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Abstract 50 

Introduction: This study evaluated the performance of a wrist-worn wearable, Verily Study 51 
Watch (VSW), in detecting key sleep measures against polysomnography (PSG). Methods: We 52 
collected data from 41 adults without obstructive sleep apnea or insomnia during a single 53 
overnight laboratory visit. We evaluated epoch-by-epoch performance for sleep versus wake 54 
classification, sleep stage classification and duration, total sleep time (TST), wake after sleep 55 
onset (WASO), sleep onset latency (SOL), sleep efficiency (SE), and number of awakenings 56 
(NAWK). Performance metrics included sensitivity, specificity, Cohen’s kappa, and Bland-57 
Altman analyses. Results: Sensitivity and specificity (95% CIs) of sleep versus wake 58 
classification were 0.97 (0.96, 0.98) and 0.70 (0.66, 0.74), respectively. Cohen’s kappa (95% 59 
CI) for 4-class stage detection was 0.64 (0.18, 0.82). Most VSW sleep measures had 60 
proportional bias. The mean bias values (95% CI) were 14.0 minutes (5.55, 23.20) for TST, -61 
13.1 minutes (-21.33, -6.21) for WASO, 2.97% (1.25, 4.84) for SE, -1.34 minutes (-7.29, 4.81) 62 
for SOL, 1.91 minutes (-8.28, 11.98) for light sleep duration, 5.24 minutes (-3.35, 14.13) for 63 
deep sleep duration, and 6.39 minutes (-0.68, 13.18) for REM sleep duration. Mean and median 64 
NAWK count differences (95% CI) were 0.05 (-0.42, 0.53) and 0.0 (0.0, 0.0), respectively. 65 
Discussion: Results support applying the VSW to track overnight sleep measures in free-living 66 
settings. Registered at clinicaltrials.gov (NCT05276362).  67 
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Introduction 68 

Characterizing sleep in a free-living setting provides valuable insights into physical and mental 69 
health. Changes in sleep may be key in the diagnosis of sleep disorders like insomnia and 70 
hypersomnia, and are clinically meaningful components for tracking mental and cardiovascular 71 
health, as well as other conditions (Parish, 2009)(Freeman et al., 2020)(Tobaldini et al., 72 
2019)(Young et al., 2008)(Ahmadi et al., 2009)(Hayashino et al., 2010). The gold standard for 73 
sleep assessment is lab-based polysomnography (PSG). However, PSG is resource intensive, 74 
challenging to administer and subject to intra- and inter-scorer variability, moreover, availability 75 
of PSG laboratories may be limited (Norman et al., 2000)(Deutsch et al., 2006). It is also 76 
impractical for long-term surveillance, and may be prone to artifacts that affect 77 
representativeness, such as altered sleep patterns due to the novelty of a laboratory, and/or the 78 
discomfort of the electrode setting (Toussaint et al., 1995). Furthermore, while portable PSG 79 
tools do exist, they still have limited application in free-living environments or routine clinical 80 
care. 81 
Wearable sensors, particularly wrist-worn devices, provide a promising avenue for sleep 82 
assessment in free-living settings. These devices are widely available, relatively inexpensive, 83 
comfortable to wear during sleep and include physiological sensors, such as 84 
photoplethysmogram (PPG) and accelerometer, that can be used for sleep monitoring (Imtiaz, 85 
2021)(de Zambotti et al., 2024). However, before utilizing wearable-based technology as a 86 
routine approach to monitor daily sleep, whether for care or for research purposes, it is 87 
important to conduct performance evaluation of devices and algorithms compared to a gold 88 
standard reference such as PSG. Furthermore, researchers now know the importance of 89 
conducting those analytical and clinical evaluations across diverse and representative 90 
populations, such as participants with different ages or skin tones, to increase confidence in the 91 
generalizability of the results (Colvonen et al., 2020)(Baumert et al., 2023)(Nelson et al., 2020). 92 
This study evaluated the performance of the Verily Study Watch (VSW, a wrist-worn wearable) 93 
to monitor sleep in a diverse cohort of sleepers without obstructive sleep apnea (OSA) or 94 
elevated insomnia symptoms, by comparing VSW sleep measures against measures obtained 95 
from PSG-based labels. The VSW classifies every 30-second epoch into 4 sleep-related stages: 96 
wake, light sleep, deep sleep, and rapid eye movement (REM) sleep. These classifications 97 
enable the calculation of multiple sleep measures that provide information on the quantity and 98 
the quality of an individual’s overnight sleep. In this study, the measures of interest were: total 99 
sleep time (TST), wake after sleep onset (WASO), sleep efficiency (SE), sleep onset latency 100 
(SOL), number of awakenings (NAWK), and duration of each sleep stage. Our main objective 101 
was to compare epoch-by-epoch VSW- against PSG- derived classification of sleep-versus-102 
wake state and of sleep stages. Additionally, we wanted to assess the VSW’s accuracy for all 103 
computed sleep measures (listed above). Finally, we wanted to evaluate any potential variability 104 
in the performance of the VSW’s sleep algorithm across demographic factors such as age, sex, 105 
body mass index (BMI), skin tone, and arm hair density.   106 
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Methods  107 

Participants 108 
The basic setup and eligibility for the study have been described elsewhere (Nelson, 2024, 109 
submitted). Eligible participants were between 18-80 years old, agreed to abstain from any 110 
drugs or medications that may affect sleep or wakefulness prior to and during the lab visit, and 111 
did not have identified symptoms of sleep disorders, such as obstructive sleep apnea (OSA, 112 
defined by OSA 50 score ≥5), or elevated insomnia symptoms (defined by having an insomnia 113 
severity index (ISI) score ≥ 8). The study was approved by the WCG Institutional Review Board 114 
(20215892), and all participants provided informed consent.  115 
This study was registered at clinicaltrials.gov (NCT05276362). 116 
 117 
Data Collection 118 
For each participant, data were collected during a single overnight stay in a sleep laboratory at a 119 
single site (SRI; Menlo Park, California), between February 14th and September 1st, 2023. 120 
Participants slept in comfortable, sound-proof and temperature-controlled bedrooms. Standard 121 
PSG protocols were used for preparation, recording procedures, and instrument calibration 122 
(Nelson, 2024, submitted).  123 
 124 
Study Watch Data 125 
During their overnight visit, participants wore the VSW on their dominant wrist. This analysis 126 
was part of a larger study including two devices: the Verily Numetric Watch (VNW) (Nelson, 127 
2024, submitted), in addition to the VSW. VSW is equipped with two sensors: a green-light PPG 128 
sensor, and a 3-axis accelerometer. Both sensors had a sampling frequency of 60 Hz (in the 129 
VNW, the PPG sensor consists of a green light emitter diode and two PPG signal channels and 130 
the sampling rate of the 3-axis accelerometer is 104 Hz). Using the PPG and accelerometer 131 
signals, the VSW classifies every 30-second epoch into one of the following 4 classes: wake, 132 
light sleep, deep sleep, and REM sleep. 133 
The sleep stage classification algorithm consisted of a deep convolutional neural network that 134 
was initially trained using 10,000 nights of data from the Sleep Heart Health Study (SHHS) and 135 
Multi-Ethnic Study of Atherosclerosis (MESA) public datasets (Sridhar et al., 2020). The 136 
algorithm was fine-tuned using a smaller dataset collected at SRI, consisting of 30 nights of 137 
PSG-labeled data. 138 
The overnight sleep measures, including TST, WASO, SE, SOL, NAWK, and sleep stage 139 
durations (Supplementary Table 1), for each participant were calculated using the VSW’s 140 
predicted sleep stages, from the time the lights were turned off (“lights-off”) to the time lights 141 
were turned back on (“lights-on”). VSW start time was synced to the Lights Off time recorded on 142 
PSG to ensure alignment for analysis of simultaneously recorded signals, using procedures 143 
described elsewhere (Nelson, 2024, submitted) (de Zambotti et al., 2019). 144 
 145 
Reference Data 146 
Standard laboratory PSG sleep assessment including electroencephalography (EEG), 147 
submental electromyography and bilateral electrooculography was performed according to the 148 
American Academy of Sleep Medicine (AASM) guidelines. Leg movement, electrocardiography 149 
(ECG), respiratory, and oxygen saturation signals were also collected and used to confirm the 150 
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absence of sleep disordered breathing. All recordings were performed using the Compumedics 151 
Grael® HD-PSG system (Compumedics, Abbotsford, Victoria, Australia). Two independent sleep 152 
scorers labeled every 30-second epoch of the PSG data by one of the following categories: 153 
wake, N1, N2, N3, REM. Inter-rater reliability (Kappa) between the two scorers was 91%, and 154 
discrepancies were resolved by a third scorer. 155 
For this analysis, PSG stages N1 and N2 were combined into a single light sleep category, and 156 
PSG N3 was termed deep sleep. 157 
Similar to VSW, for each participant, the overnight sleep measures for PSG were calculated 158 
using the sleep scorer’s stage labels from lights-off to lights-on. 159 

 160 

Performance Evaluation 161 

Performance evaluation was done based on an existing standardization framework (Menghini et 162 
al., 2021). 163 
We evaluated the epoch-by-epoch performance of VSW’s sleep stage classification against 164 
PSG in two ways: (1) sleep versus wake classification, using sleep as the positive class; and (2) 165 
4-class (wake, light, deep, REM) sleep stage classification. For the evaluation of sleep vs wake 166 
classification, we estimated sensitivity, specificity, positive predictive value (PPV), and negative 167 
predictive value (NPV). We calculated the 95% CI using cluster bootstrapping, and we 168 
accounted for the clustering of epochs within a participant using logistic mixed-effect regression 169 
models with the participant as random effect. For the 4-class stage classification, we used 170 
Cohen’s kappa and accuracy along with their 95% bootstrapped CIs. Additionally we evaluated 171 
performance for each sleep stage by reporting Cohen’s Kappa, accuracy, PPV and sensitivity 172 
using the average method (Menghini et al., 2021). To obtain performance metrics on each sleep 173 
stage, the outcomes were dichotomized to the sleep stage of interest against all others. The 174 
average method calculates kappa for each individual participant and then averages out the 175 
kappa across all participants with their associated bootstrapped 95% CIs. All analyses were 176 
confined to the lights-off to lights-on period. 177 
For evaluating the performance of all overnight sleep measures except NAWK, we performed 178 
the Bland Altman analysis, estimating the mean bias and lower and upper limits of agreement, 179 
testing for the assumptions of proportional bias, heteroscedasticity, and normality. For NAWK, 180 
we estimated the mean and median count difference and linearly weighted Cohen’s kappa with 181 
their 95% CIs. 182 
Finally, we evaluated all performance metrics across the participant subgroups, including age, 183 
sex, BMI, skin tone, arm hair index. For subgroups with insufficient number of samples (< 10), 184 
we did not evaluate the performance.  185 
All analyses were performed with R version 4.3.1 (2023-06-16).  186 
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Results 187 

There were 41 adult participants (18 male, age range: 18-78 years) in this study. Participants 188 
had a diverse range of skin tones, BMI, and arm hair density (Supplementary Table 2). 189 
VSW estimated sleep stages for a total of 38,796 epochs with data collected between lights-off 190 
and lights-on for each participant. 191 
The sensitivity (95% CI) of the VSW in classifying sleep vs wake was 0.97 (0.96, 0.98), 192 
specificity (95% CI) was 0.70 (0.66, 0.74), PPV (95% CI) was 0.93 (0.92, 0.95), and NPV (95% 193 
CI) was 0.83 (0.78, 0.88) (Table 1). 194 
The accuracy (95% CI) of the VSW sleep algorithm in classifying all 4 sleep stages was 0.78 195 
(0.58, 0.89), and the kappa (95% CI) was 0.64 (0.18, 0.82) (Table 2). There was variability in 196 
the performance across different sleep stages, with light sleep stage prediction having the 197 
lowest accuracy (Table 2), as there were instances of confusion between the light sleep stage 198 
and all other stages (Supplementary Table 3). 199 
Mean bias and 95% CI values for all overnight sleep measures is shown in Table 3. Bland-200 
Altman analyses (Figure 1) showed that all measures had significant proportional bias, with the 201 
VSW overestimating the measures at the lower end of the distribution, and underestimating 202 
them at the upper end, relative to the PSG. For all overnight sleep measures except the sleep 203 
stage durations, the assumption of normality was false, and for all measures except SE the 204 
assumption of homoscedasticity was true. 205 
Performance of the VSW metrics across demographic subgroups of age, sex, BMI, skin tone, 206 
and arm hair density are reported (Supplementary Tables 4 and 5) without formal statistical 207 
testing, due to small subgroup sample size.   208 
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Discussion 209 

The results of this study show the ability of the VSW to capture information related to sleep 210 
quantity and quality, as well as the distribution of sleep stages across overnight periods in 211 
individuals without OSA or elevated insomnia symptoms. The sensitivity and specificity of the 212 
VSW in classifying sleep vs wake were 0.97 and 0.70 respectively, and the Cohen’s kappa for 213 
the 4-class stage classification was 0.64. This performance supports the application of the VSW 214 
to monitor overnight sleep in free-living settings. 215 
As with other wearable sleep-wake detection devices (Pesonen and Kuula, 2018)(de Zambotti 216 
et al., 2016)(Miller et al., 2022), the sleep algorithm in this study was more likely to miss wake 217 
than sleep, as reflected in the higher sensitivity relative to specificity, and the positive and 218 
negative bias values for TST and WASO, respectively. When evaluating the performance of 219 
sleep monitoring devices, the AASM has established a range of ‘allowable differences’, based 220 
on actigraphy studies conducted in patients with specific sleep disorders (e.g. insomnia)(Smith 221 
et al., 2018). The 95% CIs of the mean bias estimates for TST, WASO, SOL, and SE measured 222 
by the VSW were within those allowable difference ranges. However, for the proportional mean 223 
bias estimates, which account for variations in bias over the range of measurement, 95% CIs 224 
exceeded these thresholds at lower and higher ends of the measurements (Figure 1). 225 
Nonetheless, applying the AASM standards to these results may require caution. Unlike the 226 
studies included in the AASM assessment, the present study excluded (via questionnaire) 227 
participants with symptoms of certain sleep disorders. 228 
There are a few caveats to consider when interpreting our results. First, data collection for this 229 
study took place at a sleep laboratory, with standardized study boundaries and settings, such as 230 
lights-on/off to define the “in bed’ time period when an individual is (in theory) set to sleep. Free-231 
living environments are more organic and complex, and the generation of sleep measures in 232 
them may require additional layers of data. Following the prior example, defining “in bed” time 233 
may necessitate additional sensor readings, which then would be integrated into the derivation 234 
of the measures, particularly sleep stage classification and duration, or SOL.  235 
Another caveat is that participants in this study were free of sleep-related diagnoses and 236 
symptoms (such as OSA or heightened insomnia symptoms). Participants with certain clinical 237 
conditions may manifest different patterns in their biological signals (e.g., pulse rate) and/or 238 
sleep architecture, which could complicate the sleep stage classification task. Future studies 239 
should evaluate the performance of VSW in real-world settings and in clinically relevant 240 
populations such as individuals with sleep disorders. 241 
In summary, we evaluated the performance of the VSW and its algorithm to classify sleep 242 
versus wake state and the four different sleep stages in sleepers without OSA or heightened 243 
insomnia symptoms, as well as a series of measures that illustrate the quantity and quality of 244 
overnight sleep. The results demonstrate the potential of VSW to classify sleep vs wake states 245 
and sleep stages and compute overnight sleep measures when compared to gold-standard 246 
PSG measurements. These findings support further application of the VSW to tracking the 247 
overnight sleep behaviors in sleepers without OSA or heightened insomnia symptoms in free-248 
living settings.  249 
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Tables 314 

Table 1. Performance of VSW’s sleep vs wake classification against PSG reference. 315 
 316 

 Sensitivity (95% CI) Specificity (95% CI) NPV (95% CI) PPV (95% CI) 

Sleep vs Wake 0.97 (0.96, 0.98) 0.70 (0.66, 0.74) 0.83 (0.78, 0.88) 0.93 (0.92, 0.95) 

CI: Confidence Interval; NPV: Negative Predictive Value; PPV: Positive Predictive Value 
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Table 2. VSW’s performance in 4-class sleep stage detection against the PSG reference. 318 
 319 

Sleep Stage Kappa (95% CI) Accuracy (95% CI) PPV (95% CI) Sensitivity (95% CI) 

Overall 0.64 (0.18, 0.82) 0.78 (0.58, 0.89) NA NA 

Wake 0.70 (0.43, 0.90) 0.92 (0.76, 0.98) 0.82 (0.51, 0.98) 0.71 (0.45, 0.94) 

Light 0.60 (0.29, 0.78) 0.80 (0.66, 0.89) 0.80 (0.55, 0.91) 0.81 (0.59, 0.94) 

Deep 0.66 (0.17, 0.91) 0.92 (0.84, 0.98) 0.69 (0.09, 0.97) 0.77 (0.37, 0.98) 

REM 0.74 (0.38, 0.90) 0.92 (0.82, 0.98) 0.76 (0.44, 0.96) 0.84 (0.47, 0.99) 

CI: confidence interval; PPV: Positive Predictive Value; REM: Rapid Eye Movement 

 320 
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Table 3. Performance of VSW overnight sleep measures against PSG reference. 
 

Measure Mean Assumptions Proport. Bias Lower LOA Upper LOA 

PSG  
(SD) 

VSW 
(SD)  

Bias 
(95% CI) 

Estimate 95% CI Estimate 95% CI Estimate  95% CI 

TST (min) 384.98 (60.85) 398.98 
(49.04) 

14.00  
(5.55, 23.20) 

Prop Bias = T 

Normality = F 

Heteroscedastic = 
F 

125.51 + -0.29 x 
PSG 

Intercept = 
[65.50, 186.28] 

Slope = [-0.45, -
0.14] 

-9.04 [-87.36,18.83] 105.04 [26.76,133.36] 

WASO (min) 62.72 (49.97) 49.60 (38.73) -13.12  
(-21.33, -6.21) 

Prop Bias = T 

Normality = F 

Heteroscedastic = 
F 

7.11 + -0.32 x PSG Intercept = [-3.68, 
15.8] 

Slope = [-0.51, -
0.10] 

bias - 2.46(1.32 + 
0.18 x PSG) 

Intercept = [-2.91, 
6.58] 

Slope = [0.06, 
0.27] 

bias + 2.46(1.32 + 
0.18 x PSG 

Intercept = [-2.91, 
6.58], Slope = 
[0.06, 0.27] 

SE (%) 81.69 (11.71) 84.67 (9.01) 2.97  
(1.25, 4.84) 

Prop Bias = T 

Normality = F 

Heteroscedastic = 
T 

30.04 + -0.33 x 
PSG 

Intercept = 
[14.81, 42.28] 

Slope = [-0.47, -
0.16] 

bias - 2.46(11.98 
+ -0.11 x PSG) 

Intercept = [4.19, 
21.56], Slope = [-
0.22, -0.02] 

bias + 2.46(11.98 
+ -0.11 x PSG 

Intercept = [4.19, 
21.56], Slope = [-
0.22, -0.02] 

SOL (min) 25.43 (20.37) 24.09 (19.73) -1.34  
(-7.29, 4.81) 

Prop Bias = T 

Normality = F 

Heteroscedastic = 
F 

11.7 + -0.51 x PSG Intercept = [3.28, 
21.81] 

Slope = [-0.86, -
0.15] 

-44.21 [-84.21,-7.38] 34.21 [-5.59,70.51] 

Light (min) 240.65 (49.27) 242.56 (43.83) 1.91  
(-8.28, 11.98) 

Prop Bias = T 

Normality = T 

Heteroscedastic = 
F 

83.34 + -0.34 x 
PSG 

Intercept = 
[40.42, 123.65] 

Slope = [-0.51, -
0.17] 

-25.06 [-119.66,-10.10] 107.06 [12.69,122.06] 

Deep (min) 63.39 (27.19) 68.62 (20.12) 5.24  
(-3.35, 14.13) Prop Bias = T 

Normality = T 

54.33 + -0.77 x 
PSG 

Intercept = 
[40.81, 67.44] 

Slope = [-0.95, -

-72.30 [-97.21,3.10] 39.31 [14.51,114.76] 
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Heteroscedastic = 
F 

0.60] 

REM (min) 82.49 (25.46) 88.88 (23.60) 6.39  
(-0.68, 13.18) 

Prop Bias = T 

Normality = T 

Heteroscedastic = 
F 

45.69 + -0.48 x 
PSG 

Intercept = 
[26.79, 69.87] 

Slope = [-0.78, -
0.24] 

-21.48 [-84.16,-3.21] 68.48 [5.91,86.55] 

 

Measure PSG Mean (SD) VSW Mean (SD) Mean Difference (95% CI) PSG Median VSW 
Median 

Median Difference (95% 
CI) 

Linear Weighted Kappa (95% CI) 

NAWK 
(count) 

2.17 (1.96) 1.88  (2.31) 0.05 (-0.42, 0.53) 1 1 0.0 (0.0, 0.0) 0.58 (0.41, 0.71) 

CI: confidence interval; LOA: Limits of Agreement; NAWK: Night Awakenings; PPV: Positive Predictive Value; PSG: Polysomnography; REM: Rapid Eye Movement; SD: 
Standard Deviation; SE: Sleep Efficiency; SOL: Sleep Onset Latency; TST: Total Sleep Time; VSW: Verily Study Watch; WASO: Wake After Sleep Onset 
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Figure 1.  
Bland-Altman plots of overnight sleep measures for the device (VSW) against the reference 
(PSG). Solid red lines indicate mean bias, dotted red lines indicate 95% CI of mean bias, solid 
gray lines indicate the 95% LOAs, and dotted gray lines indicate 95% CI of LOAs. Black dots 
are observations. 
(CI: confidence interval; REM: Rapid Eye Movement; SD: Standard Deviation; SE: Sleep 
Efficiency; SOL: Sleep Onset Latency; TST: Total Sleep Time; WASO: Wake After Sleep Onset) 
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