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Abstract: 

Objectives: The Robust and Optimized Biomarker Identifier (ROBI) feature selection 
pipeline is introduced to improve the identification of informative biomarkers coding 
information not already captured by existing features. It aims to accurately maximize the 
number of discoveries while minimizing and estimating the number of false positives (FP) 
with an adjustable selection stringency. 

Methods: 500 synthetic datasets and retrospective data of 378 Diffuse Large B Cell 
Lymphoma (DLBCL) patients were used for validation. On the DLBCL data, two established 
radiomic biomarkers, TMTV and Dmax, were measured from the 18F-FDG PET/CT scans, 
and 10,000 random ones were generated. Selection was performed and verified on each 
dataset. The efficacy of ROBI has been compared to methods controlling for multiple testing 
and a Cox model with Elasticnet penalty. 

Results: On synthetic datasets, ROBI selected significantly more true positives (TP) than FP 
(p < 0.001), and for 99.3% of datasets, the number of FP was within the estimated 95% 
confidence interval. ROBI significantly increased the number of TP compared to usual feature 
selection methods (p < 0.001). On retrospective data, ROBI selected the two established 
biomarkers and one random biomarker and estimated 95% chance of selecting 0 or 1 FP and a 
probability of 0.0014 of selecting only FP. Bonferroni correction selected no feature, and 
Elasticnet selected 101 spurious features and discarded TMTV. 

Conclusion: ROBI selected relevant biomarkers while effectively controlling for FPs, 
outperforming conventional selection methods. This underscores its potential as a valuable 
asset for biomarker discovery. 
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Highlights: 

• ROBI is a feature selection tool capable of screening thousands of features. 
• It enables systematic evaluation of numerous radiomic features while minimizing false 

discoveries. 
• ROBI was validated on synthetic and real datasets, outperforming other selection 

techniques. 
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Abbreviations: 

ROBI: Robust and Optimized Biomarker Identifier 

FP: False Positive 

TP: True Positive 

CB: Candidate biomarker 

TST: two-stage linear step-up procedure 

FDR: False discovery rate 

CCO: Correlation Clustering Optimization 

DLBCL: Diffuse Large B Cell Lymphoma 

TMTV: Total Metabolic Tumor Volume  

Dmax: maximum distance between two lesions 
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Introduction 

Radiomics involves the extraction and analysis of quantitative medical image features (1,2). 
By converting images into mineable data, radiomics may reveal disease characteristics that 
are currently overlooked, improving diagnosis, prognosis, and treatment planning. A great 
number of scientific publications have mentioned radiomics since its introduction, but 
reproducibility, standardization, interpretability, and methodological issues limit its potential, 
and few radiomics results have been translated into the clinic (3,4).  

Standards for radiomic feature definition and calculation, and guidelines for best practices are 
being developed to accelerate clinical translation (5-8). Lack of external validation and 
methodological flaws in assessing biomarker novelty and prognostic power partly explain 
why radiomics has not been adopted in the clinics yet. Statistical methods, such as robust 
feature selection algorithms, cross-validation techniques for model evaluation, and statistical 
tests for assessing the significance of prognostic biomarkers, can address some of these 
challenges by ensuring the reliability and generalizability of radiomics studies. On the other 
hand, improper use of these techniques—including overfitting models to specific datasets, not 
controlling for C-index inflation, ignoring multiple testing corrections, data leakage in the 
machine learning pipeline and failing to validate findings externally—can lead to misleading 
results, characterized by either overly optimistic or pessimistic evaluations of radiomic 
features and models. 

In this context, we introduce the Robust and Optimized Biomarker Identifier (ROBI), not as a 
novel feature selection method, but as a software solution designed to combine a range of 
established techniques in a simple yet efficient manner. ROBI is a streamlined Python 
package designed to facilitate the selection of radiomic features, thereby mitigating the risk of 
selecting features that either mirror existing biomarkers (Orlhac et al., 2014 (9)) or lack 
prognostic relevance. By implementing current best practices within an optimized framework, 
ROBI aims to minimize false positives—erroneously selected non-relevant features—while 
enhancing the detection of true positives—genuinely relevant features. It employs time-
efficient permutation tests to precisely estimate the number of false positives, offering users 
the flexibility to tailor selection stringency according to their research objectives. 

ROBI's efficacy is demonstrated through validation on synthetic datasets with established 
truths, and on a cohort of Diffuse Large B Cell Lymphoma (DLBCL) patients, where it 
successfully identified two known biomarkers out of many random ones. This underscores 
ROBI's utility as a practical tool that leverages existing methodologies to overcome some of 
the current barriers in radiomics, paving the way for more reliable and clinically applicable 
radiomic research outcomes. 

Material and methods 

1. Pipeline 

Candidate biomarkers (CB) are assessed for their predictive potential by ROBI, based on their 
values in a patient cohort and their association with the outcome (e.g., time before relapse, 
response to treatment). To avoid selecting candidates that replicate known predictive 
information, previously known predictive biomarkers must be identified. Figure 1 presents the 
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overall pipeline. More details on the choice of the parameter values are provided in the 
supplemental data. 

a. Discarding missing values 

A low number of samples and high numbers of censored samples artificially increase 
biomarker prognostic value (10,11). Any CB with missing values is thus discarded to avoid 
favoring CBs unavailable to all patients. 

b. Discarding already known information 

CBs with an absolute Spearman correlation coefficient greater than a tunable cut-off S (0.5 by 
default) with a known imaging or clinical biomarker are discarded to ensure that the selected 
CB capture new information. In case of multiple established biomarkers, multicollinearity is 
assessed using the Variance Inflation Factor (VIF). CBs exceeding a certain tunable 
multicollinearity threshold M (5 by default) are discarded. A linear model (Cox for survival 
and logistic regression for classification) controls for confounders (e.g., age, treatment) (12). 
A univariate model with only the evaluated CB is trained first and assigns a weight ���� to 
the CB. Then, a multivariate model with the evaluated CB and known covariates is trained 
and the new weight ������  is assigned to the CB. The relative change in weight is defined as: 

����	� �
|���� �������|

������

� 100 

Any CB with ����	�  above a threshold W (10% by default) is discarded. 

c. Assessment of CBs performance 

Each CB's prognostic ability is assessed using Harrell's Concordance Index (C-index) against 
patient outcome data such as time of death or relapse, accommodating censored outcomes, or 
balanced accuracy for classification task, accommodating imbalanced datasets. These scores 
are tested for significance using a two-sided permutation test of P permutations (1,000 by 
default). A two-stage linear step-up procedure (TST) is used to control the false discovery rate 
(FDR, the proportion of false positive in selected biomarkers) and address multiple testing 
(13). This statistical method uses a conservative threshold to identify potential selection and 
adjusts this threshold in a second stage based on the initial results to increase power while 
controlling the overall FDR. Adjusting TST’s Q parameter allows flexibility in balancing 
numbers of FPs and selected CBs. To increase the yield, ROBI performs the TST last in the 
selection process when the number of tested CBs has already been substantially reduced 
through the previous selection steps. 

d. Optimization of the number of selected biomarkers 

To optimize the selection of biomarkers, we employ a correlation clustering optimization 
(CCO) strategy, where CBs conveying similar information are grouped based on their 
absolute Spearman’s correlation. Within each cluster, only the biomarker demonstrating the 
highest predictive accuracy is retained. This approach is informed by methods previously 
utilized in genomics, notably the weighted gene correlation network analysis (WGCNA) 
technique, which clusters genes based on similarity in expression patterns to identify modules 
of highly correlated genes, thereby facilitating the interpretation of complex biological 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2024. ; https://doi.org/10.1101/2024.09.09.24313059doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.09.24313059
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 
 

phenomena (14). By adopting a similar methodology, we adjust the maximum allowable 
correlation between two clusters, C (0.5 by default), to fine-tune the granularity of the 
clustering and thus the number of biomarkers selected. This method not only enhances the 
specificity of our biomarker selection process but also ensures that the biomarkers retained 
offer of more unique predictive value, thereby avoiding redundancy. 

e. False positive estimation 

Because it is selecting the CBs with the best p-values, CCO may optimistically bias TST’s 
FDR. To correct and improve the number of FP estimation, ROBI randomly permutes 
outcome data during selection. This preserves the relationships among CBs but breaks their 
association with patient outcomes. The features selected using the permuted outcome are thus 
FP. After repeating this process T times (by default 1,000 times), ROBI calculates the average 
number of FPs and its 95% confidence interval. The probability of only selecting FPs is 
assessed by the proportion of permutated datasets with as many as or more selected CBs than 
the non-permuted selection. 

2. Synthetic data evaluation 

A total of 500 synthetic datasets were generated with scikit-learn (15) and scikit-survival (16) 
Python packages to evaluate ROBI. These datasets varied in the number of samples, number 
of genuine (associated with the outcome) and spurious (not associated with the outcome) 
biomarkers, censoring, correlation between biomarkers, and target noise. Table 1 shows the 
parameter distributions and ranges. Details about the generation of the datasets are provided 
in the documentation of scikit-learn (15). 

A linear regression with random weights on genuine biomarkers defined the target using 
Scikit-learn’s “make_regression” function. The target was not built using spurious 
biomarkers. ROBI processed each dataset with CCO with P = 106, and T = 103. Genuine 
biomarkers selected by ROBI were defined as TPs and selected spurious biomarker as FPs. 
The “effective_rank” parameter within “make_regression” allowed for the simulation of 
correlations among features (biomarkers) by controlling the rank of the covariance matrix 
used to generate the features. A lower “effective_rank” implies a higher correlation among a 
subset of features, thereby simulating real-world scenarios where biomarkers might exhibit 
interdependencies. The same datasets were also processed with the two-stage linear step-up 
procedure (TST) alone to compare its results to ROBI’s selections and verify that ROBI’s 
optimization improves the number of  biomarkers rightly selected. 

The average, standard deviation and 95% confidence interval of the number of selected CBs, 
TPs and FPs were calculated as well as the percentage of datasets with more TPs than FPs, for 
different values of Q. Wilcoxon signed-rank tests were used to determine whether ROBI 
selected more TPs than FPs and if using ROBI increased the number of rightly selected 
biomarkers compared to TST alone. The distribution of the difference of TPs for the ROBI 
and TST selection for the same number of FPs was plotted. 

3. Real data evaluation 

DLBCL patients from REMARC (NCT01122472) and LNH073B (NCT00498043) cohorts 
were analyzed. Detailed cohort compositions have been described elsewhere (17,18). All 
patients had baseline anonymized 18F-FDG PET/CT scans, Progression Free Survival (PFS) 
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and Overall Survival (OS) available. Lesions were segmented by expert nuclear medicine 
physicians (ASC, LV, MM) in the PET images (19,20). 

In DLBCL, Total Metabolic Tumor Volume (TMTV) and maximum distance between two 
lesions (Dmax) are known to be prognostic of PFS and OS (20,21). These two biomarkers 
were calculated on the segmented PET images using PyRadiomics (21) 

10,000 spurious biomarkers were randomly generated for all patients and input to ROBI in 
addition to TMTV and Dmax. ROBI parameter settings were S = 0.5, M = 5, W = 10%, P = 
107 and T = 104. Q was set to have at least one selected CB. No CCO was used because 
spurious biomarkers are random and have low correlation. Biomarkers were tested to not 
replicate the information of ECOG, age adjusted International Prognostic Index (23), 
treatment, and sex. We then checked whether TMTV and Dmax were selected by ROBI and 
whether the number of selected spurious biomarkers was within the 95% confidence interval 
of ROBI’s estimated number of FPs. Selection was performed for progression (PFS) or death 
from any cause (OS) prediction. 

Selection was also performed with other feature selection techniques: TST with a Q value 
chosen to have less than one false positive, the Bonferroni procedure with a probability of 
0.05 of having 1 or more false positive, and a Cox model with Elasticnet penalty. 

Results 

1. Synthetic data evaluation 

A total of 99.3% of datasets had the number of FPs within ROBI’s 95% confidence interval. 
Table 2 shows ROBI’s selection results on synthetic datasets, and Figure 2 shows the average 
number of selected features and FPs, with their 95% confidence intervals, as a function of Q, 
for both ROBI’s and TST’s selection. More CBs were selected with higher Q. ROBI selected 
significantly more TPs than FPs (p < 0.001). For the same Q, ROBI significantly increased 
numbers of TPs, FPs, and the difference between them compared to TST (p < 0.001). 

Figure 3 plots the difference between numbers of TPs of ROBI and the number of TPs of TST 
for samples in which the same numbers of FPs were selected. For the same number of FPs, 
ROBI selected significantly more TPs than TST alone (p < 0.001). 

The probability of having only FPs in the selection estimated by ROBI was strongly 
correlated with the number of TPs (ρ = -0.96, p < 0.001). For 60% of cases with at least one 
TP, this probability was below 0.05. For the cases with only FPs selected (3.3% of all cases), 
0.6% of them had a probability below 0.05. 

2. Real data evaluation 

The DLBCL cohort included 378 patients, among whom 96 had progressive disease and 55 
died. 

For PFS prediction, TMTV and Dmax both yielded a C-index of 0.63, while 105 spurious 
features had a C-index > 0.58 and 16 had a C-index > 0.60. The significance of the spurious 
features was p < 0.01 for 103 of them, and p < 0.001 for 13 of them. The Bonferroni selection 
did not select any feature. TST selected both TMTV and Dmax and one spurious feature. An 
Elasticnet selected Dmax and ranked it first, but it did not select TMTV and selected 101 
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spurious features. ROBI selected TMTV and Dmax, and one spurious feature. ROBI predicted 
a 95% chance of having 0 or 1 FP with an average of 0.1 FP. ROBI estimated the probability 
of having only FP to be 0.0014. 

For OS prediction, TMTV and Dmax had respectively a C-index of 0.63 and 0.60, and 137 
spurious features had a C-index > 0.60. The significance of the spurious features was p < 0.01 
for 110 features, and p < 0.001 for 8 of them. The Bonferroni selection did not select any 
feature. TST did not select any spurious features, nor TMTV nor Dmax. An Elasticnet 
selected TMTV and ranked it 47. It did not select Dmax and selected 73 spurious features.  
ROBI did not select any feature. 

 

Discussion and Conclusion 

This study introduced ROBI, the Robust and Optimized Biomarker Identifier. We called it 
“Robust” because false discoveries are controlled and “Optimized” because multiple 
strategies increase the number of rightly selected biomarkers. We showed that this selection 
tool efficiently controls the false positive numbers while increasing the number of selected 
biomarkers compared to the standard two-stage linear step-up procedure (TST) alone. ROBI’s 
95% confidence interval estimating the number of false positives was correct for 99.3% of the 
synthetic datasets, small difference between these two numbers being probably explained by 
statistical fluxes. It can find relevant biomarkers among thousands of candidates with enough 
data (96 events for PFS prediction in our real dataset), while other standard methods fail with 
such a high number of potential candidates. For instance, in the test performed on the 
DLBCL, enough patients had PFS observed to select TMTV and Dmax, but not enough 
events were observed in OS to select them. 

As shown by the evaluation on the synthetic datasets, ROBI’s utility transcends the radiomic 
domains, making it a versatile tool for biomarker selection across various fields (e.g., 
genomics). 

ROBI has limitations. Only biomarker screening is addressed. Validating a new biomarker 
requires definition, measurement, standardization, modeling, and interpretation. More 
importantly, ROBI does not replace external validations. It only increases the chance of 
replicating the findings by controlling the risk of false positive selection. 

Limitations include dropping candidate biomarkers with missing data. This step may 
eliminate promising biomarkers by reducing the number of candidates. Removing a few 
patients (preferably those with a censored target value) to avoid discarding too many 
candidate biomarkers can mitigate this limitation. 

ROBI is more time consuming than other selection methods. However, thousands of 
biomarkers can be accurately evaluated in a reasonable time. On a PC an Intel Core i7-
11800H (2.30 GHz), NVIDIA GeForce RTX 3070 (8 GB), and 16 GB RAM, 5,000 candidates 
could be evaluated in less than 9 min, with T = 103 et P = 107. 

ROBI may not identify all relevant biomarkers among candidates, and the number of false 
negatives (predictive biomarkers that are not selected) remains unknown. In addition, because 
it uses univariate tests, ROBI may not always choose biomarkers that improve multivariate 
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models. Furthermore, while the pipeline can estimate the number of false positives and the 
probability of selecting only false positives, it cannot tell which feature is more likely to be a 
true positive, and external validation remains required to validate the selected features. 

Because ROBI uses a multivariate model to address confounders, only a finite number of 
them can be handled. For survival prediction, the general guideline is 10 non-censored 
samples per confounder (24). 

An important future work needed is a more thorough comparison to other feature selection 
techniques on non-synthetic datasets.  

In conclusion, ROBI selects biomarkers that best predict patient outcomes in a cohort, by 
discarding candidates that do not measure any new predictive information. ROBI identifies 
the most promising candidates, which will then have to be tested on external cohorts to 
confirm their predictive value. ROBI might facilitate feature selection in radiomics and 
beyond, and to support this effort, we provide a user-friendly Python implementation at 
https://github.com/Lrebaud/robi.  
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Tables legends 

 

 

 

Table 1: Average, standard deviations, and range of the synthetic dataset features. 

 

 

 

 

 

 

Table 2: Average values and standard deviation of the number of selected candidate 
biomarkers (CB), number of true positives (TP), false positives (FP), and percentage of 
datasets with more FP than TP, for different levels of Q, for the ROBI pipeline and the TST 
procedure alone. 

 

 

  

 Average (and std) Min Max 
Number of samples 423 (±260) 10 1000 
Proportion of censored samples 0.57 (±0.27) 0.1 0.9 
Noise 4.92 (±3.04) 0 10 
Number of predictive biomarkers 515 (±280) 1 1000 
Number of non-predictive biomarkers 3164 (±2268) 10 50000 
Proportion of predictive biomarkers 0.196 (±0.153) 0.004 0.812 
Average correlation between candidates 0.13 (±0.08) 0 0.6 

Q Method 
Number of 
selected CB 

Number 
of TP 

Number 
of FP 

Percentage of datasets 
with more TP than FP 

0.01 
TST 4 (±20) 4 (±20) 0 (±0) 100.0 % 

ROBI 6 (±28) 6 (±27) 0 (±0) 99.8 % 

0.10 
TST 9 (±33) 9 (±32) 0 (±0) 99.8 % 

ROBI 15 (±47) 14 (±44) 1 (±12) 99.2 % 

0.25 
TST 13 (±43) 13 (±42) 0 (±2) 99.4 % 

ROBI 28 (±81) 21 (±56) 6 (±48) 97.1 % 

0.50 
TST 19 (±57) 17 (±52) 1 (±10) 99.2 % 

ROBI 52 (±141) 32 (±71) 20 (±99) 94.6 % 
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Figures legends: 

 

 

Figure 1: Diagram of the ROBI selection pipeline. Each free tuning parameter is denoted by a 
capital letter (S, M, W, P, C, Q and T). Intuitive explanation and range of values of these 
parameters are provided in supplemental materials. “VIF” is the Variance Inflation Factor. 
“weight change” is the relative change in weight when confounders are introduced. “FDR” is 
the False Discovery Rate and “TST” stands for two-stage linear step-up procedure, the 
technique used to control for FDR. Filtering candidates reproducing known information and 
CCO are optional. 
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Figure 2: average number of selected candidate biomarkers (CB) and average number of false 
positives (FP) among the selected CB, with the associated 95% confidence interval, for the 
ROBI pipeline and the TST procedure alone, at various levels of Q. 

 

 

 

 

 

 

Figure 3: Difference between the number of True Positives (TP) selected by ROBI and the 
number of TPs selected by TST alone when the two methods had the same number of False 
Positives (FP). The difference is positive most of the time, meaning that ROBI effectively 
improved the rate of TP selection. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2024. ; https://doi.org/10.1101/2024.09.09.24313059doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.09.24313059
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 
 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2024. ; https://doi.org/10.1101/2024.09.09.24313059doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.09.24313059
http://creativecommons.org/licenses/by-nc-nd/4.0/

