Abstract
Discovery and translation of gene-environment interactions (GxEs) influencing clinical outcomes is limited by low statistical power and poor mechanistic understanding. Molecular omics data may help address these limitations, but their incorporation into GxE testing requires principled analytic approaches. We focused on genetic modification of the established mechanistic link between dietary long-chain omega-3 fatty acid (dN3FA) intake, plasma N3FA (pN3FA), and chronic inflammation as measured by high sensitivity CRP (hsCRP). We considered an approach that decomposes the overall genetic effect modification into components upstream and downstream of a molecular mediator to increase the potential to discover gene-N3FA interactions. Simulations demonstrated improved power of the upstream and downstream tests compared to the standard approach when the molecular mediator for many biologically plausible scenarios. The approach was applied in the UK Biobank (N = 188,700) with regression models that used measures of dN3FA (based on fish and fish oil intake), pN3FA (% of total fatty acids measured by nuclear magnetic resonance), and hsCRP. Mediation analysis showed that pN3FA fully mediated the dN3FA-hsCRP main effect relationship. Next, we separately tested modification of the dN3FA-hsCRP (“standard”), dN3FA-pN3FA (“upstream”), and pN3FA-hsCRP (“downstream”) associations. The known FADS1-3 locus variant rs174535 reached p = 1.6x10-12 in the upstream discovery analysis, with no signal in the downstream analysis (p = 0.94). It would not have been prioritized based on a naïve analysis with dN3FA exposure and hsCRP outcome (p = 0.097), indicating the value of the decomposition approach. Gene-level enrichment testing of the genome-wide results further prioritized two genes from the downstream analysis, CBLL1 and MICA, with links to immune cell counts and function. In summary, a molecular mediator-focused interaction testing approach enhanced statistical power to identify GxEs while homing in on relevant sub-components of the dN3FA-hsCRP pathway.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
KEW was supported by K01DK133637. JBM was supported by UM1DK078616 and R01HL151855. AKM was supported by R01HL145025.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
Code supporting the simulations and analyses described here can be found at https://github.com/kwesterman/ukb-n3fa-decomp. The UK Biobank data can be obtained through application at https://www.ukbiobank.ac.uk/.