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ABSTRACT 1 

Background: We aimed to provide clinically translatable insights for drug discovery, 2 

repurposing, and vigilance for preventing Alzheimer’s disease (AD) by integrating genetic 3 

and “real-world” drug use data. 4 

Methods: Proteome-wide Mendelian randomization (MR) analysis was conducted to identify 5 

plasma proteins causally related to AD risk using the largest summary-level data to date, 6 

followed by colocalization and multi-omic validation analyses (on the gene expression, 7 

alternative splicing, and DNA methylation levels in blood and brain, respectively) to 8 

prioritize potential druggable targets. We also replicated our MR findings using additional 9 

genetic data and, where appropriate, performed multivariable MR for the prioritized findings. 10 

Conventional observational analysis using the data from UK Biobank, a large prospective 11 

cohort, was performed to provide further clinical implications for our genetic findings. 12 

Results: MR analysis identified 15 plasma proteins with putative causal effects on AD risk. 13 

Of them, inhibition of angiotensin-converting enzyme (ACE) was found to increase the risk 14 

of AD (OR 1.10, 95% CI 1.08-1.14), which was likely independent of blood pressure as 15 

suggested by multivariable MR. Observational analysis in UK Biobank showed a higher 16 

incidence (HR 1.24, 95% CI 1.01-1.52) of AD among regular users of ACE inhibitors (ACEI), 17 

compared with the counterpart angiotensin receptor blocker users. 18 

Conclusions: In addition to expanding the understanding of druggable targets for AD 19 

prevention, our findings highlighted the potential risk of AD associated with the use of 20 

ACEIs, a widely prescribed antihypertensive medication, suggesting the need for caution in 21 

clinical practice and further research on the effect of antihypertensives on neurodegenerative 22 

diseases. 23 
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INTRODUCTION 1 

Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative disorders, 2 

characterized by irreversible neuronal death and progressive cognitive impairment. As the 3 

leading cause of dementia, AD affects approximately 50 million individuals worldwide and 4 

poses a significant medical and social burden 
1
. With an aging population, the global 5 

incidence of dementia is expected to increase to 150 million by 2050 
2
. Despite extensive 6 

research, the pathogenesis of AD remains elusive, and few effective preventive or therapeutic 7 

strategies have been established 
3, 4

. Therefore, there is an urgent need to develop novel 8 

approaches to prevent and treat AD. 9 

The human proteome provides a valuable resource for gaining insights into the pathogenesis 10 

of AD and identifying potential biomarkers and druggable targets. Our previous study 11 

demonstrated the translational value of drug target discovery for complex diseases using 12 

proteome-wide Mendelian randomization (MR) 
5
. Since then, several proteome-wide MR 13 

studies of blood and/or brain have identified various proteins as potential drug targets for AD 14 

6-9
. However, these findings were obtained and validated only using genetic tools and lacked 15 

observational evidence from “real-world” drug use data, thus limiting their reliability. 16 

Aiming to reveal the pathogenesis of AD and facilitate discovery, repurposing, and vigilance 17 

of drugs for AD prevention, we first conducted a proteome-wide MR analysis, followed by 18 

sensitivity and replication analyses as well as multi-omic validation. For any targets 19 

identified by this process, we integrated observational evidence based on UK Biobank data 20 

on drug use to further validate them and explore their clinical implications. An overview of 21 

the study design is shown in Figure 1. By incorporating “real-world” drug use data into 22 

omics-based approaches, we can link omics-based research findings with clinical practice, 23 

fostering a deeper understanding of the underlying mechanisms of AD, facilitating the 24 
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development of more effective preventive measures, or identifying existing drugs that may 1 

decrease or increase the risk of AD. 2 

METHODS 3 

Mendelian randomization 4 

Genetic associations with plasma proteins 5 

We used protein quantitative trait loci (pQTL) instrument data from our previous study by 6 

Zheng et al. 
5
, which integrated five published pQTL studies and identified 1,064 tier 1 (i.e., 7 

with the highest relative level of reliability) pQTL instruments for 955 proteins.
5
 Tier 1 pQTL 8 

instruments were further categorized into three groups: (1) cis-pQTLs (including single-cis-9 

pQTLs [with only one cis-pQTL available for each protein] and multiple-cis-pQTLs [with 10 

more than one cis-pQTLs available for each protein]), (2) cis + trans-pQTLs, and (3) trans-11 

pQTLs. As trans-acting pQTLs may operate via indirect mechanisms and are therefore more 12 

likely to be pleiotropic 
10

, we only focused on tier 1 single-cis-, multiple-cis-, and cis + trans-13 

pQTLs in this study. 14 

Genetic associations with Alzheimer's disease 15 

Outcome genome-wide association study (GWAS) data were from the latest and largest 16 

published AD GWAS by Bellenguez et al. 
11

, including 111,326 clinically diagnosed/“proxy” 17 

AD cases and 677,663 controls of European ancestry, from the following consortia/datasets: 18 

EADB, GR@ACE, EADI, GERAD/PERADES, DemGene, Bonn, the Rotterdam study, the 19 

CCHS study, NxC, and the UK Biobank 
12

. In the UK Biobank, individuals who did not 20 

report dementia or any family history of dementia were used as controls, and the analysis 21 
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included 2,447 diagnosed cases, 46,828 proxy cases of dementia, and 338,440 controls 
11

. 1 

There was no sample overlap between the pQTL studies and the AD GWAS. 2 

Genetic associations with gene expression, gene expression, alternative splicing, and DNA 3 

methylation 4 

Blood cis-expression quantitative trait loci (cis-eQTL) data were obtained from the eQTLGen 5 

Consortium (https://www.eqtlgen.org/), which incorporates 37 datasets to identify the 6 

downstream consequences of trait-related genetic variants, with a total of 31,684 individuals 7 

13
. Brain cis-eQTL data were accessed from a recent eQTL mapping analysis by Qi et al 

14
. 8 

using RNA sequencing data of brain cortex (N = 2,865) with genome-wide single nucleotide 9 

polymorphism (SNP) data. Blood cis-splicing quantitative trait loci (cis-sQTL) data were 10 

obtained from the Genotype-Tissue Expression (GTEx, https://gtexportal.org/) Analysis V8 11 

(N = 670), assessing the association between genetic variants and intron excisions using the 12 

LeafCutter approach 
15

. Brain cortex cis-sQTL data were also accessed from Qi et al.’s study 13 

14
, which used an sQTL mapping method called testing for heterogeneity between isoform-14 

eQTL effects (THISTLE) and identified 12,794 genes with cis-sQTLs at P < 5 × 10
-8

. Blood 15 

cis-methylation quantitative trait loci (cis-mQTL) data were extracted from the Genetics of 16 

DNA Methylation Consortium (GoDMC, http://mqtldb.godmc.org.uk/), which identified 17 

genetic variants associated with DNA methylation (DNAm) at 420,509 cytosine-phosphate-18 

guanine (CpG) sites in blood among 27,750 individuals of European ancestry. Brain cis-19 

mQTL data were obtained from the meta-analysis by Qi et al. (N = 526 to 1194) 
16

. 20 

Genetic association data for replication 21 

In addition to the combination of exposure and outcome GWAS data in our MR main 22 

analysis (i.e., Zheng et al. – Bellenguez et al.), replication analysis was performed using the 23 
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data from different pQTL studies and AD GWASes. For the exposure (protein abundance) 1 

GWAS, we used the data from a recent pQTL study by Gudjonsson et al 
17

. This study 2 

examined 4,035 independent associations between genetic variants and 2,091 serum proteins 3 

in 5,368 individuals aged between 66 and 96 years from the AGES-Reykjavik Study 
18

. 4 

pQTL full summary data were available for all of our top-hit proteins. For the outcome 5 

(Alzheimer’s disease), we used the data from three GWASes. The first one, by 6 

Schwartzentruber et al. 
19

, included a total of 75,024 cases (including those with diagnosed 7 

AD and who reported a family history of dementia) and 397,844 controls from a previous 8 

GWAS 
20

 and the UK Biobank 
12

. The second one, by Kunkle et al. 
20

, was a subset of 9 

Schwartzentruber et al.’s GWAS samples, which included 21,982 cases with diagnosed AD 10 

and 41,944 controls. The third one, by Wightman et al. 
21

, was a subset of a large GWAS 11 

meta-analysis excluding 23andMe data, including 86,531 cases and 676,386 controls. We 12 

selected these three GWASes because Schwartzentruber et al.’s and Wightman et al.’s studies 13 

were two of the largest and latest AD GWASes following Bellenguez et al.’s study, and 14 

Kunkle et al.’s study only recruited diagnosed AD cases, whose results were thus more 15 

clinically relevant. 16 

Genetic associations with blood pressure 17 

In follow-up analyses, we conducted multivariable MR to adjust for blood pressure. To avoid 18 

potential collider bias caused by adjustment for body size in the GWAS 
22

, genetic 19 

association data for systolic (SBP) and diastolic blood pressure (DBP) were obtained from 20 

the UK Biobank GWASes (SBP GWAS ID: ukb-b-20175; DBP GWAS ID: ukb-b-7992) of 21 

~436,420 males and females of European ancestry, accessed through the IEU OpenGWAS 22 

Project (http://gwas.mrcieu.ac.uk/) 
23

. 23 

Conventional observational study 24 
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Study population 1 

The UK Biobank is a prospective cohort study recruiting over 500,000 million middle-aged 2 

participants at 22 assessment centers across the UK between 2006 and 2010. When recruited, 3 

participants provided blood, urine, and saliva samples at the nearest assessment center with 4 

their consent, as well as detailed information about sociodemographic, lifestyle, health-5 

related factors, environment, and medical history via touchscreen and face-to-face interviews. 6 

Physical measurements were taken, including height, weight, and blood pressure. Follow-up 7 

assessments were conducted using routinely available national datasets. To avoid potential 8 

confounding by indications, we restricted our study to participants with either angiotensin-9 

converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) medication 10 

records. Individuals were further excluded if they met any of the following criteria at baseline: 11 

1) with a diagnosis of AD before baseline [International Classification of Diseases 10 (ICD-12 

10) codes: F00 and G30]; 2) with a family history of AD. 13 

Measurement of medication use 14 

According to the Anatomical Therapeutic Chemical (ATC) classification 
24

, ACEIs and 15 

ARBs were defined with the code C09AA and C09CA, respectively. Combining the 16 

medication records at baseline in UK Biobank, participants who had been using the drugs 17 

(ACEIs or ARBs) most days of the week for the last four weeks, were classified as regular 18 

users of ACEIs or ARBs. 19 

Ascertainment of Alzheimer’s disease 20 

AD cases were identified by the diagnosis records with ICD-10 code F00 and G30 
25

, 21 

followed up to 30 September 2021. The date of diagnosis was set as the date of the first AD 22 
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diagnosis record. Person-time was taken from the date of baseline and censored at the date of 1 

AD diagnosis, date of death, or 30 September 2021, whichever occurred earliest. 2 

Assessment of covariates 3 

At baseline, participants provided demographic and lifestyle behaviors information, including 4 

age at recruitment, sex, ethnicity, smoking status, alcohol consumption frequency, income 5 

score (UKB Data Field 26411, with higher scores indicating higher income levels), education 6 

score (UKB Data Field 26414; with higher scores indicating higher education levels), and 7 

comorbidities. Body mass index (BMI; in kg/m
2
) was calculated by weight (in kg) divided by 8 

squared height (in m). The comorbidities were identified by ICD-10 at baseline, including 9 

hypertension, diabetes, hyperlipidemia, traumatic brain injury, cerebrovascular diseases, and 10 

nervous system diseases (ICD-10 codes: I60-I69). In addition, we also calculated the number 11 

of long-term conditions as covariates. Detailed definitions of long-term conditions were 12 

described elsewhere 
26

. 13 

Statistical analyses 14 

Proteome-wide Mendelian randomization 15 

For single-cis-pQTLs, we performed a standard two-sample MR analysis for each protein 16 

with the Wald ratio method 
27, 28

. For multiple-cis-pQTLs, MR estimates may be sensitive to 17 

the particular choice of pQTLs if only the most strongly associated SNPs within each 18 

genomic region are used as instruments 
5
. It has been suggested that more precise causal 19 

estimates can be obtained using multiple genetic variants from a single gene region, even if 20 

the variants are correlated 
29, 30

. Therefore, we used multiple conditionally independent cis-21 

pQTLs for this MR analysis. Specifically, we conducted linkage disequilibrium (LD) 22 

clumping with a relaxed threshold of r
2
 < 0.6 to avoid highly LD-correlated SNPs; the 23 
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resulting single-cis-pQTLs (i.e., multiple-cis-pQTLs with highly LD-correlated SNPs 1 

removed by clumping) were picked back to the single-cis analysis above; for the rest 2 

multiple-cis-pQTLs, we used a generalized inverse variance-weighted (IVW) 
31

 method for 3 

each protein considering the LD pattern between the multiple-cis SNPs to estimate the MR 4 

effects, where the pairwise LD correlation (r
2
) were obtained from the 1000 Genomes 5 

European ancestry reference samples. For cis + trans-pQTLs, a standard two-sample MR 6 

analysis was performed for each protein, with r
2
 < 0.001 as the threshold for LD-clumping 7 

and standard IVW as the MR method 
28, 32

. To correct for multiple testing, the Bonferroni 8 

method was utilized in the analysis for each of the above three types of pQTLs. 9 

Colocalization 10 

Results that passed the multiple-testing threshold in the above MR analysis were further 11 

evaluated using the Bayesian colocalization analysis to estimate the posterior probability (PP) 12 

of each genomic locus containing a single variant affecting both the protein abundance and 13 

AD risk 
33

. Colocalization assesses whether two associated signals are consistent with a 14 

common causal SNP. Default prior probabilities were used (P1 = 1 × 10
−4

, P2 = 1 × 10
−4

, P12 = 15 

1 × 10
−5

, where P1 is the probability that a given SNP is associated with AD, P2 is the 16 

probability that a given SNP is a pQTL, and P12 is the probability that a given SNP is both 17 

associated with AD and is a pQTL). We applied a PP threshold of >80% for the hypothesis 18 

that there is a shared causal SNP for both traits as sufficient evidence for colocalization. 19 

In cases where pQTL data lacked sufficient SNP coverage (e.g., without publicly available 20 

full summary data), we instead conducted the “LD check” analysis 
5
 for the sentinel variant 21 

for each protein against the 30 strongest SNPs in the region associated with AD as an 22 

approximate colocalization analysis. r
2
 > 0.8 between the sentinel variant and any of the 30 23 

SNPs with the strongest association with AD was used as evidence for approximate 24 
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colocalization. For our MR top findings, we treated colocalized findings (PP > 80%) as 1 

“Colocalized” and LD-checked findings (r
2
 > 0.8) as “LD-checked”; other findings that did 2 

not pass the colocalization or LD check analyses were annotated as “Not colocalized”. 3 

The presence of multiple conditionally distinct association signals within the same genomic 4 

region can influence the performance of colocalization analysis 
5
. For regions with multiple 5 

conditionally independent pQTLs, we performed pair-wise conditional and colocalization 6 

analysis (PWCoCo) 
34

 to obtain colocalization results. PWCoCo conducts conditional 7 

analyses to identify independent signals for the two tested traits in a genomic region and then 8 

conducts colocalization of each pair of conditionally independent signals for the two traits 9 

using summary-level data, which allows for the stringent single-variant assumption to hold 10 

for each pair of colocalization analyses. 11 

For the top findings of our MR analysis, we performed colocalization analysis and LD check 12 

on single-cis-pQTLs with and without full summary data available, respectively, and 13 

PWCoCo on multiple-cis-pQTLs. For cis + trans-pQTLs, we performed colocalization 14 

analysis on the cis instruments only. 15 

MR sensitivity analyses 16 

For multiple-cis- and cis + trans-pQTL MR top findings, we conducted Cochran’s Q test 
35

 17 

to assess heterogeneity across instrumental SNPs and the MR-Egger intercept test 
36

 to detect 18 

unbalanced horizontal pleiotropy. Where the protein did not have an enough number of pQTL 19 

instruments in our original pQTL data, we used the data from a recent pQTL study by 20 

Gudjonsson et al. 
17

 to conduct these analyses. 21 

To reveal the directionality of effects and avoid reverse causation, we performed Steiger 22 

filtering (for all top findings) and bidirectional MR (for those with full summary data 23 
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available from pQTL studies). Steiger filtering estimates the causal direction by comparing 1 

the magnitude of variance explained by the exposure and the outcome 
37

. Bidirectional MR 2 

evaluates the evidence for causal effects in the reverse direction by modeling AD as the 3 

exposure and plasma proteins as the outcome. Instrumental SNPs for AD were selected based 4 

on a threshold of P < 5 × 10
-8

 from GWAS after LD clumping (r
2
 < 0.001 and distance 5 

located 10000 kb apart from each other). The IVW method 
32

 was used to evaluate the effect 6 

of AD on plasma proteins. Where full summary statistics were not available in our original 7 

pQTL data, we used full summary data from the pQTL study by Gudjonsson et al. to conduct 8 

bidirectional MR analysis. 9 

In addition, we also conducted a single-SNP MR analysis for multiple-cis-pQTLs, treating 10 

each pQTL as a single instrumental SNP. Results for any novel top-hit proteins (i.e., not 11 

included in the main top findings) that survived Bonferroni correction would be picked back 12 

to the single-cis-pQTL analysis above. 13 

Replication 14 

To evaluate the reliability of our proteome-wide MR findings, we repeated MR analysis for 15 

the top-hit proteins with the following combinations of exposure-outcome GWASes: 1) 16 

Zheng et al. – Schwartzentruber et al., 2) Zheng et al. – Kunkle et al., 3) Gudjonsson et al. – 17 

Bellenguez et al., and 4) Zheng et al. – Wightman et al. In each combination, the exposure 18 

and outcome GWAS samples were both of European ancestry and did not overlap with each 19 

other. 20 

Multi-omic validation 21 

We validated our top findings on transcriptomic and epigenomic layers in both blood and 22 

brain using summary-data-based Mendelian randomization (SMR) followed by the 23 
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heterogeneity in dependent instruments (HEIDI) test 
38

. SMR aims to test the potential causal 1 

effect of molecular traits on a complex trait of interest using summary data of QTL studies 2 

and GWASes. The HEIDI test seeks to address if many SNPs in a single region give Wald 3 

ratio estimates that are more different from each other than expected by chance under the 4 

assumption that there is a single causal variant, and each SNP only exhibits an effect due to 5 

LD with the causal SNP. SMR and the HEIDI test were performed with the above eQTL, 6 

sQTL, or mQTL data as the exposure GWAS data and Bellenguez et al.’s AD GWAS data as 7 

the outcome GWAS data. 8 

We evaluated multi-omic validation results, along with the previous proteome-wide MR 9 

results, using the following criteria: 10 

1) On the proteomic layer, we first selected plasma proteins whose MR results passed the 11 

Bonferroni correction for multiple testing (i.e., the top-hit proteins); then, we assessed if these 12 

results showed colocalization evidence (i.e., either colocalized or LD-checked). 13 

2) On the transcriptomic layer (i.e., gene expression), we first assessed if any cis-eQTL MR 14 

results for the genes coding these proteins had a p-value < 0.05 in either blood or brain; if yes, 15 

we evaluated if they passed the HEIDI test (i.e., PHEIDI > 0.05); if they did, we checked if 16 

their effect directions were plausible (i.e., whether the effect of the gene expression level was 17 

in the same direction as that of the protein). 18 

3) On the alternative splicing layer, we first assessed if any cis-sQTL MR results for the 19 

alternative splicing of RNA related to these proteins had a p-value < 0.05 in either blood or 20 

brain; if yes, we evaluated if they passed the HEIDI test. The plausibility of effect directions 21 

was not considered, as there is no expected direction of the effect of alternative splicing on its 22 

downstream protein products. 23 
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4) On the epigenomic layer (i.e., DNAm), we first assessed if any cis-mQTL MR results for 1 

the DNAm in/near the genes coding these proteins had a p-value < 0.05 in either blood or 2 

brain; if yes, then we evaluated if they passed the HEIDI test; if they did, then we examined if 3 

the CpG sites were located in the promoter area of the gene by manually looking them up on 4 

Ensembl (https://www.ensembl.org/); if the CpG sites were in the promoter area, we checked 5 

if their effect directions were plausible (i.e., whether the effect of the DNAm level was in the 6 

opposite direction to that of the protein). 7 

Given the current availability of QTL data in the multi-omic validation stage and the wide 8 

use of targeting drugs 
39

 that provided an opportunity to further explore clinical implications, 9 

we followed up on ACE on top of the other top-hit proteins and conducted additional 10 

analyses such as multivariable MR for this protein and conventional observational analysis 11 

for the medication targeting it. 12 

Multivariable Mendelian randomization 13 

Given the important role of ACE (one of the top-hit proteins identified in proteome-wide MR) 14 

in blood pressure regulation, we utilized multivariable MR 
40

 to explore if the effect of ACE 15 

was dependent on blood pressure. As the pQTL study for ACE used in our main MR analysis 16 

did not share full summary data 
41

, we instead employed the pQTL data by Gudjonsson et al. 17 

17
 used in our replication analysis. To avoid sample overlap, we used the AD GWAS by 18 

Kunkle et al. 
20

 as the outcome GWAS, which did not include the UK Biobank samples used 19 

for SBP/DBP GWASes. Separate multivariable MR models were applied to SBP and DBP, 20 

respectively. SNPs related to SBP/DBP were selected from each GWAS dataset with the p-21 

value threshold of 5 × 10
-8

 and combined with the instrumental SNPs for ACE. Genetic 22 

association data with ACE and SBP/DBP were extracted for each SNP, followed by 23 

deduplication and LD clumping. A total of 244 SBP-related SNPs and 263 DBP-related SNPs, 24 
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respectively, in addition to the 6 pQTLs for ACE, were included in the multivariable MR 1 

analysis. Multivariable MR inverse variance-weighted (MVMR-IVW) estimates 
42

 were 2 

computed for each model. 3 

Conventional observational study 4 

To further support our MR findings for the protein ACE in the “real-world” setting, we 5 

conducted an observational study in the UK Biobank 
43

 to examine the association between 6 

the regular use of ACEIs and the risk of AD in later life. Considering potential confounding 7 

by indications, regular users of ARBs, another type of antihypertensive with similar 8 

indications as ACEIs, were used as the reference group. 9 

Baseline characteristics were presented as frequency (percentage) for categorical variables 10 

and mean (SD) for continuous variables. Cox proportional hazards models were applied to 11 

examine the longitudinal association between the regular use of ACEIs at baseline and the 12 

incidence of AD, with regular use of ARBs as the reference. Three sets of models were 13 

performed in the analysis: Model 1 was adjusted for age at recruitment, sex, and ethnicity; 14 

Model 2 was additionally adjusted for hypertension, diabetes, hyperlipidemia, traumatic brain 15 

injury, cerebrovascular diseases, and nervous system diseases; Model 3 was further adjusted 16 

for smoking status, alcohol consumption frequency, BMI, income score, and educational 17 

score. Considering that ACEIs and ARBs are primarily used as the treatment of hypertension, 18 

we also restricted our analysis to participants with hypertension and repeated the analysis 19 

using the aforementioned three models. 20 

In addition, we performed the following sensitivity analyses to test the robustness of our 21 

findings: 1) to minimize reverse causality, we excluded the participants who developed AD 22 

during the first 2 years of follow-up; 2) considering the potential impact of other chronic 23 
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diseases, we further adjusted for the number of long-term conditions 
26

; 3) we repeated the 1 

analysis after excluding participants with baseline hyperlipidemia and diabetes, respectively. 2 

Analysis software 3 

The majority of MR analyses (including Wald ratio, IVW, single-SNP analysis, bidirectional 4 

MR, Steiger filtering, and the heterogeneity and pleiotropy tests) were conducted using the 5 

“TwoSampleMR” R package 
28

. The IVW analysis considering LD patterns (i.e., generalized 6 

IVW) was conducted using the “MendelianRandomization” R package 
31

. The MVMR 7 

analysis was conducted by the “MVMR” R package 
44

. Colocalization analysis was 8 

conducted by the “coloc” R package 
33

 and the “PWCoCo” tool (https://github.com/jwr-9 

git/pwcoco) 
34

. SMR and HEIDI were performed by the “SMR” software tool (version 1.3.1; 10 

downloaded from: https://yanglab.westlake.edu.cn/software/smr/#Download) 
38

. Cox 11 

proportional hazards analysis was performed using Stata 17 (Stata Corp. LP, College Station, 12 

TX). 13 

Data availability 14 

Mendelian randomization and other relevant analyses were based on publicly available data, 15 

for example, from publications by Zheng et al. (https://doi.org/10.1038/s41588-020-0682-6), 16 

Bellenguez et al. (https://doi.org/10.1038/s41588-022-01024-z), Schwartzentruber et al. 17 

(https://doi.org/10.1038/s41588-020-00776-w), Wightman et al. 18 

(https://doi.org/10.1038/s41588-021-00921-z), Kunkle et al. (https://doi.org/10.1038/s41588-19 

019-0358-2), and Gudjonsson et al. (https://doi.org/10.1038/s41467-021-27850-z), as well as 20 

data resources such as eQTLGen (https://www.eqtlgen.org/), BrainMeta 21 

(https://yanglab.westlake.edu.cn/data/SMR/BrainMeta_v1.tar.gz; 22 

https://yanglab.westlake.edu.cn/data/SMR/BrainMeta_cis_sqtl_summary.tar.gz), GTEx 23 
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(https://www.gtexportal.org/), GoDMC (http://mqtldb.godmc.org.uk/), Brain-mMeta 1 

(https://yanglab.westlake.edu.cn/data/SMR/Brain-mMeta.tar.gz), and IEU OpenGWAS 2 

Project (http://gwas.mrcieu.ac.uk/). Conventional observational analysis corresponds to UK 3 

Biobank Project ID 75283. Data from the UK Biobank are available at 4 

https://biobank.ndph.ox.ac.uk/ by application. The included GWASes had obtained the 5 

necessary ethical approvals from the relevant committees and written informed consent was 6 

obtained from all individuals involved in these studies. The UK Biobank study protocol was 7 

approved by the North West Multi-centre Research Ethics Committee (11/NW/0382). 8 

RESULTS 9 

Proteome-wide MR analysis 10 

After removing proteins with trans-only instruments and harmonizing with the summary data 11 

from the outcome GWAS data, we obtained 593 single-cis pQTL instruments for 593 12 

proteins, 298 multiple-cis pQTL instruments for 124 proteins, and 182 cis + trans pQTL 13 

instruments for 73 proteins. A total of eight [granulin (GRN), angiotensin-converting enzyme 14 

(ACE), complement decay-accelerating factor (CD55), triggering receptor expressed on 15 

myeloid cells 2 (TREM2), transmembrane protein 106B (TMEM106B), leukocyte 16 

immunoglobulin-like receptor B1 (LILRB1), signal-regulatory protein alpha (SIRPA), and 17 

sialic acid-binding immunoglobulin-like lectin 9 (SIGLEC9)], five [alpha-L-iduronidase 18 

(IDUA), leukocyte immunoglobulin-like receptor B2 (LILRB2), transcobalamin II (TCN2), 19 

cathepsin H (CTSH), and glypican 5 (GPC5)], and two [leukocyte immunoglobulin-like 20 

receptor A4 (LILRA4) and interleukin 6 signal transducer (IL6ST)] proteins passed the 21 

Bonferroni correction (based on the total number of proteins available in each analysis: 593, 22 

124, and 73, respectively) in the MR analysis for single-cis, multiple-cis, and cis + trans 23 

pQTL instruments, respectively (Table 1). Specifically, among these 15 top-hit proteins, we 24 
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found evidence [odds ratio (OR) and 95% confidence interval (CI)] of genetically predicted 1 

higher plasma GRN [0.79 (0.74-0.84)], ACE [0.91 (0.88-0.93)], CD55 [0.90 (0.86-0.93)], 2 

TREM2 [0.67 (0.58-0.78)], LILRB1 [0.95 (0.93-0.97)], TCN2 [0.98 (0.97-0.99)], and 3 

LILRA4 [0.89 (0.85-0.95)] levels being associated with lower AD risk, and evidence of 4 

genetically predicted higher plasma TMEM106B [1.16 (1.09-1.23)], SIRPA [1.03 (1.02-5 

1.05)], SIGLEC9 [1.03 (1.02-1.04)], IDUA [1.06 (1.05-1.08)], LILRB2 [1.04 (1.02-1.06)], 6 

CTSH [1.05 (1.02-1.07)], GPC5 [1.04 (1.02-1.05)], and IL6ST [1.09 (1.04-1.14)] levels being 7 

associated with higher AD risk (Table 1). 8 

Colocalization analysis 9 

Among the eight proteins with single-cis pQTLs (four with full summary data available), 10 

only GRN showed colocalization evidence (PP for a shared causal variant = 99.4%, Table 1, 11 

Figure S1). In the absence of full summary data or colocalization evidence detected by 12 

colocalization analysis, LD check revealed evidence for approximate colocalization for ACE, 13 

CD55, TREM2, TMEM106B, LILRB1, and SIRPA (Table 1). For the five proteins with 14 

multiple-cis pQTLs, PWCoCo showed colocalization evidence for IDUA (Table 1). For the 15 

two proteins with cis + trans pQTLs, colocalization analysis (on the cis-pQTL only) failed to 16 

find evidence for colocalization in either protein. See regional plots of all proteins with full 17 

GWAS summary statistics in Figure S1-S11. 18 

When using the data from a recent pQTL study by Gudjonsson et al.,
17

 where full summary 19 

statistics were available for ACE, TREM2, TMEM106B, and SIRPA, colocalization evidence 20 

was found for ACE and TMEM106B (Table S1). 21 

Multi-omics validation and selection of top findings 22 
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Detailed SMR and HEIDI results are shown in Table S2-S7. Of the 15 top-hit plasma 1 

proteins that passed the Bonferroni correction threshold, GRN, ACE, CD55, TREM2, 2 

TMEM106B, LILRB, SIRPA, IDUA, and TCN2 showed evidence for colocalization 3 

(including approximate colocalization detected by LD-check); in the blood/brain cis-eQTL 4 

SMR analysis, the expression of three genes (ACE, SIGLEC9, and IDUA) was associated 5 

with AD risk at the P = 0.05 level, passed the HEIDI test (i.e., PHEIDI > 0.05), and had 6 

plausible effect directions (i.e., in the same direction as the pQTL MR results); in the 7 

blood/brain cis-sQTL SMR analysis, alternative splicing in five genes (ACE, TMEM106B, 8 

SIRPA, SIGLEC9, and IDUA) was associated with AD risk at the P = 0.05 level and passed 9 

the HEIDI test; in the blood/brain cis-mQTL SMR analysis, we only found that DNAm in the 10 

ACE gene was associated with AD risk at the P = 0.05 level, passed the HEIDI test, was 11 

located in the promoter area of the gene (cg06751221, 17:63477520-63477569), and had a 12 

plausible effect direction (i.e., in the opposite direction as the pQTL MR results) (Figure 2, 13 

Table 2; see detailed sQTL MR results in Figure S12-S13). It should also be noted that 14 

validation analyses were not always applicable due to the unavailability of QTL data for 15 

some proteins. 16 

Given the current availability of QTL data in the multi-omic validation stage and the wide 17 

use of targeting drugs 
39

 that provided an opportunity to further explore clinical implications, 18 

we followed up on ACE (angiotensin-converting enzyme) on top of the other 14 top-hit 19 

proteins and conducted additional analyses such as multivariable MR for this protein and 20 

observational analysis for the medication targeting it. 21 

MR sensitivity analyses 22 

We conducted a range of sensitivity and replication analyses to test the robustness and 23 

reliability of our MR findings. For ACE specifically (see other proteins in Text S1), our 24 
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sensitivity analyses did not find evidence for reverse causation as detected by Steiger filtering, 1 

whereas Cochran’s Q test, MR-Egger intercept test, and bidirectional MR were not applicable 2 

as ACE had only one pQTL instrument and its GWAS full summary statistics were not 3 

available. Where these sensitivity analyses were not applicable due to the insufficient number 4 

of instruments or the unavailability of full summary data, we used the data from a recent 5 

pQTL study by Gudjonsson et al. (where multiple pQTL instruments and full summary 6 

statistics were available) and found no evidence for heterogeneity (by Cochran’s Q test), 7 

pleiotropy (by MR-Egger intercept test), or reverse causation (by bidirectional MR) for ACE 8 

(Table S1). See the detailed description of sensitivity analysis results (including single-SNP 9 

analysis results in Table S8) for other top-hit proteins in Text S1. 10 

In replication analyses, we used data from different pQTL studies and GWASes to replicate 11 

our MR top findings. We first used an earlier AD GWAS by Schwartzentruber et al. [0.93 12 

(0.90-0.96)] and Wightman et al. [0.987 (0.981-0.992)] and then a smaller but more clinically 13 

relevant AD GWAS by Kunkle et al. (only included clinically diagnosed AD cases) [0.92 14 

(0.88-0.97)] as the outcome GWAS and observed similar results in effect directions and sizes 15 

for ACE (Table S9, Figure S14). Then, we replaced our original pQTL data with those from 16 

a recently published GWAS of 2,091 serum proteins by Gudjonsson et al. and also found that 17 

ACE had a similar effect estimate [0.93 (0.90-0.97)] as our main MR results (Table S9, 18 

Figure S14). See the detailed description of replication analysis results for other top-hit 19 

proteins in Text S1. 20 

Our multivariable MR showed that after adjusting for SBP or DBP, the effect estimate of 21 

ACE did not differ from our univariable (i.e., main) MR results (Table S10, Figure S15), 22 

suggesting that the protective effect of ACE on AD risk was likely independent of blood 23 

pressure. 24 
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Observational analysis of ACE inhibitor use 1 

From the pQTL MR analysis above, we found a protective effect of higher plasma ACE 2 

levels on AD risk [OR (95% CI): 0.91 (0.88-0.93)], suggesting that ACE inhibition (i.e., 3 

inhibiting the effect of ACE) might be potentially associated with an increased risk of AD 4 

[OR (95% CI): 1.10 (1.08-1.14), estimated by taking the inverse of the ACE effect]. To 5 

follow up on this finding and explore its clinical relevance, we used “real-world” drug use 6 

data of ACE inhibitors (ACEIs, with ACE inhibition effects) from the UK Biobank and 7 

examined if ACEI use was associated with increased AD risk. ACEIs are a commonly used 8 

antihypertensive in clinical practice and the only existing class of drugs targeting ACE. To 9 

avoid potential confounding by indications, we used angiotensin receptor blockers (ARBs), 10 

which have similar indications but different drug targets as ACEIs, as the reference for the 11 

comparison. 12 

A total of 59,117 UK Biobank participants were included in the study, including 42,944 13 

ACEI users and 16,173 ARB users. At baseline, the mean age was 60.4 (standard deviation 14 

6.6) years [60.2 (6.7) years in ACEI users vs. 61.0 (6.4) years in ARB users], and 41% of the 15 

participants were female (38.3% in ACEI users vs. 48.3% in ARB users; see Table S11). 16 

Over 723,142 person-years of follow-up [median (interquartile range) length of follow-up: 17 

12.77 (11.92–13.54) years], there were 552 cases of AD, with 0.97% (416/42,944) in ACEI 18 

users and 0.84% (136/16,173) in ARB users. 19 

Analysis with Cox proportional hazard models showed a higher incidence of AD in ACEI 20 

users compared with ARB users [hazard ratio (95% CI): 1.24 (1.01-1.52)] (Figure 3), with 21 

adjustment for age at recruitment, sex, ethnicity, pre-existing morbidities (hypertension, 22 

diabetes, hyperlipidemia, cerebrovascular diseases, traumatic brain injury, and diseases of the 23 

nervous system), smoking status, alcohol use, body mass index, income, and educational. 24 
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When restricting to participants with hypertension, the results were consistent [1.31 (1.01-1 

1.69)] (Figure 3). Moreover, no major changes in the results were found in sensitivity 2 

analyses excluding cases with baseline diabetes or hyperlipidemia, additionally adjusting for 3 

the number of baseline chronic conditions, or removing AD cases occurring within the first 4 

two years of follow-up (Figure S16). 5 

Given the MR evidence suggesting that inhibition of ACE might increase the risk of AD, the 6 

higher AD risk associated with the regular use of ACEIs (which inhibit ACE activity) vs. 7 

their counterpart ARBs (block angiotensin II receptors) observed in the UK Biobank 8 

complements our MR findings and provides further evidence for the implications of these 9 

findings in clinical settings (Figure 4). 10 

DISCUSSION 11 

In this study, we conducted a proteome-wide MR analysis, which identified 15 plasma 12 

proteins associated with AD risk, including ACE, GRN, CD55, TREM2, TMEM106B, 13 

LILRB1, SIRPA, SIGLEC9, IDUA, LILRB2, TCN2, CTSH, GPC5, LILRA4, and IL6ST, 14 

followed by validation on the transcriptomic and epigenomic layers. Of these proteins, 15 

inhibition of ACE was suggested to increase the risk of AD, which was likely independent of 16 

blood pressure. Given the availability of QTL data in the multi-omic validation stage and the 17 

popularity of relevant drugs, we further explored the clinical implications of ACE and its 18 

targeting drugs. As a classic antihypertensive medication inhibiting ACE activity in “real-19 

world” settings, ACEIs were observationally associated with an increased risk of AD as 20 

compared with ARBs, another antihypertensive with similar indications but different targets, 21 

in the UK Biobank, which complements our MR results. 22 
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Our findings generally align with and expand upon prior research on proteins as potential 1 

druggable targets for preventing AD. For example, a recent study by Ou et al. applied similar 2 

methodologies (e.g., proteome-wide MR, colocalization, and eQTL MR) to explore potential 3 

AD drug targets by integrating genetics and proteomes from the brain and blood 
6
. They 4 

identified seven genes (ACE, ICA1L, TOM1L2, SNX32, EPHX2, CTSH, and RTFDC1) with 5 

brain protein abundance causally linked to AD. Among these, the protective effect of ACE 6 

was substantiated by both proteomic and transcriptomic evidence in blood. Our study, which 7 

yielded comparable results for ACE, provides robust support for their findings by discovering 8 

consistent evidence supporting our MR findings for ACE from observational analysis of 9 

“real-world” drug use data, addressing the methodological limitations of using a single 10 

epidemiologic approach 
45

 and underscoring the implications of our findings for clinical 11 

practice. Moreover, we also leveraged larger and more recent GWAS data, verified the 12 

reliability of findings across multiple pQTL studies and AD GWASes, and further validated 13 

the findings at the alternative splicing and DNA methylation levels. Additionally, despite not 14 

having brain pQTL data, our study still supports their finding for CTSH by providing 15 

stronger evidence in blood. To sum up, Ou et al.’s and our studies serve as complementary 16 

pieces, collectively contributing to drug discovery, repurposing, and vigilance efforts for AD. 17 

Specifically, the protective effect of the protein ACE against AD is a noteworthy finding in 18 

both Ou et al.’s and our studies that warrants further discussion. While previous genetic and 19 

epidemiologic studies have reported similar associations 
6, 46-48

, our work provides deeper 20 

insights into the potential mechanisms underlying the relationship between ACE and AD risk. 21 

ACE is well-known for its biological functions, such as its involvement in the renin-22 

angiotensin system (RAS), which plays a crucial role in regulating blood pressure 
49

. 23 

However, our multivariable MR results suggest that the effect of ACE on AD risk seemed to 24 

be independent of blood pressure. In our observational analysis of prospective cohort data, a 25 
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difference in AD risk was also observed between users of ACEIs and ARBs, which both 1 

target the RAS but act on different molecules (ACEIs inhibit the angiotensin-converting 2 

enzyme, while ARBs block angiotensin II receptors, as shown in Figure 4) 
50

. All these 3 

findings suggest that ACE may influence neurodegenerative diseases through unique 4 

pathways other than blood pressure regulation 
51

. One such potential mechanism is the 5 

degradation of amyloid-beta (Aβ) deposits. ACE is a component of Aβ-degrading enzymes 6 

(ADEs) and can facilitate the clearance of Aβ deposits, which are implicated in the 7 

pathogenesis of AD 
52

. 8 

The discovery that ACEI use was associated with increased AD risk raises important 9 

questions for clinical and public health practice. ACEIs and ARBs are both widely used first-10 

line antihypertensives, which are usually recommended interchangeably by current guidelines 11 

53
. In the United States alone, 13.5 million people take ARBs and 19.1 million take ACEIs 12 

each year 
54

. Although only a 20-30% increased AD risk associated with ACEI use was 13 

observed in our study, considering the huge number of ACEI users and the increasingly 14 

heavy burden of AD 
1
, its public health implications are substantial on a global scale. If our 15 

findings can be confirmed by high-quality clinical trials, switching first-line RAS blockers 16 

from ACEIs to ARBs may have a great impact on population health. Preferentially 17 

prescribing ARBs over ACEIs is also supported by a recent statement by Messerli et al. 
39

 18 

and a large study 
55

 of 2,297,881 patients initiating treatment with ACEIs and 673,938 19 

patients with ARBs, which has found that while ACEIs and ARBs have similar efficacy in 20 

reducing the risk of cardiovascular events, ARB users have better safety outcomes such as 21 

lower risks of angioedema, cough, and gastrointestinal conditions. In addition, further 22 

research is needed to elucidate the complex relationship between ACE, blood pressure, other 23 

antihypertensive medications, and AD risk, and to determine the potential impact of these 24 

findings on the management of hypertension and prevention strategies for AD. Our findings 25 
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highlight the need to carefully consider the potential risks and benefits of ACEIs and other 1 

antihypertensive medications in the context of neurodegenerative diseases. 2 

Several other proteins identified in our study have been previously linked to the pathogenesis 3 

of AD or other neurodegenerative diseases by in-vivo and in-vitro studies. For example, 4 

granulin (GRN) and triggering receptor expressed on myeloid cells 2 (TREM2) have been 5 

shown to play a role in microglial function and neuroinflammation 
56-58

, which are key 6 

processes in AD development 
59

. Other identified proteins, such as CD55 and TMEM106B, 7 

have also been reported to have potential roles in AD-related pathways, including immune 8 

response and cellular homeostasis. The protein CD55 has been shown to mitigate neuronal 9 

cell death and apoptosis during hypoxia induced by sodium cyanide 
60

. A study of aged mice 10 

with Tmem106b knockout, heterozygote, and wild-type genotypes found that TMEM106B-11 

dependent lysosomal trafficking defects led to neuronal dysfunction and behavioral 12 

impairments 
61

. Therefore, our findings for other top-hit proteins warrant further 13 

investigations into their mechanistic contributions to AD and their potential value as drug 14 

targets for AD prevention. 15 

Our study has several strengths, one of which is the application of a proteome-wide MR 16 

approach. This method enabled us to systematically evaluate the effects of plasma proteins on 17 

AD risk while minimizing the influence of confounding and reverse causation. By integrating 18 

multiple omic layers, including proteomic, transcriptomic, epigenomic, and genomic data, we 19 

provided comprehensive evidence to support the reliability of our results. Importantly, we 20 

also combined MR with observational analysis of prospective cohort data, establishing a 21 

connection between molecule-level research and “real-world” clinical evidence, which 22 

strengthens the clinical relevance of our findings. 23 
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Despite these strengths, our study also has the following limitations. First, although MR is a 1 

powerful approach for addressing confounding, it cannot eliminate the possibility of 2 

horizontal pleiotropy 
62

, and the MR methods we used could only examine the linear 3 

relationship between the protein level and AD risk. Second, our study only assessed proteins 4 

with available genetic instruments of relatively high reliability (i.e., tier 1 instruments in 5 

Zheng et al.’s study) 
5
, which may have excluded other potentially relevant proteins in the 6 

context of AD pathogenesis. Similarly, an additional limitation is the absence of QTL data 7 

(e.g., mQTL data in blood and brain) for some top-hit proteins, which precluded our follow-8 

up analyses on many potentially relevant results. Fourth, as our study predominantly included 9 

participants of European descent, the generalizability of our findings to other populations 10 

remains uncertain. It is essential to validate our results in diverse ethnic groups to better 11 

understand the applicability of our findings across different populations 
63

. Another limitation 12 

is the potential of residual confounding in our observational analysis due to unmeasured or 13 

inaccurately measured confounders, although the consistency between observational and MR 14 

evidence mitigates this concern to some extent. In addition, our observational analysis with 15 

baseline drug use as the exposure (i.e., prevalent users) may be subject to selection bias, and 16 

future research can explore the effect of initiation, maintenance, or discontinuation of ACEI 17 

use on AD risk by explicitly emulating a target trial using observational data 
64

. Selection bias 18 

might also occur when restricting our observational analysis to ACEI and ARB users, 19 

although this restriction was justified to avoid confounding by indication. Lastly, while we 20 

were able to identify some proteins with possible causal effects on AD risk, it is important to 21 

recognize that these proteins may not be acting independently. The complex interplay 22 

between these proteins and their roles in various biological pathways could contribute to the 23 

observed associations, warranting further investigation to fully elucidate the intricate network 24 

of molecular mechanisms underlying AD pathogenesis. 25 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.09.24313366doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.09.24313366
http://creativecommons.org/licenses/by/4.0/


Page 28 of 36 
 

In conclusion, our proteome-wide MR study identified 15 plasma proteins associated with 1 

AD risk. Of these, ACE inhibition was suggested to increase the risk of AD. Observationally, 2 

the regular use of ACEIs, a common class of antihypertensive inhibiting the effect of ACE, 3 

was associated with an increased risk of AD as compared with ARBs, another 4 

antihypertensive with similar indications but different molecular targets. While this key 5 

finding warrants further investigation, it underscores the need to carefully consider potential 6 

implications in terms of neurodegenerative diseases when prescribing ACEIs for high-risk 7 

populations and add support to the preferential prescription of ARBs over ACEIs in clinical 8 

practice. Our work also highlights the clinical translatability of interdisciplinary research 9 

integrating genetic/omics-based approaches with “real-world” data in the field of pharmaco-10 

epidemiology. 11 
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FIGURE LEGENDS 1 

 2 

Figure 1. Overview of the study design. 3 
MR, Mendelian randomization. AD, Alzheimer’s disease. pQTL, protein quantitative trait 4 

locus. IVW, inverse variance-weighted method. SMR, summary-data-based Mendelian 5 

randomization. eQTL, expression quantitative trait locus. sQTL, splicing quantitative trait 6 

locus. mQTL, methylation quantitative trait locus. DNA, deoxyribonucleic acid. GTEx, 7 

Genotype-Tissue Expression. GoDMC, Genetics of DNA Methylation Consortium. ACE, 8 

angiotensin-converting enzyme. ACEI, angiotensin-converting enzyme inhibitor. ARB, 9 

angiotensin receptor blocker. 10 

 11 

Figure 2. Multi-omic validation results in blood and brain for the preliminary top 12 

findings. 13 
Only eQTL and mQTL MR results are shown here; see detailed sQTL MR results in Figure 14 

S12-13. 15 

* With evidence for colocalization (i.e., either colocalized or LD-checked). 16 

# Passed the HEIDI test (i.e., PHEIDI > 0.05). 17 

pQTL, protein quantitative trait locus. MR, Mendelian randomization. eQTL, expression 18 

quantitative trait locus. mQTL, methylation quantitative trait locus. sQTL, splicing 19 

quantitative trait locus. LD, linkage disequilibrium. HEIDI, heterogeneity in dependent 20 

instruments. 21 

 22 

Figure 3. Association of angiotensin-converting enzyme inhibitor vs. angiotensin 23 

receptor blocker with the incidence of Alzheimer’s disease in UK Biobank. 24 
Model 1 was adjusted for age at recruitment, sex, and ethnicity. 25 

Model 2 was additionally adjusted for hypertension, diabetes, hyperlipidemia, 26 

cerebrovascular diseases, traumatic brain injury, and diseases of the nervous system. 27 

Model 3 was further adjusted for smoking status, alcohol use, body mass index, income, and 28 

educational level. 29 

ACEI, angiotensin-converting enzyme inhibitor. ARB, angiotensin receptor blocker. HTN, 30 

hypertension. HR, hazard ratio. CI, confidence interval. 31 

 32 

Figure 4. The use of ACE inhibitors is associated with AD risk as compared with ARBs. 33 
RAAS, renin-angiotensin-aldosterone system; Ang I/II, Angiotensin I/II; ACE, angiotensin-34 

converting enzyme; ARB, angiotensin II receptor blockers; AT receptor, Angiotensin 35 

receptor. AD, Alzheimer’s disease.  36 
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Table 1. Top findings from plasma proteome-wide Mendelian randomization. 1 
Protein N of SNP MR Method OR (95% CI) Original p-value Corrected p-value* Colocalization† Heterogeneity‡ Pleiotropy§ Reverse causation¶ Bidirectional effect# 

Single-cis 

GRN 1 Wald ratio 0.79 (0.74-0.84) 2.19E-12 1.58E-09 Colocalized - - FALSE FALSE 

ACE 1 Wald ratio 0.91 (0.88-0.93) 6.07E-12 4.38E-09 LD-checked - - FALSE - 

CD55 1 Wald ratio 0.90 (0.86-0.93) 1.62E-09 1.17E-06 LD-checked - - FALSE FALSE 

TREM2 1 Wald ratio 0.67 (0.58-0.78) 6.95E-08 5.02E-05 LD-checked - - FALSE - 

TMEM106B 1 Wald ratio 1.16 (1.09-1.23) 1.92E-06 1.38E-03 LD-checked - - FALSE - 

LILRB1 1 Wald ratio 0.95 (0.93-0.97) 4.04E-06 2.92E-03 LD-checked - - FALSE FALSE 

SIRPA 1 Wald ratio 1.03 (1.02-1.05) 1.37E-05 9.88E-03 LD-checked - - FALSE - 

SIGLEC9 1 Wald ratio 1.03 (1.02-1.04) 4.30E-05 3.10E-02 Not colocalized - - FALSE FALSE 

Multiple-cis 

IDUA 3 Generalized IVW 1.06 (1.05-1.08) 6.37E-21 4.60E-18 Colocalized TRUE FALSE FALSE FALSE 

LILRB2 3 Generalized IVW 1.04 (1.02-1.06) 1.37E-06 9.90E-04 Not colocalized TRUE FALSE FALSE FALSE 

TCN2 4 Generalized IVW 0.98 (0.97-0.99) 2.87E-06 2.07E-03 Not colocalized FALSE FALSE FALSE FALSE 

CTSH 3 Generalized IVW 1.05 (1.02-1.07) 2.00E-05 1.44E-02 Not colocalized FALSE FALSE FALSE FALSE 

GPC5 3 Generalized IVW 1.04 (1.02-1.05) 3.24E-05 2.34E-02 Not colocalized FALSE FALSE FALSE FALSE 

cis + trans 

LILRA4 2 (1 cis) IVW 0.89 (0.85-0.95) 9.05E-05 6.61E-03 Not colocalized FALSE - FALSE FALSE 

IL6ST 4 (1 cis) IVW 1.09 (1.04-1.14) 1.51E-04 1.10E-02 Not colocalized FALSE FALSE FALSE FALSE 

* Corrected using the Bonferroni method (single-cis: 593 proteins; multiple-cis: 124 proteins; cis + trans: 73 proteins). 2 
† Findings with evidence for colocalization (i.e., posterior probability for a shared causal variant > 80%) shown as “Colocalized”; findings without evidence for colocalization but passing LD-check 3 
shown as “LD-checked”; others shown as “Not colocalized”; colocalization analysis not applicable for some findings due to the unavailability of full summary data. 4 
‡ Tested by Cochran’s Q statistics, with p-value < 0.05 defined as having evidence for heterogeneity (shown as “TRUE”); not applicable for some findings due to insufficient numbers of SNPs. 5 
§ Tested by the MR-Egger intercept test, with p-value < 0.05 defined as having evidence for unbalanced horizontal pleiotropy (shown as “TRUE”); not applicable for some findings due to insufficient 6 
numbers of SNPs. 7 
¶ Tested by Steiger filtering, with p-value < 0.05 defined as having evidence for reverse causation (shown as “TRUE”). 8 
# Tested by bidirectional MR, with IVW p-value < 0.05 for an effect of Alzheimer’s disease on the protein level defined as having evidence for bidirectional effect (shown as “TRUE”); not applicable 9 
for some findings due to the unavailability of full summary data. 10 
SNP, single nucleotide polymorphism. MR, Mendelian randomization. OR, odds ratio. CI, confidence interval. IVW, inverse variance weighted method. LD, linkage disequilibrium. 11 
GRN, granulin. ACE, angiotensin-converting enzyme. CD55, complement decay-accelerating factor. TREM2, triggering receptor expressed on myeloid cells 2. TMEM106B, transmembrane protein 12 
106B. LILRB1, leukocyte immunoglobulin-like receptor B1. SIRPA, signal-regulatory protein alpha. SIGLEC9, sialic acid-binding immunoglobulin-like lectin 9. IDUA, alpha-L-iduronidase. 13 
LILRB2, leukocyte immunoglobulin-like receptor B2. TCN2, transcobalamin II. CTSH, cathepsin H. GPC5, glypican 5. LILRA4, leukocyte immunoglobulin-like receptor A4. IL6ST, interleukin 6 14 
signal transducer.  15 
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Table 2. Evaluation of the top findings. 1 

 Evaluation criteria 
single-cis analysis top findings multi-cis analysis top findings 

cis + trans analysis 

top findings 

GRN ACE CD55 TREM2 TMEM106B LILRB1 SIRPA SIGLEC9 IDUA LILRB2 TCN2 CTSH GPC5 LILRA4 IL6ST 

Plasma pQTL MR Bonferroni-corrected P < 0.05? Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

(If yes above) Colocalized/LD-checked? Yes Yes Yes Yes Yes Yes Yes No Yes No No No No No No 

                

cis-eQTL SMR 

in blood or brain 

Any results with P < 0.05? No Yes Yes N/A No No Yes Yes Yes Yes No Yes N/A No No 

(If yes above) HEIDI test P > 0.05? - Yes No - - - No Yes Yes No - No - - - 

(If yes above) Effect direction plausible?* - Yes - - - - - Yes Yes - - - - - - 

                

cis-sQTL SMR 

in blood or brain 

Any results with P < 0.05? N/A Yes Yes N/A Yes No Yes Yes Yes Yes No Yes N/A No Yes 

(If yes above) HEIDI test P > 0.05? - Yes No - Yes - Yes Yes Yes No - No - - No 

                

cis-mQTL SMR 

in blood or brain 

Any results with P < 0.05? No Yes No N/A N/A No N/A N/A No No N/A N/A N/A No N/A 

(If yes above) HEIDI test P > 0.05? - Yes - - - - - - - - - - - - - 

(If yes above) CpG in promoter area?† - Yes§ - - - - - - - - - - - - - 

(If yes above) Effect direction plausible?‡ - Yes - - - - - - - - - - - - - 

“N/A”: QTL data not available; “-”: analysis not applicable (due to the previous criterion not being met). 2 
* Same effect direction as in pQTL MR results. 3 
† Checked on https://www.ensembl.org/. 4 
‡ Opposite effect direction as in pQTL MR results. 5 
§ cg06751221 (from blood mQTL MR), location: 17:63477520-63477569. 6 
pQTL, protein quantitative trait locus. MR, Mendelian randomization. eQTL, expression quantitative trait locus. SMR, summary-data-based Mendelian randomization. mQTL, methylation 7 
quantitative trait locus. sQTL, splicing quantitative trait locus. LD, linkage disequilibrium. HEIDI, heterogeneity in dependent instruments. CpG, cytosine-phosphate-guanine. 8 
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Proteome-wide 
MR for AD

Multi-omic validation
(conducted for all 15 top-hit proteins from pQTL MR;
ACE was the one with the most validation evidence)

Population analysis
(of ACE-targeting 

drug effects)

Two-sample MR for 
plasma proteins

·  MR wald radio
   (for single cis-pQTLs)
 
·  Generalized IVW
   (for multiple cis-pQTLs)
 
·  IVW
   (for cis+trans-pQTLs)
 
·  Sensitivity +
   replication analyses
 

SMR for gene expression, alternative splicing, & DNA methylation 
in blood & brain

Gene expression
level

Altemative splicing 
level

DNA methylation
level

cis-eQTLs in blood
(from eQTL Gen)

 
cis-eQTLs in brain
(from BrainMeta)

cis-sQTLs in blood
（from GTEx)

 
cis-sQTLs in brain
(from BrainMeta)

cis-mQTLs in blood
(from GoDMC)

 
cis-mQTLs in brain
(from Brain-mMeta)

·  59117 participants in the    
   UK Biobank
 
·  ACEI vs. ARB
 
·  Cox proportional harzards  
   model for incident AD
 
·  Sensitivity analyses

Conventional
observation analysis
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Subgroup

ACEI vs ARB

ACEI vs ARB
(Excluding non-HTN individuals)

ACEI users
N of events / Total

416/42944

264/24301

ARB users
N of events / Total

136/16173

84/9493

HR (95% CI) P value

Model 1

Model 2

Model 3

Model 1

Model 2

Model 3

1.26 (1.03−1.53)

1.28 (1.05−1.56)

1.24 (1.01−1.52)

1.36 (1.07−1.75)

1.39 (1.08−1.77)

1.31 (1.01−1.69)

0.019

0.012

0.040

0.014

0.010

0.043

0.5 1 2
HR (95% CI)

Model
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Ang I

Ang II

RAAS

ACEI

ARB

AT1R
• Oxidative stress
• Inflammation
• Blood flow
• Cell death
• Vasoconstriction

AT2R • Anti-oxidant
• Anti-inflammation
• Cell survival
• Vasodilation

ACE2

ACE

AD Risk

AT receptor Mas1 receptor

ACE
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