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Abstract (246)

Major depressive disorder (MDD) and posttraumatic stress disorder (PTSD) are
debilitating psychiatric conditions associated with poor health outcomes similarly
observed in non-pathological aging. Ketamine is a dissociative anesthetic and NMDA
receptor antagonist with demonstrated rapid reduction in symptoms associated with
Treatment Resistant Depression (TRD) and PTSD. Ketamine’s effects on biological
aging have not been extensively studied among patients with moderate to severe
symptoms of depression and/or trauma. To address this gap, this study looked at the
changes in non-epigenetic measures, DNA methylation levels, immune cell
composition, and biological age based on various epigenetic biomarkers of aging, of 20
participants at baseline and after completion of a 2-3 week treatment course of 0.5
mg/kg ketamine infusions in individuals with MDD or PTSD. As expected, depression
and PTSD scores decreased in participants following ketamine infusion treatments as
measured by the PHQ-9 and PCL-5. We observed a reduction in epigenetic age in the
OMICmAge, GrimAge V2, and PhenoAge biomarkers. In order to better understand the
changes in epigenetic age, we also looked at the underlying levels of various Epigenetic
Biomarker Proxies (EBPs) and surrogate protein markers and found significant changes
following ketamine treatment. The results are consistent with existing literature on
ketamine’s effects on different biomarkers. These results underline the ability of
GrimAge V2, PhenoAge, and OMICmAge in particular, to capture signals associated
with key clinical biomarkers, and add to the growing body of literature on ketamine’s
epigenetic mechanisms and their effect on biological aging.
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Introduction

Major depressive disorder (MDD) is a debilitating condition characterized by changes in
mood and affect persisting for at least two weeks (1). Posttraumatic stress disorder
(PTSD) occurs in patients who have undergone or seen a traumatic event, and presents
as re-experiencing traumatic events, and intense and disturbing thoughts or feelings in
afflicted subjects (1). Studies have linked MDD with increased risk for functional
impairments and premature mortality (2,3), as well as a variety of diseases, including
cardiovascular, cerebrovascular, and metabolic disorders (4,5). Similar to MDD, PTSD
is generally associated with reduced healthspan, lower quality of life, and higher risk of
early death (6-8).

In recent years, there has been growing interest in utilizing various aging-related
biomarkers, such as telomere length, immune cell proportions, and DNA methylation
(DNAm) levels (9) to quantify biological changes that occur when individuals age to help
explain adverse health outcomes. Epigenetic clocks are commonly utilized biomarkers
of aging based on DNAm. First-generation epigenetic clocks predict chronological age
(10,11). Second-generation biomarkers of aging, such as the GrimAge, OMICmAge,
and DNAmMPhenoAge, instead measure clinical features associated with aging (12,13).
OMICmAge, in particular, has shown strong associations with mortality and various
chronic diseases, including depression (14). Meanwhile, SystemsAge markers capture
aging in 11 distinct physiological systems: blood, brain, heart, hormone, immune,
inflammatory, kidney, liver, lung, metabolic, and musculoskeletal (15). Finally, the
third-generation biomarker of aging, DunedinPACE, predicts the rate of aging, rather
than approximating biological age (16). DNA methylation is not limited to aging clocks; it
can also be used to predict metabolites, clinical measures, and proteins (14,17), often
demonstrating stronger associations with clinical outcomes and disease risk than their
non-DNA methylation counterparts (18,19).

Previous research has used these biomarkers to investigate the impact of MDD and
PTSD on biological aging. MDD has been discovered to be linked to multiple
biomarkers of DNAm age acceleration (20), as well as advanced DNAm age in blood
(21). Epigenome-wide association studies have also demonstrated the involvement of
differentially methylated genes in MDD in a variety of age-related biological processes,
including metabolism and inflammatory response (22—24). Additionally, individuals with
MDD have been found to have higher transcriptomic age compared to healthy controls
(25). Likewise, PTSD is positively associated with epigenome-wide DNAmM markers of
increased cellular age, potentially mediated by single nucleotide polymorphisms (SNPs)
in the Klotho longevity gene (26). It is also reportedly linked with an enhanced pace of
epigenetic aging over time, based on measurements from the Horvath and GrimAge
clocks (27). Studies have also found advanced DNAm age in the motor cortex of
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individuals with PTSD (28), as well as higher RNA age predictions compared to controls
(29).

These commonalities between MDD, PTSD, and biological aging bring to light the
potential utility of antidepressants and other PTSD medication in protecting against
accelerated biological aging. In particular, ketamine, an N-methyl-D-aspartate (NMDA)
receptor antagonist, has been found to induce marked improvement in depressive
patients following intravenous administration, causing a drastic reduction in depressive
symptoms after only three days of treatment (30). Further studies have evaluated the
effectiveness of ketamine and its enantiomers in monotherapy and adjunctive therapy in
treating MDD and treatment-resistant depression (TRD) (31-35). Research has also
explained the prospective benefit of using ketamine on patients with PTSD, and its
potential utility in reversing the synaptic abnormalities induced by PTSD (36-38). In light
of these, there is reason to believe that ketamine, as an antidepressant, can potentially
reduce biological aging. Literature has demonstrated the ability of psychiatric
medications, including antidepressants, to decelerate aging and extend lifespan in
model organisms (39—41). There is also evidence that antidepressant use is linked to
lower predicted brain age (42), and lessens mortality and disease risk in humans
(43,44). Taken together, these lines of evidence suggest that ketamine can contribute to
reducing epigenetic aging in patients diagnosed with MDD and PTSD, without
exacerbating already-increased biological aging in these diseases.

Nevertheless, there remains a dearth of information on the impact of ketamine on
biological aging, as measured by molecular biomarkers and epigenetic aging
biomarkers. Therefore, this study aims to comprehensively investigate the effect of a
rapidly-acting agent, ketamine, on epigenetic aging in a cohort of patients diagnosed
with MDD and/or PTSD whose symptoms did not remit with standard psychiatric
treatment. The study will look into the individuals’ baseline DNA methylation levels,
immune cell composition, and epigenetic age, and measure these parameters after
ketamine administration. We hypothesize that a ketamine induction series will
significantly reduce the patients’ epigenetic age predictions, immune cell subsets, and
proxies of metabolites, clinical measures, and proteins after the treatment course. This
pilot study shall also provide insight on the biological processes and molecular functions
that mediate the effects of ketamine in depression, PTSD, and epigenetic aging.
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Materials and Methods
Study patrticipants and ketamine administration

To assess ketamine's effect on biological age in patients with MDD and PTSD, 20
participants were recruited by Wild Health, Inc., Lexington, KY. All had moderate to
severe symptoms despite prior antidepressant treatment. They underwent six
subanesthetic ketamine infusions (0.5 mg/kg) over 2-3 weeks. Blood samples were
collected at baseline and 10 days post-treatment, with 40 samples in total. One
participant did not complete all infusions due to adverse effects. Samples were
processed at LabCorp for clinical tests and TruDiagnostic Labs for DNA methylation
analysis.

Clinical Lab Measurement collection and analysis

The following panels were taken for the clinical screening laboratory blood tests: Urine
Drug Screen and Urine Pregnancy Test (females), Complete blood count (CBC),
Comprehensive metabolic panel-14 (CMP-14), Folate (Serum), Free T3, Free T4, Free
Testosterone, Vitamin B12, TSH (Thyroid Stimulating Hormone), C-Reactive Protein-
Cardiac, Vitamin D- 25-Hydroxy, Apolipoprotein B, Hemoglobin A1c, Homocysteine,
NMR LipoProfile+Lipids (Advanced Lipid Panel), Cortisol, and Insulin using clinically
validated assays for baseline assessments; obtained by venipuncture for whole blood
sampling at a LabCorp facility of the participant’s choosing. Only 16 patients were able
to take a baseline and post-treatment measurement for the laboratory blood tests.

To look at the differences between the participants’ non-epigenetic measures, including
clinical data from 60 laboratory tests and self-reported scores based on the PTSD
Checklist for DSM-5 (PCL-5) and Patient Health Questionnaire-9 (PHQ-9) for MDD, we
conducted a Wilcoxon signed-rank test for each set of scores in R. A p-value < 0.05 was
used to denote significance.

DNA methylation assessment

Peripheral whole blood samples were obtained using the lancet and capillary method,
and preserved through mixing with lysis buffer. 500 ng of DNA was extracted and
subjected to bisulfite conversion using the EZ DNA Methylation Kit from Zymo
Research, following the manufacturer’s protocols. The converted samples were then
randomly allocated to designated wells on the Infinium HumanMethylationEPIC
BeadChip, and then subsequently amplified, hybridized onto the array, and stained.
Samples were then washed and imaged using the lllumina iScan SQ instrument to
capture raw image intensities.
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DNAm data was pre-processed using the Minfi package in R (45-48). No outlier
samples were identified using ENmix (49) and methylation values were normalized
using the ssNoob method (50). We utilized the k-nearest neighbors algorithm to impute
missing CpG values and finally adopted a 12-cell immune deconvolution method to
estimate cell type proportions (51).

DNA methylation biomarkers of aging and related measures

Using DNA methylation, we estimated the biological age of the participants by using the
following epigenetic biomarkers of aging: DNAmPhenoAge (13), GrimAge (21),
GrimAge v2 (52), and OMICmAge second-generation biomarkers, DNAmMTL, which
estimates telomere length, the third-generation DunedinPACE, and SystemsAge.

We used a custom R script available via GitHub
(https://github.com/MorganLevineLab/PC-Clocks) to compute the principal
component-based epigenetic clocks for the DNAmMPhenoAge, GrimAge, GrimAge v2,
and telomere length. For non-principal component-based DNAmMPhenoAge epigenetic
metrics, we used the methyAge function in the ENmix package in R. DunedinPACE was
calculated using the PACEProjector function from the DunedinPACE package from
GitHub (https://github.com/danbelsky/DunedinPACE). We calculated the SystemsAge
using the authors' script (15), which will be incorporated into the methylCIPHER

package upon publication (https://github.com/Morganl evinel. ab/methylCIPHER).

We computed the epigenetic age acceleration (EAA) of these metrics through fitting a
regression model between the participants’ chronological age and different epigenetic
age measures. To control for potential batch effects, we also included in the regression
model the first 3 principal components (PCs) calculated from control probes, following
the methodology prescribed by Joyce et al (53). Wilcoxon signed-rank tests were
performed using EAA values between timepoints at a significance level of p < 0.05. Due
to the number of tests conducted for the statistical analysis of clinical test epigenetic
clocks, EBP, and Marioni Episcore markers, a multi-test correction was conducted using
the “number of independent degrees of freedom” approach previously described. Briefly,
principal components of each measure were calculated using prcomp() in R, and the
minimum number of PC’s which achieve at least 95% cumulative variance was used to
adjust for Bonferroni correction (54,55).

We then conducted a correlation analysis between the biomarkers of aging and all
non-epigenetic measures to investigate if the changes in lab values and questionnaire
responses are concordant with changes in the predictions of biological age. Finally, we
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compared baseline and post-treatment levels of DNA methylation surrogate markers for
multiple proteins, metabolites, and clinical variables.

Epigenome-wide association analysis

We used the limma package to perform an epigenome-wide association study (EWAS),
comparing genome-wide CpG methylation between pre- and post-treatment (56).
Empirical Bayes regression models were adjusted for sex, age, batch, and three
principal components. Moderated t-tests were used to assess for significance, and
probes with an unadjusted p-value < 0.001 were considered significantly differentially
methylated. While the false-discovery rate (FDR) was calculated, it was not used as a
filter. LogFC values indicated hypermethylation (logFC > 0) or hypomethylation (logFC <
0) post-treatment. Enrichment analysis using rGREAT identified gene ontology (GO)
terms associated with differentially methylated loci (DMLs) in promoter and enhancer
regions.

Results

This study analyzed clinical and epigenetic data from patients diagnosed with MDD
and/or PTSD (n=20) before and after administration of ketamine infusions over the
time-course. Of the 20 participants, 65% (n=13) had a comorbid diagnosis of MDD and
PTSD, 10% (n=2) were diagnosed only with MDD, and 25% (n=5) had a diagnosis of
only PTSD (Supplementary Figure 1). Mean baseline scores in the PCL-5 and PHQ-9
are also described. Blood samples were taken to evaluate DNA methylation levels
among the patients to calculate their epigenetic age, the immune subsets, and the DNA
methylation levels pre- and post-ketamine treatment. Subjects were made up of 75%
(n=15) female and 25% (n=5) male participants, with a mean chronological age of 41.78
and 35.62, respectively. Table 1 details the demographic information of patients
recruited in this study.

Table 1. Characteristics of participants in the Ketamine trial.

Sample Mean . Mean baseline scores
Size (N) chronological
age PCL-5 PHQ-9

Female 30 41.78 48.6 16.13
Male 10 35.62 52.4 19
MDD only 4 43.81 23 18
PTSD only 10 36.4 43.4 8.8
Comorbid MDD
& PTSD 26 41.17 56 19.77
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Ketamine treatment results in a significant decline in PCL-5 and PHQ-9 scores,
but not in other clinical variables

We utilized a Wilcoxon signed-rank test to compare the participant’s scores (N=20)
before and after receiving the ketamine treatment course in the PCL-5 and PHQ-9.
Results showed a significant decline in both PCL-5 (p=0.00000381) and PHQ-9
(p=0.0000949) scores after the participants received treatment with ketamine, with a
median difference of 33 and 11 points, respectively. On the other hand, none of the
laboratory tests (N=16) exhibited a significant difference following ketamine
administration (Supplementary Table 1). Notably, a few clinical variables approached
significance, such as absolute monocytes (p=0.0723), LDL-C (p=0.0743), LDL size
(p=0.0829), and monocytes (p=0.0857).

A PCL-5 Scores Timepoint Comparison B PHQ-9 Scores Timepoint Comparison
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Figure 1. Changes in PCL-5 and PHQ-9 Scores Before and After Ketamine
Treatment Course. (A) PCL-5. (B) PHQ-9. The y-axis shows the reported score for
each evaluation, while the x-axis represents the timepoints for treatment with ketamine.
Each color corresponds to one patient, with a line connecting their evaluation score
from baseline to post-treatment. P-values reported are unadjusted.

Ketamine treatment reduces epigenetic age in the third generation OMICmAge
biomarker in patients with MDD and/or PTSD

Given that MDD and PTSD are associated with increased morbidity and mortality, we
investigated ketamine’s effect on epigenetic biomarkers of aging most related to
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mortality risk. These included PhenoAge, PC PhenoAge, PC GrimAge, GrimAge v2,
and OMICmAge; the DunedinPACE; and Systems Ages for blood, brain, heart,
hormone, inflammation, immune, kidney, liver, lung, metabolic, musculoskeletal, and
overall SystemsAge. We also investigated DNAmMTL, a telomere length proxy, as
telomere length has been reported to be reduced in MDD and PTSD (57). Where
applicable, we utilized the principal component versions of the biomarkers, which have
high test-retest reliability, which is especially important for longitudinal studies (58).

Results revealed a significant reduction in epigenetic age between timepoints,
PhenoAge (p=0.024), GrimAge V2 (p=0.021), and OMICmAge (p=0.0094) (Figure 1).
However, after adjusting by principal component variance explaining clocks, only
OMICmAge retained significance (PC-adjusted Bonferonni p-value = 0.047). Other
epigenetic markers did not demonstrate any significant changes; however, most
epigenetic biomarkers exhibited a downward trend in epigenetic age after Ketamine
treatment (Supplementary Table 2). Interestingly, Systems Age Inflammation
approached significance, with an unadjusted p-value of 0.076.
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Figure 2. Changes in Epigenetic Biomarkers of Aging Before and After Ketamine
Treatment Course. (A) OMICmAge. (B) GrimAge V2. (C) PhenoAge. (D) CD4 Memory
T-cells. The y-axis shows the epigenetic age acceleration (EAA) for each biomarker of
aging and the immune cell proportion of CD4 Memory T-cells. The x-axis represents the
timepoints for treatment with ketamine. Each color corresponds to one patient, with a
line connecting their predicted marker from baseline to post-treatment. P-values
reported are unadjusted.

Ketamine treatment decreases CD4T memory cells in the blood

We quantified 12 different immune cell subsets between timepoints using EpiDISH
(2023), and found a significant reduction in CD4T memory cells (unadjusted p=0.038)
after ketamine treatment (Figure 2D). There was also a trend towards increased
neutrophils (unadjusted p=0.053). Meanwhile, CD4T Naive, CD8T Naive, CD8T
Memory, B Naive, B Memory, Basophils, regulatory T-cells, Eosinophils, Monocytes,
and Natural Killer cells did not demonstrate any notable difference after ketamine
treatment (Supplementary Table 3).

Changes in clinical variables did not correlate strongly with ketamine-induced
differences in epigenetic age, but were consistent among samples

To investigate whether there is a relationship between the changes in clinical variables
and biological age, we conducted a correlation analysis between all these markers
(Supplementary Figure 2). OMICmAge showed a moderate negative correlation with
HbA1c (r* = -0.58, p < 0.001) and red blood cell distribution width (r> = -0.52, p < 0.001),
and a positive correlation with serum folate levels (r* = 0.62, p < 0.001), which
negatively correlated with PhenoAge (r* =-0.72, p < 0.001) and GrimAge V2 (r* = -0.17,
p < 0.05). Both OMICmAge (r* = -0.48, p < 0.001) and GrimAge V2 (r* = -0.49, p <
0.001) showed moderate negative correlations with absolute lymphocyte count, while
PhenoAge did not (r> = 0.13, p > 0.05). GrimAge V2 also had a negative correlation with
lymphocyte count (r* = -0.61, p < 0.001) and a positive correlation with neutrophils (r* =
0.64, p < 0.001). PhenoAge differed by showing positive correlations with creatinine (r?
= 0.52, p <0.001), total protein (r* = 0.65, p < 0.001), WBC (r> = 0.5, p < 0.001), globulin
(r* =0.59, p <0.001), and albumin (r*= 0.5, p < 0.001), which were weakly or negatively
correlated with the other biomarkers. PhenoAge also had negative correlations with
eGFR (r*> = -0.58, p < 0.001) and BUN/Creatinine Ratio (r* = -0.5, p < 0.001), whereas
these were positively correlated with GrimAge V2 (eGFR: r* = 0.43, p < 0.001;
BUN/Creatinine Ratio: r = 0.17, p > 0.05) and OMICmAge (eGFR: r>=0.41, p < 0.001;
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BUN/Creatinine Ratio: r* = 0.33, p < 0.001). Notably, changes in PCL-5 and PHQ-9
scores did not correlate with OMICmAge, despite significant decreases in all three
measures after ketamine treatment. GrimAge V2 did not significantly correlate with
PCL-5 but had a weak correlation with PHQ-9 (r? = 0.04, p < 0.01). PhenoAge exhibited
a negative correlation with both PCL-5 (r* = -0.39, p < 0.001) and PHQ-9 (r2=-0.16, p <
0.05).

Ketamine has no significant effect on epigenetic biomarker proxies and Marioni
protein markers

We further assessed the impact of Ketamine usage upon DNA methylation surrogate
markers for multiple proteins, metabolites, and clinical variables. Results revealed 17
significantly different EBPs pre- and post-treatment (Table 2) out of 396 EBPs based on
an PC-adjusted Bonferroni p-value < 0.05. Analysis of the Marioni Episcore protein
estimates identified 13 Episcore protein markers out of 116 showed a significant
(PC-adjusted Bonferroni p-value < 0.05) difference pre- and post-ketamine treatment
after comparison with the Wilcox test: MMP.1 (p=0.002), NRTK3 (p=0.009), SHBG
(p=0.021), Afamin (p=0.037), Contactin 4 (p=0.027), Galectin 4 (p=0.027), RARRES2
(p=0.027), and TNFRSF17 (p=0.04). However, similar to the EBPs, these markers did
not reach the threshold for significance after multiple correction adjustment (False
Discovery Rate, FDR), with their FDR ranging from 0.197 to 0.585 (Table 2).

Table 2. Effect of Ketamine treatment on epigenetic biomarker proxies and
Marioni EpiScore markers.

Epigenetic Biomarker Proxies
Glass A Wilcox p-value | PC-adjusted
Bonferroni

HAP28_HUMAN 0.01186 0.007296 0.007296
Eicosenoylcarnitine (C20:1)* 0.29262 0.010689 0.010689
Glucuronide of piperine metabolite -0.18962 0.015312 0.015312
C17H21NO3 (4)*

BUN_MRS -0.02076 0.017181 0.017181
adenosine 0.21264 0.017181 0.017181
malonate 0.04982 0.017181 0.017181
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Ethyl alpha-glucopyranoside 0.21809 0.019234 0.019234
cytosine 0.05052 0.019234 0.019234
3beta-hydroxy-5-cholenoate 0.12882 0.023951 0.023951
F10A1_HUMAN -0.02942 0.029575 0.029575
Eicosenedioate (C20:1-DC)* 0.34356 0.029575 0.029575
3-methoxytyrosine -0.0808 0.032768 0.032768
deoxycarnitine 0.21411 0.036234 0.036234
BMP1_HUMAN 0.01636 0.039989 0.039989
lactose 0.1088 0.044054 0.044054
Sebacate (C10-DC) 9.06761 0.048441 0.048441
proline -0.30485 0.048441 0.048441
Marioni EpiScores
Glass A Wilcox p-value | PC-adjusted
Bonferroni
NRTK3 0.02811 0.008308 0.008308
RARRES2 -0.05664 0.010689 0.010689
MMP.1 -0.03449 0.013617 0.013617
Coagulation.factor.VII 0.01541 0.019234 0.019234
Galectin.4 -0.02226 0.021484 0.021484
Contactin.4 0.02742 0.026642 0.026642
MMP.2 0.00186 0.029575 0.029575
TNFRSF17 0.03661 0.029575 0.029575
CCL10 0.24618 0.032768 0.032768
TPO -0.01753 0.032768 0.032768
SHBG -0.02132 0.036234 0.036234
CD48.antigen 0.00873 0.044054 0.044054
Granzyme.A 0.0149 0.044054 0.044054
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Ketamine treatment resulted in locus-specific epigenome wide changes

We conducted an epigenome-wide association study (EWAS) to examine DNA
methylation changes after ketamine treatment, adjusting regression models for
individuals, 12 immune cell levels, and principal components. To control for multiple
comparisons, we used FDR and selected a model with a lambda value of 1.14,
indicating no overfitting. We identified 1,144 CpG sites (p < 0.001), with 764
hypermethylated and 380 hypomethylated after treatment (Figure 3). Only one CpG site
at Chromosome 12 (cg03703650) was significantly hypomethylated (FDR = 0.0025),
located in the promoter of the advillin gene, involved in actin bundling and neurite
outgrowth.
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Figure 3. Volcano plot showing hyper- and hypomethylation of CpG sites between
timepoints. The x-axis represents the log 2 fold change in DNA methylation levels
between cases and controls, while the y-axis displays the -log10 of the p-value for each
CpG site. CpG sites with an FDR below 0.05 and exhibiting hypermethylation are shown
in red, while those with an FDR below 0.05 and displaying hypomethylation are colored
green. Moreover, we annotated the significant CpG sites with the genes where these
probes are mapped. Dots without gene annotations are intergenic CpG sites.
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Using the 1,144 CpG sites meeting the uncorrected p-value < 0.001, we performed two
enrichment analyses, one for hypermethylated and another for hypomethylated sites.
Among hypermethylated CpG sites, we identified an enrichment in processes regulating
the nuclear cycle and DNA replication biological processes related to the immune
system, such as regulation of T cell differentiation and mast cells, and molecular
functions linked mainly to 1-phosphatidylinositol regulator activity. On the other hand,
hypomethylated CpG sites were enriched in the regulation of circadian sleep, the growth
plate cartiiage morphogenesis, cervix development, and hindbrain tangential cell
migration. We also found that these sites are mainly related to indoleamine
2,3-dioxygenase activity. The full list of associated gene ontology terms can be found in
Supplementary Table 4.

Discussion

This study found that administering ketamine, a rapid-acting antidepressant and
off-label drug for PTSD, led to significant reductions in self-reported PTSD and MDD
symptoms measured using PCL-5 and PHQ-9, as well as decreases in biological age
according to the OMICmAge clock, but not among any other clock assessed.
OMICmAge's significant decline highlights its unique biomarker proxies' ability to detect
associations with depression, PTSD, and potentially other brain diseases. Created by
integrating 16 protein, 14 metabolite, and 10 clinical epigenetic biomarkers across 8
biological systems, OMICmAge is particularly robust in identifying factors central to
biological aging (14). In fact, previous investigation showed OMICmAge having the
highest odds and hazard ratios for depression compared to other aging biomarkers (14).
Ketamine administration has also been linked to changes in the metabolites and
proteins used in OMICmAge, such as ribitol, uridine, triglycerides, and creatinine.
Animal studies in rodents found a change in ribitol and other key elements in energy
metabolism, such as phosphate and propanoic acid, post-ketamine treatment (59).
Creatine and phosphocreatine have also been observed to be downregulated in the
hippocampus of both rats and mice after one dose of ketamine (60,61). There also
seems to be a reduction in uridine and glutamine as opposed to an increase in urea
concentrations in ketamine-treated rats (60,62,63). Similarly, human studies have
discovered an increase in triglycerides, cholesteryl esters, and several
phosphatidylcholines in the human plasma of both healthy patients and those with
treatment-resistant depression (64,65). This may explain OMICmAge's effectiveness in
capturing epigenetic aging changes in patients with MDD and/or PTSD.

We observed variation in some EBPs after ketamine administration. Prior research has
linked some of these EBPs, such as proline, blood urea nitrogen (BUN), carnitines, and
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adenosine, to depression. For instance, high proline levels may worsen depressive
symptoms via the microbiota-gut-brain axis; BUN and carnitines in combination have
shown protective effects against depression (66); and BUN independently has shown
protective effects against depression (35,67,68). Carnitines were found to decrease in
depressive patients and subjects with a history of trauma, and carnitine
supplementation has been shown to improve symptoms (69-71). Adenosine,
associated with both depression and ketamine treatment, plays a role in ketamine's
anti-inflammatory and antidepressant effects by regulating glutamate neurotransmission
(72). In mice models of depression, ketamine upregulated the adenosine 1 receptor,
leading to antidepressant and anti-anxiety effects (73). It also increased AMPAR
activation, which inhibited glutamate release, suggesting that ketamine's antidepressant
effects may involve the regulation of glutamate neurotransmission (74).

Previous studies have linked significant Marioni protein markers, such as Matrix
metalloproteinases (MMPs) 1 and 2, blood coagulation factor VII, sex hormone binding
globulin (SHBG), and TNFRSF17, to depression risk and prognosis. MMPs regulate
inflammation and cytokine processing, with elevated MMP2 levels in cerebrospinal fluid
associated with depression and schizophrenia, proportional to symptom severity.
However, some studies report decreased MMP2 expression in depression (75).
Coagulation factor VIl has also been linked to increased depression risk (76) and
suicidal behavior (77), especially in aging populations. Meanwhile, SHBG has been
linked to cognitive impairment in patients with comorbid schizophrenia and depression,
with elevated SHBG levels associated with higher depression risk in women, particularly
post-menopause (78),74). Finally, TNFRSF17 has been found to be upregulated in
women with postpartum depression (80), although no link has been established with
MDD or PTSD. Together, these findings show a clear link between MDD and several
EBPs and Marioni protein markers, highlighting their ability to capture disease-specific
changes in MDD and PTSD.

Additionally, this study revealed pathways related to hypomethylated and
hypermethylated CpG sites post-ketamine treatment, offering insights into ketamine’s
antidepressant and PTSD effects. Notably, regulation of T cell differentiation was
enriched in hypermethylated CpG sites, aligning with studies demonstrating the
involvement of ketamine in the inhibition of the differentiation and reactivation
pathogenic Th17 cells, which is upregulated in patients with MDD (81,82). Ketamine’s
suppression of Th17-mediated neuroinflammation via IL-16/STAT3 inhibition supports its
role in reducing CNS inflammation, a key mechanism behind its antidepressant and
PTSD effects. Additionally, hypomethylation of CpG sites linked to circadian regulation
suggests ketamine may improve sleep duration and quality. Sleep disorders are a
known symptom and risk factor for PTSD (83,84), and research has shown an
association between MDD and PTSD and poor sleep quality, resulting in abnormal
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mood (85-87), and aberrant expression of circadian clock genes in depressive patients
(88). Ketamine’s rapid antidepressant effects may also involve resynchronizing the
central clock to light cycles, causing decreased waking, and increased sleep, REM
sleep, and slow-wave activity (89,90). Indeed, previous studies suggest ketamine has a
chronotherapeutic effect, improving mood by shifting patients away from an "evening"
body clock (91), further emphasizing the role of epigenetic changes in ketamine’s
antidepressant action and its impact on epigenetic age.

Through our methylation analysis, we also discovered one CpG site with an adjusted
p-value of 0.0025 associated with the advillin gene, which has been linked to axon
regeneration and reduced neuropathic pain (76). Advillin is expressed in the habenula
(92), which plays a role in depression and the sustained antidepressant effects of
ketamine (93). However, studies have yet to establish a link between this gene and
MDD or PTSD, and thus, further investigation is needed to better understand the role of
the methylation of this specific location in the context of these diseases.

This pilot study identified a significant decrease in CD4T memory cells, which typically
increase with age as CD4T naive cells decline (94). CD4T memory cells are also
positively associated with biological age and multimorbidity, implying that lower
biological age correlates with reduced CD4 memory T-cells (95). Reduction in CD4
memory T-cells after ketamine treatment may suggest its potential to lower biological
age and improve outcomes in depression and PTSD. Notably, only SystemsAge
Inflammation neared significance among epigenetic aging markers, highlighting the
immune system's role in reducing epigenetic age post-treatment. The moderate
negative correlation between lymphocyte count and OMICmAge and GrimAge V2
supports this link.

Further investigation is needed to understand the correlations between OMICmAge,
GrimAge V2, PhenoAge, and clinical variables. Although no significant changes in lab
results were observed from baseline to post-treatment, some variables approached
significance. Only PCL-5 and PHQ-9 scores significantly declined following ketamine
treatment, yet they did not correlate with epigenetic aging. Correlations between
epigenetic aging and other clinical variables were weak, suggesting independent
changes that warrant further study.

The small sample size (n=20) may have limited the detection of significant changes in
aging biomarkers. Additionally, we used a fixed ketamine dose, while clinical practice
often involves titration. The absence of a control group also limits validation, especially
for self-reported PCL-5 and PHQ-9 scores, which can be biased. This pilot study was
exploratory and requires validation in larger cohorts.
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In summary, this study discovered that a 2-3 week treatment course of six ketamine
infusions reduced PTSD and MDD scores, evaluated using the PCL-5 and PHQ-9.
Ketamine also reduced biological age in study participants, particularly as indicated by
PhenoAge, GrimAge, and OMICmAge. Our findings on altered epigenetic biomarker
proxies and Marioni protein markers support their association with depression and
trauma disorders, offering insights into ketamine’s clinical and epigenetic mechanisms.
Additionally, we observed a decrease in CD4T memory cells, suggesting a link between
ketamine and immune cell subsets, and how these may mediate a reduction in
biological age. While our study supports ketamine's role in alleviating depressive and
PTSD symptoms and its potential mechanisms involving the sleep/wake cycle and
neuroinflammation, further research is needed to clarify these epigenetic alterations and
their contribution to ketamine's antidepressant effects and its impact on biological age.
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Figure Legends

Figure 1. Changes in PCL-5 and PHQ-9 Scores Before and After Ketamine
Treatment Course. (A) PCL-5. (B) PHQ-9. The y-axis shows the reported score for
each evaluation, while the x-axis represents the timepoints for treatment with ketamine.
Each color corresponds to one patient, with a line connecting their evaluation score
from baseline to post-treatment.

Figure 2. Changes in Epigenetic Biomarkers of Aging Before and After Ketamine
Treatment Course. (A) OMICmAge. (B) GrimAge V2. (C) PhenoAge. (D) CD4 Memory
T-cells. The y-axis shows the epigenetic age acceleration (EAA) for each biomarker of
aging. The x-axis represents the timepoints for treatment with ketamine. Each color
corresponds to one patient, with a line connecting their predicted EAA from baseline to
post-treatment.

Figure 3. Volcano plot showing hyper- and hypomethylation of CpG sites between
timepoints. The X-axis represents the log 2-fold change in DNA methylation levels
between cases and controls, while the Y-axis displays the -log10 of the p-value for each
CpG site. CpG sites with an FDR below 0.05 and exhibiting hypermethylation are shown
in red, while those with an FDR below 0.05 and displaying hypomethylation are colored
green. Moreover, we annotated the significant CpG sites with the genes where these
probes are mapped. Dots without gene annotations are intergenic CpG sites.
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