
Assessing the Impact of Haulage drivers in Uganda's COVID-19 Delta Wave 
 
Adrian Muwonge1,2,3, Paul R Bessell8, Mark Barend de Clare Bronsvoort 2, Ibrahim Mugerwa4, 
Erisa Mwaka8, Emmanuel Ssebaggala7, Bryan Aidan Wee1,2, Aggelos Kiayias3, Christine 
Mbabazi Mpyangu6, Moses Lutakome Joloba5 
 
 
 
1 Digital One Health Laboratory, The Roslin Institute, College of Medicine and Veterinary 
Medicine, University of Edinburgh, Edinburgh, United Kingdom 
2 Division of Epidemiology, The Roslin Institute, College of Medicine and Veterinary 
Medicine, University of Edinburgh, Edinburgh, United Kingdom 
3 Blockchain Technology Laboratory, School of Informatics, University of Edinburgh, 
Edinburgh, United Kingdom 
4 Ministry of Health, Kampala, Uganda 
5 School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, 
Uganda 
6 College of Humanities and Social Sciences, Makerere University, Kampala, Uganda 
7 Bodastage Solutions, Kampala, Uganda 
8 Independent consultant, Edinburgh, United Kingdom 
8 Department of Anatomy, College of Health Sciences, Makerere University, Kampala, Uganda 
 
 
 
Corresponding author: adrian.muwonge@roslin.ed.ac.uk 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key Words: Core risk group, Haulage, COVID-19, Mathematical models, Pandemic 
Intervention, Preparedness 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.10.24313441doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.10.24313441doi: medRxiv preprint 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.10.24313441doi: medRxiv preprint 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.10.24313441doi: medRxiv preprint 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.10.24313441doi: medRxiv preprint 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.10.24313441doi: medRxiv preprint 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.10.24313441doi: medRxiv preprint 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.10.24313441doi: medRxiv preprint 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.10.24313441doi: medRxiv preprint 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.10.24313441doi: medRxiv preprint 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.10.24313441doi: medRxiv preprint 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.10.24313441doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.10.24313441
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2024.09.10.24313441
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2024.09.10.24313441
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2024.09.10.24313441
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2024.09.10.24313441
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2024.09.10.24313441
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2024.09.10.24313441
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2024.09.10.24313441
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2024.09.10.24313441
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2024.09.10.24313441
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2024.09.10.24313441
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2024.09.10.24313441
http://creativecommons.org/licenses/by/4.0/


Abstract 
 
Background: Haulage truck drivers can quickly connect distant communities, with risks of 
potential disease introduction. However, interventions to limit such risk must balance public 
health protection, economic continuity, and individual rights. Here distinguishing between their 
role in disease introduction and its onward spread is crucial for achieving this balance. 
 
Methods: To investigate the role of haulage during the Delta wave of COVID-19 in Uganda. 
We fit a susceptible-infectious-recovered (SIR) model to the 625,422 records in the national 
surveillance dataset to assess the notion of a “core-risk group” by examining the incidence and 
impact of haulage-targeted interventions in border districts associated with heavy haulage 
traffic compared to the districts in the central region of Uganda.  
 
Results: Although haulage drivers accounted for only 0.036% of the cases, the border districts 
associated with them registered 12.02% more cases than inland districts, suggesting a role in 
disease introduction. This risk was particularly higher in Tororo, compared to Amuru and 
Kyotera, which border Kenya, South Sudan, and Tanzania, respectively. Some interventions 
even increased the risk in Tororo by as much as 6%. However, in general, the haulage targeted 
interventions reduced the case load in border districts but registered limited impact on inland 
districts. This suggests a limited role in secondary within country spread. We note that 
combining such interventions with vaccination achieved greater reduction in case load.  
 
Conclusions: Our findings suggest that truck drivers were a core risk group, though this risk 
was transient and in some cases exacerbated by some interventions. Pandemic preparedness 
strategies should characterize risks posed by core groups to ensure interventions balance public 
safety with individual rights in key sectors like supply chains. 
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Introduction  
 
To develop robust public health preparedness strategies, lessons must be drawn from the recent 
COVID-19 pandemic. These lessons are crucial for future strategies to: a) efficiently allocate 
resources, b) rapidly integrate data for informed decision-making, c) minimize the impact of 
population-wide movement restrictions and most importantly, d) improve risk attribution for 
tailored pandemic responses [1–4]. Countries like Uganda have developed response strategies 
due to frequent disease outbreaks of Ebola, Congo-Crimean Haemorrhagic Fever, and Marburg 
Virus Disease [5]. However, these strategies proved inadequate when faced with the scale and 
speed of the COVID-19 pandemic. COVID-19 especially tested the ability to balance public 
health, economic benefit, and individual rights during population-wide movement restrictions. 
Only essential workers operating critical systems such as healthcare, national security and 
supply chains, were exempted from such restrictions. However, disproportionately greater 
scrutiny was directed towards some supply chain workers such as the haulage truck drivers in 
Uganda [6,7]. Indeed, these drivers were designated a core-risk group i.e., deemed to be more 
likely to introduce the disease to communities, by public health authorities, given their 
movement over long distances within a relatively short period [6,8]. We define a core risk group 
as a population that can act as a unique source of infection for the broader population [6,9,10]. 
Beyond introducing the infection to the general population, they can also be vulnerable to 
exposure and worse disease outcomes [11]. On the other hand, haulage drivers are integral to 
the supply chain and by extension the economy, especially in landlocked countries such as 
Uganda. For example, it was estimated that disrupting the haulage-based supply chain would 
result in a 3.3% GDP contraction for the East African region [12]. Therefore, to strike a balance 
between these two trade-offs, the Ugandan government implemented screening and contact 
tracing tailored to the haulage truck drivers [13]. However, this was not without controversy, 
including potential violation of individual rights[13], as it involved joint public health and 
security agency teams[6], often with media coverage. This heightened public anxiety and 
stigmatization towards this group [14]. This disproportionate scrutiny towards haulage drivers 
is not new. In the 1990s, these drivers were considered a core risk group for HIV spread linked 
to the sex trade on their routes [6,13]. What was new, and probably un-justified, was the use of 
strategies applied for a sexually transmitted disease (HIV) to respiratory infection (COVID-
19).   
 
To identify long-term solutions that protect the rights of such vulnerable but essential workers, 
we must examine the intended goals and actual outcomes of population-targeted interventions. 
For example, it is critical to understand if the targeted interventions only reduce the potential 
for introducing a pathogen, or if it also contains the potential to reduce the spread of the 
pathogen within the country. This distinction is well studied in HIV transmission, which is a 
chronic infection, but is yet to be fully explored in an acute infectious disease such as COVID-
19 [15,16]. It is against this background that we examined the risk attributed to haulage drivers 
and the likelihood of introducing the virus and spreading it to communities in Uganda. We also 
examine if the interventions that were used including: a) testing for COVID-19 and waiting for 
results at the border points, b) testing and not waiting at the border points but receive results 
through digital contact tracing tools c) and targeted vaccination. It is worth noting that in 
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Uganda, testing was tailored to specific groups, no mass testing of the population was 
performed. Consequently, there was never an estimate of the true prevalence. 
 
In this regard, models can be used to characterize disease outbreaks [17] by employing 
mathematical formulae that address questions such as: a) Where and how did the outbreak 
start? b) How is it likely to spread? and c) did our interventions achieve the desired outcomes? 
[18] In the process we can identify population characteristics, at-risk groups [15] and their 
contribution to the outbreak size. By using large empirical datasets relevant to an epidemic 
outbreak i.e., national surveillance test results dataset, such models can be refined [17] to 
inform future pandemic preparedness strategies. 
 
Here, we focus on responses targeted to haulage drivers to unravel their role in the 
epidemiology of COVID-19 during the Delta wave [19]. To do this, we answer the following 
questions: a) Does the data support the notion that haulage drivers were a core-risk group, on 
the account that districts linked to heavy haulage traffic registered a disproportionately higher 
apparent prevalence of COVID-19 cases? b) Were the targeted interventions such as i) 
mandatory testing and waiting for results at ports of entry or ii) mandatory testing and not 
waiting, effective? and c) Could alternative approaches such as digital contact tracing or 
targeted vaccination have yielded better results? 
 
Materials and Methods 
 
Study design 
 
We analysed the COVID-19 national surveillance test results dataset for Uganda. Among the 
categories of groups tested, we focus on the haulage truck drivers who were designated a core-
risk group (contracting and spreading), given their wide contact structure [6]. We hypothesised 
that interventions tailored to haulage, such as targeted COVID-19 screening, and manual 
contact tracing could limit the risk of this group spreading the virus to the public. We started 
by fitting models to the national COVID-19 test result dataset to identify models with the best 
fit. These models, among others, generate verifiable output on the incidence rates and testing 
rates. Then, using counterfactual concepts, we estimate outbreak parameters, such as the 
number of cases per location at a given time and assess whether locations linked to haulage 
had more cases during the Delta wave. We then simulate the impact of interventions based on 
the case load for specific locations/districts.  Finally, we assessed the impact of an intervention 
or a combination of interventions in reducing this case load. Here, we assume that the 
movements of drivers on the road represent a contact structure with communities, and we 
acknowledge that testing completeness between groups may vary. All this is done using a 
deterministic dynamic mathematical models [20] on the national surveillance dataset for the 
Delta wave (10 May 2021 to September 2021) N=625,422 [19]. It is noteworthy that we 
focused on the Delta wave because of the good model fit to the data, and thus use the 
counterfactual concepts to investigate the study objectives. 
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Figure 1- Map of Uganda showing the outer and outer ring strategy employed during the COVID-19. The outer ring included 
low-population density border district with points of entry and exits. The inner ring included high-population density districts 
protected from the risk of introduction via haulage drivers 
 
Data sources 
 
COVID-19 testing dataset: We used data from the Electronic Result Dispatch System (eRDS) 
database hosted by the Ministry of Health (MOH) in Uganda [21]. This database contained all 
COVID-19 testing results received from the 22 MOH-accredited diagnostic laboratories across 
the country. In January 2023, the eRDS database contained 2.9 million test results covering all 
the pandemic waves in Uganda. All data used were anonymised, and metadata variables include 
age, sex, the reason for testing, occupation (risk group), testing district, district of origin, and 
vaccination status. The test results used here are based on the polymerase chain reaction (PCR) 
test [22] and we specifically focus on the Delta wave. Mandatory testing of haulage at the 
points of entry and exit (POE) was one of the interventions used the inland districts (Figure 1) 
[23]. 
 
Digital contact tracing data tailored to haulage: The network of haulage based on movements 
along the road network in Uganda was obtained from the THEA-GS project [13], which was 
integrated with the eRDS. THEA-GS is a digital contact tracing (DCT) tool tailored for the 
haulage sector [24], is mobile application collects time-stamped GPS data. The application tool 
uses the national COVID-19 surveillance test results in the eRDS to deliver a location-based 
contact tracing for the haulage sector. The THEA-GS dataset contained 62 million time-
stamped GPS points linked to individual trucks, which were used to reconstruct the haulage 
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traffic flow as proxy for contact structure between drivers and communities along the road 
network [24]. Haulage truck drivers on this system used six designated points of entry and exit 
(POE), including Malaba (border with Kenya), Elegu (border with South Sudan) and Kyotera 
(border with Tanzania). These are also categorised here as the districts associated with the 
haulage routes. 
 
The dynamic mathematical models 
 
We used a population structure (see Table1) and a susceptible-infected-recovered (SIR) 
framework to model the characteristics of COVID-19 in six selected districts connected to the 
haulage sector in Uganda. The deterministic model was built on differential SIR equations, 
implemented using the deSolve package (version 1.40) in R [25] and we assume the following; 
a) routine testing was infrequent for most Ugandans, with only key groups such as health 
workers, travellers, and truck drivers eligible for regular testing, b) individuals testing positive 
would adhere to regulations, including self-isolation, hand hygiene, and mask usage, to limit 
transmission, c) the model was developed for a small-scale contact network, and d) given that 
long-distance travel was significantly restricted during the pandemic waves, we expect that the 
population in the districts remained relatively constant throughout both day and night. 
 
𝑑𝑆
𝑑𝑡 = −𝛽𝐼!

𝑆!
𝑁𝜌 

𝑑𝐼
𝑑𝑡 = 𝛽𝐼!

𝑆!
𝑁𝜌 − 𝛾𝐼! + 𝑇!𝑑" − 𝛾𝑇!𝑑" 

𝑑𝑅
𝑑𝑡 = 𝛾𝐼! 

 
Where on day i, S, I and R are the number of Susceptible, Infected and Recovered individuals 
in the population, N is the district population size, 𝜌 is an adjustment factor applied to describe 
the proportion of the population that would present for COVID-19 testing set to 0.05, 𝛽 is the 
transmission rate, 𝛾 is the recovery rate = 1/5.7 [26], 𝑇! is the number of infected truck drivers 
on day i and 𝑑" is the mean duration that the truck drivers stop at a crossing point which is 
taken as the time spent getting tested for COVID-19 (Intervention A). 
 
𝛽 is fitted from the national COVID-19 testing dataset by fitting an exponential model to the 
infection numbers prior-to and following a notable time point such as lockdown, so we use two 
values of 𝛽, one to describe the upwards part of the curve and the second the declining case 
numbers. We expect transmission to be linked to population density, however if we observe 
high transmission or high number of cases in a district with low population density, but linked 
to haulage, we deem haulage as a likely causal pathway. We therefore separately fitted 
transmission rates to three different types of areas – one covering the capital and largest city of 
Kampala, one for highly densely populated districts and the third for less densely populated 
districts (<500 people / km2) including districts that host ports of entry and exit. 
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𝑑𝑆
𝑑𝑡 = −𝛽𝐼!

𝑆!
𝑁𝜌 

𝑑𝐼
𝑑𝑡 = 𝛽𝐼!

𝑆!
𝑁𝜌 − 𝛾𝐼! 

𝑑𝑅
𝑑𝑡 = 𝛾𝐼! 

 
This would simulate drivers subjected to a very quick test and continuing their journey 
immediately to be contacted digitally (via THEA-GS) rather than waiting for results 
(Intervention B), with drivers isolating in the event of a positive result. In the third model the 
driver is not tested and can return to their home district and contribute to community spread. 
 
𝑑𝑆
𝑑𝑡 = −𝛽𝐼!

𝑆!
𝑁𝜌 

𝑑𝐼
𝑑𝑡 = 𝛽𝐼!

𝑆!
𝑁𝜌 − 𝛾𝐼! + 𝐻!𝑔# 

𝑑𝑅
𝑑𝑡 = 𝛾𝐼! 

 
𝐻!  is the number of truck drivers returning to their home district on day H and 𝑔#  is the 
proportion of infection remaining when the driver returns home (by default 0.5). We also use 
the scenario of no intervention i.e., not testing and no stopping at the POEs as the baseline for 
comparing all the intervention scenarios including vaccination (Intervention C). Vaccination is 
implemented by assuming that the transmission rate will be reduced by a factor describing the 
efficacy of the vaccine ((1-ν)β). 
 
Mandatory testing (Intervention A): Haulage truck drivers were required to have a negative test 
certificate to travel. As such testing was primarily done at POEs in border districts of Tororo, 
Amuru and Kyotera, where they had to wait for the results.  
 
Digital contact tracing (Intervention B):  A location-based contact tracing tool using time-
stamped GPS points and test results was used to automate the contact tracing process [13,24]. 
Here the drivers were permitted to undergo testing and continue their journey, and thereby 
returning to their home district. They received their results through the THEA-GS mobile 
application [24], which also provided instructions regarding self-isolation. Additionally, the 
movement data in THEA-GS could also be used to monitor compliance with instructions to 
self-isolate. 
 
Vaccination (Intervention C): The public vaccination campaign commenced in April 2021 [27], 
and as part of this effort, truck drivers were required to be vaccinated. The vaccination 
certificate become a mandatory requirement for driving, in addition to presenting a negative 
test result.  
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Model calibration  
 
In order to generate estimate parameters from the model, we fitted a transmission model against 
the COVID-19 incidence as reported [28] from the eRDS between July 2020 and July 2022. 
Since this paper is investigating attributable risk and the impact of targeted interventions on 
number of infected cases, we restrict the model to 90 days within which each of the waves.  
 
Table 1 Parameter estimates used to calibrate the model. 

Parameters/variables Values  Comments 
Baseline transmission rate Fitted  
Susceptible population    
Kampala 1,680,600 https://www.citypopulation.de/en/uganda/admin/  

Wakiso 2,915,200  
Mukono 701,400  
Tororo 597,500  
Amuru 216,800  
Kyotera 261,000  
Testing rate 3000/day ~ 108 drivers tested per day although not 

explicitly used for modelling 
Initial value of I:   
  Kampala 17 Fitted based on the infection rates in areas 

of different population densities 
  Wakiso 2.85  
  Mukono 0.685  
  Tororo 0.583  
  Amuru 0.291  
  Kyotera 0.351  
Population adjusted factor (𝜌) 0.05  
Generation time (Γ) 5.7 Salzburger et al. [26] 
Recovery rate (𝛾) 1/ Γ Generation time form  
Transmission rate (𝛽) Fitted  
Vaccine efficacy 0.75 The proportion of vaccinated individuals 

that are protected from infection 
 
System initialization 
 
The initial value for I is the mean prevalence of infection at the point defined as the start of the 
epidemic wave – with one value for Uganda and a separate value for just Kampala. We do 
sensitivity analysis around these initial I value to give a counterfactual to explore the impact of 
truck drivers in an instance where the disease was present at high levels in neighbouring 
countries, but low levels in Uganda. We decrease these I values by percentages ranging from 
0-100% of their baseline values. 
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Ethical considerations 
The research involving human participants underwent review and approval processes by 
several ethical committees, including the School of Public Health Higher Degrees, Research, 
and Ethics Committee at Makerere University (approval number SPH-2021-35), the Uganda 
National Council for Science and Technology (approval number HS156ES), and the Human 
Ethics and Research Committee at the Easter Bush Campus (HERC_538). The approvals 
included access to the national testing data as part of the THEA project. Written informed 
consent sought digitally was obtained from all participants prior to their inclusion in the study. 
 
Results 
 
Descriptive summary of dataset 
 
Of the 2.9 million COVID-19 test results in the eRDS, 40.2% were female and 58.6% were 
male and the rest were undefined genders. The age range was 1-90 years and a median age of 
35 for males and 28 for females. 6.3% of test results were positive, with the median age group 
for positive cases being 30-40 years. Non-Ugandan travellers accounted for 8.6% of the test 
results. Among the tested drivers, 2.1% were positive compared to health workers at 16.6% 
(Table 2). Overall, haulage truck drivers accounted for 0.036% of all positive tests in the eRDS 
database. Here, focusing on the Delta wave, as shown in Figure 2, a high proportion of tests 
and cases were registered in the eRDS. It is important to note that data hygiene was an issue, 
especially a lack of harmonized format for entries, which resulted in numerous variants of 
categories. 
 
Table 2 SARS-CoV-2 Testing rates and reasons for testing 

Variable Level Tested 
N=2,901,473 

Test positive 
N= 180,617 

(%) 
Gender Male 1,689,565 994,519 (5.8%) 
 Female 1,165,097 79,358 (6.8%) 
 Not recorded 17,893 1,808 (10.1%) 
Reason for testing    
 Community surveillance 7,139 732 (10.2%) 
 Contact tracing 399,878 57,226 (14.3%) 
 Health care workers 15,015 2,501 (16.6) 
 Hospitalised patients 30,781 7,447 (24.2%) 
 International Travellers 174,136 4,529 (2.6%) 
 Local travellers 1,128,605 21,101 (1.8%) 
 Government officials 3,401 17 (4.9%) 
 Routine testing 203,930 17,891 (8.7%) 
 Post-mortem 148 35 (23%) 
 Study 750 75 (10%) 
 Truckdrivers 49,800 1,046 (2.1%) 
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Figure 2 A line graph showing the total numbers tested and positive tests during the Delta and Omicron waves of the pandemic. 
The dotted line shows the average testing rate in the study period. The plot was generated with ggplot in R version 4.2.2. 

Haulage-associated epidemic characteristics  
 
To assess the case load for districts and regions linked to haulage, we assess epidemic 
characteristics of based on population density. Here the fitted models show a comparable (R0) 
between high and low. The findings show that interventions implemented during the Delta 
wave effectively reduced the reproduction number (R0) for the whole country from 1.98 pre-
lockdown to 0.78 post-lockdown (Table 3 and Figure 2). The trend was similar for the low-
density border districts and the medium-density peri-urban districts but it is worth noting that 
the (R0) in peri-urban districts of Mukono and Wakiso was higher pre-lockdown than low 
density districts like Amuru, Kyotera and Tororo.  

OmicronDelta



Table 3 Fitted R0 values to the different study regions 

Location R0 (95% CI) 
Region Rising phase – pre-lockdown 

(10-5-2021 - 08-06-2021) 
Control phase – post-lockdown 
(09-06-2021 – 30-06-2021) 

Uganda 1.98 (1.92 – 2.04) 0.776 (0.745 – 0.807) 
Kampala 1.96 (1.89 – 2.03) 0.816 (0.788 – 0.843) 
Low population density 1.98 (1.92 – 2.04) 0.756 (0.723 – 0.791) 
Mid population density 2.01 (1.93 – 2.09) 0.800 (0.774 – 0.825) 
 
 

 
Figure 2 Results of fitting the Delta wave to Uganda, Kampala, and mid (peri-urban) to low (border districts) population 
density district. The black and pink lines represent the empirical data and model respectively and highlights the similar fit in 
each population group. The dotted black line represents the day when the lockdown was instituted. 

 
 



Assessing haulage targeted intervention strategies 
 
Border districts associated with haulage 
The model shows a higher epidemic peak for the baseline i.e. no testing and therefore no 
stopping at the POEs of the border districts. Implementing Intervention A, i.e. truck drivers 
tested at POEs and waiting for a result (blue line in Figure 3), there was a reduction in cases, 
with the most significant reduction observed in districts with POEs like Kyotera (41%) and 
Amuru (48%) (Table 2). However, in Tororo district, Intervention A resulted in a case load 
higher than the baseline (Figure 3). Intervention B where testing is done, and results delivered 
via a DCT mobile application showed the largest reduction in cases within border districts. For 
example, Amuru (50.9%) and Kyotera (39.9%). Here too the characteristics of Tororo district 
are different from other border districts, showing only an 11% reduction in cases relative to the 
baseline intervention. Interestingly, Intervention C which combines vaccination with either 
baseline, intervention A or B appears to have the largest effect on the number of infections in 
Tororo district (Figure 3). 
 
Peri-urban districts 
At the peak of infection, 31 days since the start of the Delta wave, we note a negligible 
difference between Intervention A and the baseline especially in Mukono district. Although 
intervention C resulted in a significant difference in the number of infections in both Mukono 
and Wakiso, in Mukono the difference between baseline and Intervention A remains negligible. 
It is worth noting that in urban settings in Kampala and Wakiso, truck drivers were not allowed 
to travel without a test, hence this intervention is not factored in. 
 
Kampala district, the capital city 
Similarly, in the capital city, there is a negligible difference between Intervention A and B 
relative to the baseline. The profile of change in infections when Intervention C was 
implemented was similar to Wakiso although the actual case load in Kampala was much higher 
(Figure 3). 
 
Overall, if vaccination had been implemented as a standalone intervention, it would have 
resulted in a 1.4% reduction of cases in the districts liked to haulage.  
Table 4 Model output on the effect on the size of the epidemic among haulage drivers at its peak for a given intervention during 
the Delta wave 

   Size of epidemic at peak (% relative to baseline) 
District Type Day of 

peak 
Baseline (no testing) Intervention A Intervention B 

Amuru  Border district 31 139 (100%) 58.3 (42.1%) 49.1 (35.4%) 
Kampala Capital city 31 2906 (100%) 2895 (99.6%) 2894 (99.6%) 
Kyotera Border district 31 134 (100%) 64.9 (48.5%) 60.1 (44.9%) 
Mukono Greater Kampala 31 120.9 (100%) 117.3 (97.0%) 117.3 (97.0%) 
Tororo Border district 31 113.6 (100%) 120.2 (106%) 99.9 (87.9%) 
Wakiso Greater Kampala 31 487.5 (100%) 487.5 (100%) 487.5 (100%) 



 
Figure 3 During the Delta wave, we evaluated the impact of three strategies across six modelled districts: Blue is Intervention 
A: Truck drivers were tested at the POE or designated seclusion points and were required to wait for their results at that 
location. They could only proceed if their test result was negative. Red is Intervention B: in this scenario, a digital contact 
tracing tool was utilized. Truck drivers were automatically contacted through a mobile application to relay a) test results, b) 
public health guidance, and c) geofencing to evaluate compliance. Green (No Testing - No Intervention): This scenario 
represents no testing, and hence, the health status is unknown. All individuals are allowed to travel freely. This serves as the 

Combination with vaccination

Digital contact tracing 

Mandatory testing

No testing

Interventions



reference or control for our analysis. The dotted lines represent a combination of each respective intervention with targeted 
vaccination using a vaccine that is 75% effective (Intervention C).  

Using the haulage movement network: potential additional risk form inland movements 
 
Figure 4 illustrates the impact of the onward movements of trucks from border crossing points. 
The baseline analysis focused on the primary increased risk from truck drivers, which shows 
that this impact was concentrated within POE districts. Although some in-land districts show 
some accumulation of risk following the incorporation of the truck network and the additional 
transmission resulting, it is far lower than it is in the border districts (Figure 4). Furthermore, 
the impact of varying the initial (I), simulating a lower rate of introduction is assessed to show 
the changes in truck driver-attributable infections. The result suggests that the impact of truck 
drivers on infection size is at its maximum (75%) when (I) is at its lowest (0.03), as would be 
the case at the beginning of the Delta wave. This means that if the disease had been contained 
and kept out then truck drivers would have had the biggest impact on potential transmission. 
This impact is notably pronounced in Tororo and Amuru districts and, to a lesser extent, in 
Kyotera (Figure 4 C&D). This finding suggests that targeted intervention is effective in 
averting a substantial number of new infections when implemented during the early stages of 
an outbreak. Figure 4B suggests the optimal level to intervene appears to be when the 
prevalence (initial value) is 3% and 9% beyond which if no intervention is implemented would 
result in a 50% and 26% increase in cases. 
 
 



 
Figure 4 A The haulage truck network was generated using time-stamped GPS data from the digital contact trace system 
THEA-GS [24]. Here we show the links for the most used routes, and the ability of truck drivers to move disease inland. In 
addition to these observed links, we put in a link from Amuru to the one node without a vertex but made this a low-frequency 
vertex. B shows how the impact of interventions is dependent on the level of infection in the population. For example, if the 
intervention (deflation) on the x-axis is done at 0.03, it is possible to achieve a 75% increase in the proportion of cases averted. 
C & D shows the proportion increase in caseload attributable to onward movement of the haulage drivers during the Delta 
wave 
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Discussion 
 
In this study, we sought to examine the role of haulage truck drivers as a core risk group in the 
epidemiology of the Delta wave of COVID-19 in Uganda. By doing, we understand how 
intervention can be optimally  deployed to reduce the potential for introduction and spread to 
the rest of the populations with limited infringement on the individual rights of truck drivers in 
Uganda. Therefore, the overarching aim was to learn from the responses to inform current and 
future pandemic preparedness strategies in similar settings. This is important because the 
haulage sector is integral to national and international supply chains and by extension, their 
economies [12]. The occupational and public health risks associated with this group are 
inherently linked to the breadth of their contact structure and could result in excessive public 
scrutiny during disease outbreaks with welfare consequences. Although our findings support 
the notion that haulage truck drivers were a core-risk group [6] during the Delta wave, our 
findings suggest that this risk was limited to specific spatial and temporal contexts.  
 
Haulage as a core risk group 
 
Here, we apply the core risk categorization to haulage truck drivers because although this group 
accounted for only 0.036% of all cases in the eRDS, border districts such as Tororo, which are 
uniquely associated with heavy haulage traffic, experienced a 12.02% increase in incidence 
during the Delta wave and the least change in case load following interventions. This suggests 
that truck drivers were a risk group and some targeted interventions may have exacerbated their 
risk [29]. Indeed, our analysis of haulage-targeted interventions shows a pronounced impact on 
incidence in border districts. For instance, while Intervention A, which involved testing and 
waiting for results at the border, resulted in a ~50% reduction of cases in Amuru and Kyotera, 
it resulted in a 6% increase of cases in Tororo district relative to the baseline with no 
intervention. This difference in outcomes likely reflects the variation in the number of truck 
drivers using the border crossing and the congregation that resulted while waiting for results. 
Tororo, with large volumes of trucks from Kenya destined for South Sudan and the Democratic 
Republic of Congo, represented a greater risk of introduction to the general population of 
Tororo. By this measure, truck drivers appear to have been a core risk group [6]. However, the 
risk and impact were generally localized to border districts and transient, with the highest 
impact at the onset of the outbreak. Future targeted interventions could benefit from such 
context to inform public health decision-making and responses that limit generalised 
stigmatization of the haulage sector [6]. In this regard, consideration of factors that inherently 
render haulage drivers vulnerable to exposure is crucial. For instance, our data indicates that a 
typical driver is male in his 40s or 50s [30]. Their occupation requires long periods spent sitting 
alone in truck cabins, often with suboptimal dietary habits [11]. Furthermore, they are 
frequently exposed to chemical and biological pollutants, coupled with stressors from road 
infrastructure [11]. Such a lifestyle can contribute to the early onset of non-communicable 
diseases, including mental health issues, diabetes, heart disease, and kidney disease [11]. When 
these conditions intersect with infectious disease pathogens, it becomes evident why this group 
can easily be classified as a core-risk group [31]. It is therefore imperative to update 
occupational health policies to promote awareness, early diagnosis, and contextualized 



communication of interventions. Such strategies should be integral to current preparedness 
strategies to support public health and the economy while safeguarding the rights of drivers in 
haulage sector. 
 
Effectiveness of targeted interventions 
  
The objective of an intervention to an infectious disease outbreak is to minimise the probability 
of an introduction and spread of a pathogen [32]. In Uganda, the mass testing program began 
in April 2020, allowing haulage truck drivers to travel only if they tested negative for COVID-
19. Therefore, testing facilities targeting haulage were established at POEs in border districts 
[13]. Our research findings show that while this intervention reduced cases in Kyotera and 
Amuru, it resulted in an increase in Tororo district. This rise reflects the effect of unintended 
delays, with drivers waiting 24-36 hours for test results at the border, disrupting the haulage 
chain [14]. At its worst, the queue of trucks was 47 Km at the Kenya-Uganda border in Malaba 
[14], leading to overcrowding and likely increasing the transmission. When haulage drivers 
were allowed to test and proceed with their journey and received their results via a contact 
tracing mobile application (Intervention B), the case load in Tororo district was reduced by 
11% relative to the baseline without intervention. The reduction was even much higher in 
Amuru and Kyotera. The variation in case load between the three border districts following 
targeted interventions suggests haulage played a role in the epidemiology, albeit to varying 
degrees across districts. The variance in caseload between Tororo and Amuru districts might 
also be attributed to shorter transit times at Elegu port, since trucks and drivers [24] will have 
undergone pre-inspection and clearance at Malaba port, respectively 
 
According to the European Centre of Disease Prevention and Control [33] the primary 
objective of the vaccination campaign was to reduce the pressure on health care systems and 
facilitate the re-opening of society. Similarly, in Uganda where the vaccination campaign began 
in March 2021 [12,34], the vaccinated population primarily received AstraZeneca (93%), 5% 
Moderna and 2% Pfizer [12,34]. At this point, truck drivers were required to have a valid 
vaccination certificate along with a negative test to travel. Our findings indicate that 
vaccination alone would have reduced the overall case load by 1.4%. This is probably because 
the vaccines were primarily aimed at improving case outcomes [33], easing pressure on the 
healthcare system [29], not preventing transmission. This does not suggest that vaccination as 
an intervention was ineffective; rather our findings suggest that better outcomes with case 
numbers could be achieved with proper timing and combination with other interventions as 
discussed in the following sections. 
 
The potential for alternative intervention 
 
Digital contact tracing (DCT) has emerged as a potential epidemiological tool to support 
reopening of economies [35] by limiting transmission while maintaining functional supply 
chains [36]. Our result indicates that deploying a digital contact tracing tool [24] could 
significantly reduce the caseload by 35% in border districts like Amuru and by 44% in Kyotera. 
This would allow drivers to continue with their journey and access results through mobile 



phone applications, thereby reducing border transit time, overcrowding and subsequent 
transmission. Similarly, we did not observe a much lower reduction (16.9%) of cases in Tororo 
district, this too likely reflects the role of the volume of traffic in the effectiveness of 
interventions [13]. One the other hand we observed that this intervention was not effective in 
decreasing the caseload for densely populated urban areas such as Kampala, Mukono, and 
Wakiso in the central region of the country. This is probably due to the presence of multiple 
risk groups, including international travellers and health workers. Thus, it can be argued that 
haulage-targeted digital contact tracing interventions may primarily benefit border 
communities. 
 
Some studies have indicated that DCT may be less effective in urban settings, primarily due to 
low resolution from potential barriers such as building structures affecting GPS or Bluetooth 
signals [37]. The reasons for the limited utility observed in this study remain unknown and 
could be a potential area for further investigation. 
 
Our results indicate that a further reduction in the case load can be achieved by combining all 
the above interventions with vaccination. For example, between 60% and 80% reduction in 
cases could have been achieved in Tororo and Kampala respectively. Similar results would be 
achievable in Amuru and Kyotera districts. Studies conducted elsewhere have shown the 
benefit of combining vaccination [38]. In South Africa, they have shown that such an approach 
offers better outcomes including potentially suppressing an outbreak [38]. Beyond combining 
interventions, the timing of an intervention is critical [28]. Here, we show that the risk 
associated with truck drivers is transient and highest at the beginning of an outbreak when 
community prevalence is at its lowest. Therefore, implementing a combined intervention when 
the prevalence is at 3% could have resulted in a 75% reduction in case load. 
 
Study limitations: a) Our modelling approach did not consider the onward impact of this group 
on all other districts in Uganda. This constraint limits the generalizability of our findings 
beyond the specific districts examined in the study. It is possible that each district has unique 
contact structures, leading to different and unaccounted dynamics. 
b) Our analysis primarily centres on the Delta wave of the pandemic in Uganda. While we also 
investigated the Omicron wave, the model's accuracy was not robust enough to facilitate 
subsequent counterfactual analysis. With these caveats, our finding suggests that the risk 
introduction associated with haulage during this wave was limited to border districts, even then, 
interventions contributed to it. We also find limited evidence that haulage drivers played a role 
in onward transmission within the central regions 
 
Relevance to future pandemic preparedness strategies 
 
Haulage truck drivers are at a unique intersection between public health-economic interests, 
and historic public biases. During the pandemic such interests diverge, and biases amplified, 
leading to unwarranted scrutiny of this group of essential workers. These pressures and biases 
add to the multitude of challenges and health vulnerabilities that truck drivers already face [11]. 
Therefore, our findings contribute to the evidence necessary for updating policies and strategies 



aimed at building resilient logistics supply chains capable of supporting populations during 
pandemics. In this study we have characterized the risk and show that it was place and time-
specific, in some cases amplified by the very interventions put in place. Therefore, the 
implementation of targeted and early interventions is crucial. For instance, despite Tororo, 
Kyotera, and Amuru being border districts associated with haulage traffic, they each require 
context-specific interventions to effectively manage the risk. Ultimately all this contributes to 
the enhancement of occupational health within the haulage sector by highlighting gaps. 
 
Conclusion 
 
Our findings support the notion that haulage truck drivers were a core-risk group during the 
Delta wave, but this risk was transient and likely exacerbated by the interventions, such as 
testing and waiting for results at points of entry (POE) in districts like Tororo. Therefore, high-
volume border crossings require tailored interventions. In this regard, a combination of 
interventions, such as digital contact tracing and vaccination, could have served as more 
effective alternatives in the public health institution’s response toolkit. 
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