATGTCAACAACCGGGGTGGAGAAATACTTCAAGGACTGTGTTTTTG
1076 1077	CTGAGTGGGAAGAATTAGGCAATGAGTCCAGGTTAATGACCTTTG
1078	>E_cons_seq_s1975_e2094_ConS1975
1079	TTCAGTAAGAGATCTTCTAGATACCGCCTCAGCTCTGTATCGGGATGCCTTAGAATCTCCTGAGCATTGTTCACC
1080	TCACCACACTGCACTCAGGCAAGCCATTCTTTGCTGGGGGGAACT
1081	
1082	>A_cons_seq_s391_e510_Target_seq391
1083	TTTTATCATATTCCTCTTCATCCTGCTGCTATGCCTTAGCTCTGTATCGGTTCTTCTGAAGCCTTAGAGTCTCCAG
1084	AGCATTGCTCCCCTCACCTCAGGATCCACAACAACCAGTACGGG
1085	
1086	>A_cons_seq_s2875_e2994_ConS2875
1087	
1088	GCATTCGGAGCCAACTCAAACAATCCAGATTGGGACTTCAACCCC
1089	Normations D. dalation at 00 EE
1090	
1091	
1092	CLAGTICAGGAACAGTAAACUUTGTICUGACTACTGTCTCTCUCAT
1095	ΣD come com c2056, c2075, ComS2056
1094	
1095	
1090	
1098	>B_cons_seq_s2095_e2214_ConS2095
1099	AATGAATCTAGCCACCTGGGTGGGAAGTAATTTGGAAGATCCAGCATCCAGGGAATTAGTAGTCAGCTATGTCAA
1100	CGTTAATATGGGCCTAAAAATCAGACAACTATTGTGGTTTCACAT
1101	ND
1102	
1103	

1105	
1106	>C_cons_seq_s2990_e3109_ConS2990
1107	ACAAGGATCACTGGCCAGAGGCAAATCAGGTAGGAGCGGGAGCATTCGGGCCAGGGTTCACCCCACCACACG
1108	GCGGTCTTTTGGGGTGGAGCCCTCAGGCTCAGGGCATATTGACAACAG
1109	
1110	>C_cons_seq_s3080_e3199_ConS3080
1111	GCCCTCAGGCTCAGGGCATATTGACAACAGTGCCAGCAGCACCTCCTCCTGCCTCCACCAATCGGCAGTCAGG
1112	AAGACAGCCTACTCCCATCTCCACCTCTAAGAGACAGTCATCCTC
1113	
1114	>C_cons_seq_s2629_e2748_ConS2629
1115	AATTAATTATGCCTGCTAGGTTCTATCCTAACCTTACCAAATATTTGCCCTTGGACAAAGGCATTAAACCTTATTAT
1116	CCTGAACATGCAGTTAATCATTACTTCAAAACTAGGCATTATT
1117	
1118	>C_cons_seq_s1651_e1770_ConS1651
1119	TACATAAGAGGACTCTTGGACTCTCAGCAATGTCAACGACCGAC
1120	AAGACTGGGAGGAGTTGGGGGGGGGGGGGGGGGGGGGGG
1121	
1122	>C_cons_seq_s3080_e3199_Target_seq3080
1123	GCCCTCAGGCTCAGGGGACATTGACACCTCCGGCAGCCGCCCCTCCTGCCTCCAGAAAACCTCCTTCAGG
1124	TTCTCCACCTACTCTAATTTCTCTTCCTCTAAGAGACAGTCATCCCA
1125	
1126	>C_cons_seq_s3140_e3259_ConS3140
1127	AACCTCCTTCAGGTTCTCCACCTACTCTAATTTCTCTTCCTCTAAGAGACAGTCATCCCAACGCCATACACTGCCA
1128	CTCCACGCTATTCCACCAAGTTCTGCGAGATCCCTTAGTTGCGG
1129	
1130	>C_cons_seq_s3200_e3319_ConS3200
1131	AGGCCATGCAGTGGAACTCCACAACATTCCACCAAGCTCTGCTAGATCCCAGAGTGAGGGGGCCTATACTTTCCT
1132	GCTGGTGGCTCCAGTTCCGGAACAGTAAACCCTGTTCCGACTACTG

- 1133
- 1134

It is made available under a CC-BY-NC 4.0 International license .

1135 Supplementary text

1136

1137 Determining HBV drug resistance and immune escape from sequences using HBV WGS

1138 We were able to call polymorphisms at sites of previously reported resistance associated mutations (RAMs) and vaccine escape mutations (VEMs) as defined by geno2pheno[37]. 1139 1140 Polymorphisms were detected in RT and HBsAg regions. The polymorphism rt169M was 1141 identified in viral sequences from two individuals (906116N/907395N) and 202R in one (HEP-1142 1763). The rt169 and rt202 are sites associated with HBV drug resistance however the mutations 1143 169M and 202R have unknown significance. In the HBsAg region, a number of mutations 1144 associated with HBsAg escape from vaccines and detection were identified (144E, 100C, 128V, 1145 133I and 134V, each in one individual). All samples with polymorphisms had only been sequenced 1146 with a single method, HEP-TILE Nanopore.