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Abstract

Machine learning and genomic medicine are the mainstays of research in delivering person-

alized healthcare services for disease diagnosis, risk stratification, tailored treatment, and

prediction of adverse effects. However, potential prediction errors in healthcare services

can have life-threatening impact, raising reasonable skepticism about whether these appli-

cations are beneficial in real-world clinical practices. Conformal prediction is a versatile

method that mitigates the risks of singleton predictions by estimating the uncertainty of a

predictive model. In this study, we investigate potential applications of conformalized mod-

els in genomic medicine and discuss the challenges towards bridging genomic medicine

applications with clinical practice. We also demonstrate the impact of a binary transduc-

tive model and a regression-based inductive model in predicting drug response and the

performance of a multi-class inductive predictor in addressing distribution shifts in molec-

ular subtyping. The main conclusion is that as machine learning and genomic medicine

are increasingly infiltrating healthcare services, conformal prediction has the potential to

overcome the safety limitations of current methods and could be effectively integrated into

uncertainty-informed applications within clinical environments.

Keywords: Conformal prediction, machine learning, genomic medicine, uncertainty es-

timate, reliable predictions
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1 Introduction

AI-based models are having a transformative impact on high-risk predictions made for per-

sonalized medicine applications. 1 Genomic medicine as a cornerstone of precision medicine

has the potential to revolutionize healthcare for rare diseases and cancer through robust and

reliable personalized diagnosis, risk stratification, and tailored treatment solutions.2 However,

prediction errors can have life-threatening impact, raising reasonable skepticism on whether

these applications are beneficial in routine clinical practices. The main sources of prediction

errors are the stochasticity and complexity of the models, the different data collection/curation

protocols, and domain shifts that result in data falling outside training distributions.22

1.1 Uncertainty quantification methods

To mitigate the risks of singleton predictions in zero-tolerance healthcare applications, several

methods calibrate the outcomes into distribution predictions made for each sample.20 Bayesian

techniques like Monte Carlo dropout,37 variational inference,45 and non-Bayesian methods such

as deep ensemble,73 softmax calibration, and selective classification74 rely on prior distribu-

tions and posterior inference to provide a probabilistic framework for estimating uncertainty

in predictions. These approaches estimate a probabilistic distribution instead of deterministic

outcomes, enhancing decision-making and model interpretability, which is particularly valuable

in healthcare settings for decision support and risk mitigation. Additionally, distribution-free

uncertainty quantification techniques offer a general framework with rigorous statistical guar-

antees to black-box models, reducing uncertainty in decision-making processes.

In this context, Conformal Prediction (CP) stands out as an effective and versatile method for

quantifying statistically rigorous uncertainty (Angelopoulos et.al, 2021). Unlike traditional pre-

diction methods, CP generates prediction sets with guaranteed error rates rather than point

estimates and operates under the assumption of independent and identically distributed ran-

dom variables (i.i.d.), emphasizing exchangeability.

1.2 Principles of conformal prediction

CP was initially proposed by Vladimir Vovk (2005), 11 and later expanded by Vovk and Shafer in

2008. 12 CP provides a formal and structured approach to addressing questions that were often

approached in a vague and abstract way in machine learning (ML) models, such as determining
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the confidence level of a model’s predictions. CP quantifies these uncertainties by estimating

prediction intervals for regression problems and a set of classes for classification problems.

Both prediction intervals and classes are guaranteed to include the actual value with a prede-

fined confidence level. Practically, CP estimates how “unusual” a sample seems to be relative

to previous ones. Therefore, CP uses past experience to determine accurate confidence levels

in new predictions. 12 The prediction areas are set by including samples that have very com-

mon values or better yet, those that are not very unlikely. CP operates under the assumption of

“independent and identically distributed random variables (i.i.d.)”, emphasizing the exchange-

ability assumption. This assumption implies that the order of observations does not affect their

joint distribution. This makes CP particularly valuable in real-world biomedical applications in

which making assumptions about the underlying data distribution may be challenging or unre-

alistic.

1.3 Conformal prediction frameworks

CP is defined as a mathematical framework that can be used with any ML model to produce

reliable predictions with high probability and user-defined error rates. 11,12 Given a set of training

data D, with n instances {(xi, yi), ..., (xn, yn)}, where xi is a feature vector and yi is the true label

of the i-th sample, with labels in Y = [1,K], the objective is to predict the label y ∈ Y for a

new sample with feature vector xn+1. In classification problems, we test all possible classes

of a new instance and measure the probability of a prediction to be the correct one for each

class. To do so, we calculate the non-conformity score αi, which is based on the underlying ML

algorithm and indicates how strange an instance is compared with other instances. A simple

example of a non-conformity score is the 1-predicted probability of the true class, otherwise

called inverse probability. Based on the hypothesis that the instances are independently and

identically distributed random variables (i.i.d.), for a new instance xn+1 we compute the non-

conformity score αy
n+1 for each possible class. Finally, for each possible label we calculate the

p-value as:

p− valuey =

∑{
αi ≥ αy

n+1

}
+ 1

n+ 1
, ∀i ∈ {1, .., n} (1)

p-value is used to evaluate the non-conformity score of the new instance αn+1 against all other

non-conformity scores. False predictions result in a higher αn+1 than the rest non-conformity
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scores of the training set. In this case, we get a low p-value, while in cases of correct prediction,

we expect a higher p-value. So, for a dataset that satisfies the i.i.d. assumption, every p-value

in Eq. 1 has the following property validity guarantee:

P (p− valuey ≤ ϵ) ≤ ϵ (2)

where, ϵ is the user-defined significance level (or target probability error). This statement, P (p−

valuey ≤ϵ), expresses the probability P that the p-value, derived from a set of independent

and identically distributed (i.i.d.) instances, falls below or equals the user-defined significance

level ϵ. This probability is constrained by the property in Eq. 2, signifying that the likelihood

of obtaining a p-value less than or equal to ϵ is itself limited by ϵ. In practical terms, this

encapsulates the assurance that, under the assumption of i.i.d. instances, the probability of

observing a p-value leading to the rejection of the null hypothesis does not exceed the chosen

significance level. Consequently, we may output a set of possible predictions and construct the

prediction region Cϵ, as follows:

Cϵ = {y ∈ Y |p− valuey ≥ ϵ} (3)

Because of the property in Eq. 2, the probability that each set of predictions does not contain

the correct class will be less than or equal to ϵ, so we limit the error rate to less than or equal to

ϵ. In a binary classification problem with a positive and a negative class there are four possible

outcomes for a conformal prediction i.e., positive, negative, both classes (positive and negative),

and no class assignment (empty class). In each case, the classes are included in the prediction

region when we are confident with the desired level. The “empty” label indicates that the sample

lies outside the range where the model can make reliable predictions. In other words, the model

cannot assign any class with the user-defined required confidence level, signifying that the

sample is beyond the boundaries of the model’s applicability. Consequently, the classification

decision needs to be determined, by other in silico methods and subsequently integrated into

an enriched model. This step is useful for expanding the model’s applicability domain.9

In a regression analysis framework, CP transforms point predictions from a model f̂ trained

on D data with n instances, to intervals which contain the true value with a level of guarantee
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defined by the user. In this case, to compute the non-conformity scores for every sample in the

training set, we measure how different the observed yi is from the model prediction f̂(xi). A

simple measure to calculate non-conformity is the absolute residual: αi = |yi − f̂(xi)|. Given ϵ

the user-defined significance level, we calculate the Q1−ϵ quantile of the scores as:

Q1−ϵ =
(1− ϵ)(n+ 1)

n
(4)

For a new input xn+1, the prediction interval is defined as follows:

[L(xn+1), U(xn+1)] = [f̂(xn+1)−Q1−ϵ, f̂(xn+1) +Q1−ϵ] (5)

where, L is the lower limit and U the upper limit for the new input xn+1. The resulted predic-

tion interval [L(xn+1), U(xn+1)], assuming data D are exchangeable, satisfies the property of

marginal coverage:

P (yn+1 ∈ [L(xn+1), U(xn+1)]) ≥ 1− ϵ (6)

In other words, the probability that the predicted value is included in the prediction interval is

bigger or equal to the user-defined level of confidence.

1.3.1 Transductive conformal prediction

CP was originally used in the transductive or full version. 11,13 The transductive CP (TCP) uses all

the available data to train the model and thus, we can produce more accurate and informative

predictions. After choosing the appropriate non-conformity function, we add the features of

a new instance xn+1, and assuming its class yn+1, we retrain the model K times, where K is

the number of all the possible classes for xn+1 (Fig.1). In a binary classification problem, the

model will be trained 2*Z times for each class, with Z being the number of points in the test set.

Then, for these two new training sets, we apply the non-conformity measure, we compute the

p-values (Eq. 1) and finally, we check whether the features (xn+1) of an instance in the test set

“conforms” to the predictions of the training set and leads to decisions for the creation of the

prediction region. TCP is a suitable method for analyzing small data sets as it works as an online
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Figure 1: CP-based frameworks. Inductive CP (ICP), involves a static split of the dataset into training
and calibration sets, using a single model for all predictions, while Transductive CP (TCP), builds a new
model for each test instance, offering potentially more tailored predictions at the cost of increased
computational effort.

framework. For larger datasets more computationally efficient methods should be selected e.g.,

inductive CP.

1.3.2 Inductive conformal prediction

Inductive CP (ICP) is the most popular CP approach. TCP has high a computational cost and

may not be suitable for certain applications in genomic medicine. For example, multi-omics

analyses usually involve large datasets due to the sheer size, complexity, and variability of the

genomic data and the technologies that are used to produce it. To deal with this issue ICP trains

the basic algorithm only once 14 by splitting the training set n into two smaller sets, a training

set withm < n and a calibration set with n−m instances. The training set is used to create the

“prediction region” and the instances in the calibration set are exclusively used to calculate the

p-value of each possible class of a new test instance X (Fig. 1). No matter which CP method

we use, ICP will result in unbiased predictions. The efficiency of an ICP model depends on

many factors such as, how large and well-constructed (i.i.d.) the dataset is, how effective is the

underlying ML algorithm, and which non-conformity measure is employed.
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1.4 Evaluation and parameterization of CP methods

Conformal predictors enhance the reliability of black-box models by generating prediction sets

that reflect uncertainty in high-risk applications. The evaluation of the conformalized model

generally concerns adaptivity, size, and coverage of the prediction intervals. As Angelopoulos

et al. (2021) proposed, a model’s adaptivity can be assessed by the size of the prediction sets,

with larger sets indicating higher uncertainty and more challenging predictions, while smaller

sets signify easier ones (Angelopoulos et.al, 2021). Adaptivity is closely linked to the model’s

conditional coverage, which ensures that the true label falls within the prediction region at a

defined confidence level for any subset of the test set. Marginal coverage is achievable, but

conditional coverage requires consistency across subsets of the test data. Angelopoulos et al.

recommended the size-stratified coverage (SSC) to measure adaptivity and suggested verifying

conditional coverage by repeating the framework with different combinations of calibration and

test sets (Angelopoulos et.al, 2021). In a similar vein, Park et al. proposed the meta-XB, a

meta-learning approach designed for cross-validation-based CP that focuses on reducing the

average size of prediction sets while ensuring formal calibration for each task.47

Given that CP can be applied across various prediction models, its effectiveness hinges on three

critical parameters: the choice of the non-conformity function, the size of the calibration set,

within an ICP, and the underlying model.

1.4.1 Non-conformity function

The choice of the non-conformity function is critical for the effectiveness of conformal pre-

dictors. This function evaluates how ”strange” or dissimilar a new instance is relative to the

training data. Vovk et al. introduced this measure to gauge dissimilarity, although it can also

be adapted to a conformity measure for assessing similarity. 11 Non-conformity measures are

derived through the application of a non-conformity function, and the selection of this func-

tion depends on the nature of the underlying model. While any function can theoretically serve

as a non-conformity measure, choosing the most appropriate one can significantly impact the

efficiency and accuracy of a conformalized model.
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1.4.2 Calibration set size

Another crucial parameter in conformal prediction is the size of the calibration set. This size

affects the amount of data used to initially train the model, with a larger calibration set po-

tentially improving model coverage (Angelopoulos et.al, 2021). However, dealing with large

datasets can increase computational costs. To address this challenge, several methods have

been proposed. Abda et al. scaled the TCP framework on large real-world data, reducing com-

putational cost while maintaining CP guarantees (Abad et.al, 2022). Schuster et al. introduced

CATs, an extension of CP designed to accelerate inference in transformer models for natural

language processing applications while ensuring high confidence (Schuster et.al, 2021). Addi-

tionally, a dynamic CP framework trains models with iteratively updated samples.48 Variations in

CP conceptualization include regularization techniques, ensemble methods, and graph-based

approaches to minimize data dimensions (Davis et.al, 2024).49–51

1.4.3 Underlying model selection

The effectiveness of conformal prediction (CP) is closely tied to the choice of the underlying

learning model. The non-conformity measure, which assesses how unusual a new instance is

relative to the training data, depends heavily on the model’s performance. Different models

may exhibit varying degrees of effectiveness and reliability within a CP framework. Therefore,

selecting an appropriate model is crucial for generating accurate and reliable prediction inter-

vals. The performance of the non-conformity function is influenced by how well it aligns with

the model’s predictive capabilities. A well-calibrated and accurate model will produce better-

calibrated conformal intervals. As a result, optimizing the model’s parameters and ensuring its

suitability for the specific application are essential steps before implementing and evaluating

conformal prediction.

1.5 Conformal prediction and distribution shift

A major concern in ML applications is the deviation of the properties and distribution of the

new, unseen data compared to those of the training set. The so-called distribution shift is fre-

quently observed in real-world predictive models, when the joint distribution of inputs and out-

puts differs between training and test stages. Covariate shift occurs when there is a discrepancy

between the distributions of input points in the training and the test datasets, even though the
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conditional distribution of output values given input points remains consistent.41 The weighted

CP proposed by Tibshirani et al.38 can handle covariate shift by weighting each non-conformity

score by a probability that is proportional to the likelihood ratio of the new data distribution to

those used to build the model. The maximummean discrepancy (MMD), proposed by Borgwardt

et al.,40 is a kernel-based statistical test used to determine whether two samples are drawn from

different distributions. In contrast to typical measures like Kolomogorov-Smirnov test that can

only be applied in vectors, MMD is applicable in multivariate data that are frequently met in

genomic data analyses. The null hypothesis in MMD statistical test states that there is no dif-

ference between the distributions of the two datasets and therefore that the datasets are drawn

from the same distribution.

The label or prior probability shift, refers to a shift in the distribution of class variables. A vari-

ation of CP named Mondrian CP (MCP) can remedy this difference between the train and vali-

dation samples. In MCP, each class is evaluated independently to determine the confidence of

assigning an instance to that class. Predictions for the calibration set produce non-conformity

scores for each class. MCP ensures controlled error rates by categorizing training sets based

on features or their combinations and defining significance for each category. 11,54 It compares

non- conformity scores only within the same category, making it suitable for poorly distributed

datasets. Label Conditional Mondrian Conformal Prediction (LCMCP) is a specific case of MCP

where the category of each instance is determined by its label. Under the same scope, Bostrom

et al. proposed the Mondrian conformal regressors handling the range of the prediction inter-

val.53 Sun et al. proposed a Mondrian Cross-Conformal Prediction for large imbalanced bioac-

tivity datasets, and proved that this framework performs well in this type of shifts.52

Recent work suggests CP as an effective framework that can handle distribution shifts. Cai et

al. utilized an Inductive Conformal Anomaly Detection (ICAD) approach for online detection

of distribution shifts on high-dimensional data with low computational cost and efficiency.55

Hernandez et al. demonstrated the robustness of conformalized models in predicting the activ-

ities of novel molecules on cancer cell lines, offering valuable insights for drug discovery under

strong distribution shifts (Hernandez et.al, 2024). However, in real world applications, distribu-

tion shifts are commonly encountered with unexpected results in model performance. For large

scale datasets, black-box model architectures or hidden distribution shifts, predictions must

undergo careful examination before being applied in clinical decision making. To prove this
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Kasa et al. examined how those shifts affect CP and concluded that the performance degrades

and the coverage guarantees are frequently violated, highlighting the challenges and the need

for further elaboration on these issues (Kasa et.al, 2023).

2 Conformal modelling applications in biomedicine

2.1 Applications in biomedical imaging

In principle, CP coupled with any traditional learning model can be used to address uncertainty

in a wide range of scientific domains. In medical applications, it is crucial for any predic-

tive model to generate predictions tailored to each individual patient rather than relying on

generalizations from a broader population. Hence the definition of the confidence intervals

for individual predictions is critical especially when these models are adopted in clinical envi-

ronments.3 In such clinical applications CP is used to intuitively express the uncertainty of a

prediction and to facilitate the model’s transparency and robustness (Lu et.al, 2022). For exam-

ple, CP has been employed in medical imaging applications for subgroup analysis, distribution

shift estimation, and for the elimination of prediction errors in safety-critical applications.23,61

Using microscopic biopsy images Olsson et al. implemented an effective CP-based model for

diagnosis and grading of prostate cancer.4 Additionally, Kapuria et al. proved that, using CP,

clinicians can make informed decisions and minimize the risk of colorectal cancer polyps mis-

diagnosis.62 In the same context, Lambrou et al., applied a CP approach coupled with Genetic

Algorithms to diagnose breast cancer based on digitized images of fine needle aspirates from

breast masses. 10 In non-cancer applications, CP was used by Lu et al. to develop a deep learn-

ing model for grading the severity of spinal stenosis in lumbar spine MRI24 and Wieslander et

al. combined deep learning methods with CP to predict tissue sub-regions using hierarchical

identification on rat lung slides.25

2.2 Applications in drug discovery

In preclinical settings, CP has been applied in drug discovery, mainly to predict the biological

activity of compounds based on their chemical structure. CP-based methods have been used

as an alternative approach to traditional QSAR models, to predict target-ligand binding that are

enriched with uncertainty estimates (Xu et.al, 2023).26 For example, Alvarsson et al. used CP on

top of random forest models to classify three different ATP transporters.9 The authors concluded

10
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that the higher the level of confidence the larger the prediction interval or set of predictions,

and they suggested CP as an effective method for drug discovery applications. Toccaceli et

al. demonstrated the application of an Inductive Mondrian Conformal Predictor to predict the

biological activities of chemical compounds by addressing challenges such as the large number

of compounds, the high dimensionality of the feature space, the sparseness, and the class

imbalance.6 In the same context, CPSign proposed a conformal predictor that is applied to

chemical descriptors for chemoinformatics modeling (McShane et.al, 2023) while several other

applications in biomolecular design proposed sophisticated methods to handle covariate shift,

enabling the computation of distribution-free prediction intervals.27,60 Similar CP approaches

have been extensively applied in modeling chemical compound toxicity.5,7,8,28,29

3 Genomic medicine and conformal prediction

Despite their widely recognized contribution to medical imaging and drug discovery, confor-

mal predictors have not been sufficiently used in joint applications of genomics and medicine.

Genomic medicine is an emerging medical discipline and a rapidly evolving field of predictive

modeling applications. In areas such as oncology, pharmacology, rare or undiagnosed diseases,

and infectious diseases genomic medicine has a transformative impact on improving medical

decisions, and advancing medical knowledge, and healthcare delivery.

3.1 Dealing with uncertainties of genomic medicine models

To advance clinical applications, genomicmedicinemodelsmust deal with a variety of uncertainty-

inducing and safety-critical issues that are mainly caused by the inherent complexity and vari-

ability of the biological systems, the inter-individual heterogeneity in genetic profiles, environ-

mental exposure, and lifestyle as well as the non-linearity of the interactions within the patients

data. Uncertainty manifests in various steps of genomic analysis, and particularly for ML ap-

plications has different dimensions. Uncertainties might involve the ambiguity, complexity, or

deficiency of the data, as well as the unpredictability of the models. It is important to understand

the dimensions of uncertainty, however, it is also important to recognize that uncertainty is not

always problematic.30 Uncertainty estimates can help acknowledge the complexity of molecular

events and account for the data variability in a model recalibration. By definition, CP estimates

uncertainty when making personalized decisions and leverages the evidence linking each in-
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dividual’s genetic makeup to zero-tolerance applications such as medical decision-making, di-

agnosis, risk assessment, and treatment strategies. In this context, CP-enriched models can

greatly benefit from the availability of massive amounts of trainable multi-omics data derived

from high-throughput sequencing technologies and they can in turn contribute to improved

generalizability and calibration of rare events of the learning models.

3.2 Current landscape of conformal prediction

In the field of genomic medicine only few CP uncertainty-aware models have been reported

in the literature. Ianevski et al. used patient-derived single-cell transcriptomic data to train a

gradient boosting model that prioritizes multi-targeting therapeutic compounds for stratified

cancer treatment (Ianevski et.al, 2023). In this ex vivo drug testing methodology the confor-

malized model was built using subclone-specific differentially expressed genes and helped to

filter out predictions with low conformity scores. Single-cell transcriptomic data was also used

by Sun et al. to identify subtypes within the neural stem cell lineage.31 In this work, CP is part

of a general framework for estimating uncertainty in spatial gene expression predictions and is

applied to calculate the calibration score that links the cell-centric variability to the prediction

error.

In a different setting, Sun et al. proposed a method to address personalized genetic risk as-

sessment for complex diseases that relies on a Mondrian cross-conformal prediction model to

estimate the confidence bounds of the polygenic risk score prediction.32 The proposed method

showed that using the predicted risk of each individual to classify as a case or control is more

clinically relevant than group-wise assignments to high-risk or low-risk groups based on an

arbitrary selection of the extreme scoring samples.

On the protein level, conformal predictions have recently been employed as an effective ap-

proach to detect protein homologies enabling the discovery of new proteins with likely desirable

functional properties (Boger et.al, 2024). The method provides statistical guarantees of the ho-

mology searches of a query protein against a lookup database -instead of protein pairs- and

functional annotations by leveraging the vast amount of protein structures produced by algo-

rithms such as Alphafold.63 The proposed conformalized protein mining method has potentially

significant implications in genomic medicine including drug repurposing utilizing proteins with

unique and desirable features, the development of therapeutic enzymes or monoclonal antibod-
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ies for personalized disease treatment and engineering proteins for enhanced stability, activity,

or binding affinity, creating more effective therapeutics.

In pharmacogenomics, prediction error estimates have been employed in a CPmodel to predict

drug sensitivity and prioritize drugs using gene expression levels of cancer cell lines.64 The

prediction outcomes show substantial improvement of CP prediction accuracy and highlight

the importance of developing more sophisticated methods that incorporate multi-omics data,

to address not only monotherapies but also combinatorial drug delivery.

3.3 Perspectives in the era of precision medicine

CP can be an essential component for a much wider range of genomic medicine applications

combining predictive modelling and high-risk decision-making. Genomic ML applications with

clinical relevance can greatly benefit by uncertainty estimates in the following fields:

3.3.1 Variant calling and prioritization

The diagnosis and disease risk assessment in genomic medicine is most often based on the

presence of genetic variants. In next-generation sequencing studies, genetic variants are de-

tected by complex deep neural network architectures, e.g. DeepVariant42 and DeepSNV.43 How-

ever, accurate variant calling is not a straightforward process and is often error-prone, especially

for tumor samples with high heterogeneity and low purity, or for genomic regions that are dif-

ficult to map.33 To be able not to take the risk of a prediction could be of great clinical sig-

nificance, particularly while trying to distinguish between somatic and germline variants or to

prioritize rare variants. In addition to variant calling, prioritizing the detected variants based

on their functional effect introduces challenges that can be of clinical relevance when sorting

neutral or deleterious variants among those of unknown significance.

3.3.2 Immunotherapy response prediction

In a similar setting, the mutational load of tumor DNA samples, known as tumor mutational

burden, is a strong predictor of response to immunotherapy. However, several issues, including

the variability of response levels by cancer type and the lack of a standardized method for calcu-

lating variant burden, limit the reproducibility and reliability of the predictions. In this context,

conformalized learning models are suitable for estimating the uncertainty of the immunotherapy
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response predictions, and to avoid to take the risk of a prediction in inconclusive cases.

3.3.3 Pharmacogenomics

Besides predicting immunotherapy responses, the genetic makeup is a mainstay of research in

pharmacogenomics to tailor therapeutic solutions either by identifying biomarkers of pharma-

cological response or by developing learning models. ML-based applications develop strategies

to prioritize candidate anti-cancer drug compounds, or predict the sensitivity levels of a par-

ticular compound, yet out of the context of reliability testing and uncertainty estimates.34,35

Recently, Lenhof et al. developed a conformalized approach that predicts and prioritizes drug

sensitivity on cell line-based monotherapy responses, based on gene expression profiles and

user-defined certainty levels.36 Compared to cell lines, patient-derived profiles are preferred in

the development of clinical pharmacogenomic models however, they introduce additional com-

plexities that increase the uncertainty and risk of an erroneous prediction. In addition, novel

approaches demonstrate the need to integrate multi-omics data in drug response predictions,

including mutations, copy number variations and proteomics. Multi-omics data can be particu-

larly informative and, when combined with uncertainty estimates, could facilitate safer predic-

tions and decipher the physical/functional gene-drug interactions. These potential applications

collectively demonstrate the need to establish robust genomic medicine frameworks capable

of evaluating the predictability in clinical applications and enhancing reproducibility.

3.3.4 Reverse vaccinology

Reverse vaccinology (RV) is a rapidly evolving approach in vaccine development against pathogens

that utilizes genome sequences to predict antigens that can elicit strong immune responses.

RV workflows include several analysis steps (Trygoniaris et.al, 2024) in which ML models are

often used to predict B-cell and T-cell epitopes based on the pathogen’s genomic and pro-

teomic features.69,70 In addition, predictive models are used to assess and prioritize vaccine

candidates based on factors like antigenicity, immunogenicity, conservation across strains, and

homology to host proteins to avoid autoimmune reactions.71 A critical step in RV is the inte-

gration of 3D modelling algorithms to predict the folded 3D structure of the vaccine construct

and the development of multi-epitope vaccines. Considering the poor quality of the training

data and the difficulties in experimental screening, being able to quantify uncertainties in each

ML-based analysis would greatly advance model calibration and validation.72 In this context,

14

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.09.24312995doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.09.24312995
http://creativecommons.org/licenses/by-nd/4.0/


Figure 2: Overview of the classification study design. First, theMLmodel produces singleton predictions
for the binary (responder/non-responder patients to infliximab) and the multiclass (MHG, GCB and ABC
subtypes of diffuse large B-cell lymphomas) Singleton predictions are given without any indication of
their accuracy and reliability. In the second step, CP is applied on the results of the ML models to
estimate the uncertainty of each prediction. In the binary classification, TCP produces a prediction
region that contains the true class with high probability and detects the uncertain (UNC) predictions. In
the multiclass setting ICP identifies unreliable predictions among the samples classified by the non-
conformalized model.

CP models can be particularly useful in validating ML predictions by ensuring that the speci-

fied coverage probability is maintained across different datasets and pathogen-host application

scenarios.

3.3.5 Antimicrobial resistance

Antimicrobial resistance (AMR) is a serious public health threat that is responsible for prolonged

hospitalizations andmore than onemillion deaths per year.65 The availability of millions of whole

genome sequencing data annotated with diverse AMR phenotypes enabled the development of

ML methods that predict AMR using pathogens features, mainly genomic variability66,67 and

biochemical information.68 However, the reliability of the predictions is subjected to several

confounding factors e.g., biased sampling and poor genome assembly quality due to increased

contamination rates, poor coverage and low read depth. Erroneous predictions of AMR against

antibiotic compounds can be life-threatening and therefore uncertainty guarantees in either su-

pervised classification (sensitivity/resistance prediction) or regression problems (quantification

of the minimum inhibitory concentration values) can be particularly valuable. In this context,
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conformalized models can be important preventive measures offering safer clinical decision

making, while also helping in deciphering the molecular mechanisms underlying AMR.

In this study, we rigorously explore the potential of conformal predictors in genomic medicine

and demonstrate their pivotal role in yielding more reliable predictions using three application

scenarios. Specifically, we evaluated CP-enriched models on a binary classification, on a multi-

class classification problem under distribution shift and a regression-based application aiming

to gain further insights into how conformalized predictive modeling can be practically integrated

into genomic medicine. The study discusses further the strengths and challenges and highlights

the main issues that should be addressed in order to unequivocally ensure patient safety when

pivotal decisions are delegated to clinically deployed AI systems.

4 Experimental setting and results

To practically assess the applicability of CP in genomic medicine we sought to examine how ML

models can benefit from conformalized predictions in two exemplar classification and in one

regression problems. The objective was to cover both binary and multi-class predictions, small

and larger datasets, different application domains and both inductive and transductive frame-

works. First, a TCP-based pharmacogenomic learning model was implemented to demonstrate

the impact of conformal predictors in tailoring personalized therapeutic decisions. Transcrip-

tomic profiles of rheumatoid arthritis and Crohn’s disease patients undergoing infliximab treat-

ment were used to estimate the uncertainty of the drug sensitivity predictions (Fig. 2). In the

multi-class setting, an inductive conformal predictor was built to assess the diagnostic predic-

tions for patients with different transcriptional subtypes of diffuse large B-cell lymphomas (Fig.

2). Finally, in the regression setting, an inductive conformal predictor was used to predict the

pharmacological response of cancer cell lines to afatinib. Both classification models used pub-

licly available gene expression datasets deposited in Gene Expression Omnibus (GE under the

accession IDs GSE42296 for rheumatoid arthritis and Crohn’s disease 15 and GSE181063 for

diffuse large B-cell lymphoma samples. To train the regression model, data from the Genomics

of Drug Sensitivity in Cancer (GDSC) database was used. In all use cases, we applied MRMR

(Maximum Relevance - Minimum Redundancy) feature selection method and statistical tests

to assess the validity of the i.i.d. assumption.46 It should be noted that although the applica-

tion scenarios address real-world research problems, the prediction results are not intended to
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produce novel research findings as this is out of the scope of this review.

4.1 Responder prediction to infliximab

In their study, Mesko et al. correlated the pharmacological response of rheumatoid arthritis and

Crohn’s disease patients to infliximab using their transcriptomic profiles. 16 The study includes

44 Crohn’s disease patients and 34 rheumatoid arthritis patients of which 40 responders and

38 non-responders. Affymetrix Human Gene 1.0 ST array quantified the expression levels of

each sample in 33,297 target probes. The objective was to identify subsets of genes that can

act as drug sensitivity biomarkers. In our experiment to sought to compare non-conformal and

conformalizedmodels in this binary setting using anMLmodel and a TCP framework to estimate

the uncertainty of the model. TCP was selected as a favorable framework because it avoids the

extra split for the calibration set which is preferable for small sample sizes. To evaluate TCP,

we utilized the empirical coverage (Angelopoulos et.al, 2021), which measures the frequency of

the true class within the prediction region. We then assessed the error rate threshold, ensuring

it did not exceed the specified significance level of the conformal predictor.

Following the preprocessing step, we trained an SVMmodel on the top 100 genes with the high-

est discriminative power according to MRMR. For the 20% randomly selected patients included

in the test set, the model yielded 87% accuracy (AUC=0.9), optimized by a grid-based parame-

ter tuning (Fig. 2). By setting the significance level to 95% and defining the inverse probability,

1 − p(yi|xi), the probability of the model being incorrect, where xi is the feature vector and yi

the label for the ith data point, as the non-conformity measure conformal predictions resulted

in a 2.25% error rate compared to 12.5% of the SVM model without CP (Table 1). Two out of the

16 test cases were marked as uncertain requiring further evaluation by an expert physician. In

this case, CP eliminated the misclassified samples by sorting out ambiguous cases, while for

half of them the ML model alone made erroneous singleton predictions. The use of CP in this

use case succeeded to reduce wrong predictions and to identify those cases that are hard to

classify and should be forwarded for manual assessment.

Concerning the singleton predictions, TCP identified eight non-responders and six patients who

will respond to infliximab. This group of patients is correctly classified to the actual class with

an error rate of 5%. Moreover, for two wrong predictions of the non-conformalized SVM model,

CP flagged one of them as uncertain, which identifies this patient as a difficult-to-classify case,
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(Table 1). For this patient, the treatment decision should be made by an expert. Overall in

these personalized therapeutic decisions, CP can stand alongside the physicians to flag the

difficult-to-predict patient cases for further manual data curation and closer treatment moni-

toring, thereby improving the decision-making time and minimizing the risk of wrong interven-

tions.

4.2 Predicting molecular subtypes of diffuse large B-cell lymphoma

In the multi-class use case we used CP as a diagnostic predictor to classify patients with diffuse

large B-cell lymphoma based on the distinct transcriptional profiles of their tumor cells. Diffuse

large B-cell lymphoma is the most common hematological malignancy characterized by highly

heterogeneous molecular signatures. Approximately 80% of the lymphomas are curable using

R-CHOP combination therapy yet, there is a biologically heterogeneous group of patients that

differs in terms of their clinical characteristics and prognostic factors.21 Therefore to enable

precise patient stratification in clinical trials, we first have to distinguish patients who are likely

to respond to R-CHOP alone from patient groups who may benefit from emerging therapies

based on the molecular heterogeneities of the disease. 17

So far, diffuse large B-cell lymphoma patients are classified based on the Cell of Origin (COO) in

the activated B-cell like type (ABC) and the germinal center B-cell like (GCB) subtypes. Recently,

Sha et al. proposed a new distinct molecular subtype with aggressive clinical behavior called

molecular high-grade B-cell lymphoma (MHG). 18,19 Patients of this subtype tend to not respond

to R-CHOP therapy, despite the similarity with the GCB subtype, and theymay benefit from either

intensified chemotherapy or new targeted therapies. Clinical trials require the identification

of the COO to personalize therapeutic interventions and to decipher the mechanisms of the

disease pathogenesis.

In this experiment we built an inductive version of the CP model on a gene expression dataset

of 1,311 samples extracted from formalin-fixed, paraffin-embedded biopsies (GEO Data series:

GSE181063). The RNA samples include 345 ABC, 517 GCB, and 170 MHG molecular subtypes

except for 278 patients who were not classified in any of the three classes and characterized

as unclassified (Fig. 2). Illumina’s HumanHT-12 WG-DASL V4.0 beadchip array quantified the

expression levels of each sample in 29,377 target probes. Following a data cleansing and quality

control step 20 probes were selected by the MRMR algorithm to build the training feature set.
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The multi-class model was trained by XGboost,20 the hinge loss function was applied as non-

conformity measure in the ICP model and the empirical coverage was used to evaluate the

conformal predictor.

XGBoost has a classification error of 16.25% on 10% of randomly selected patients. The con-

formalized XGBoost model resulted in 4.8% subtype classification error using 95% confidence

level. In addition, the inductive predictor flagged, 37 patients (35.6%) as uncertain that are

distributed in the following prediction regions: {MHG, GCB} = 8, {MHG, ABC} = 2, {GCB, ABC} =

19, {MHG, GCB, ABC} = 8. Non-singleton predictions involve mainly GCB samples that are most

often misclassified as ABC samples. MHG has a clearly separable profile being transcriptionally

closer to the GCB subtype. For eight patients the conformalized model was not able to exclude

any prediction region. However, the ICP model managed to avoid the misclassification of 12

out of the 17 wrong predictions of the XGBoost model alone. The results reinforce the reliability

of the prediction regions, as they detect the wrong assessments of the basic algorithm and give

a better view of the difficult examples, while at the same time, they limit the range of possible

classes to facilitate the final expert decision.

Concerning the 278 unclassified patients, although there is no class assignment ICP provides

singleton predictions for 30.2% of the samples {MHG} = 1, {GCB} = 28, {ABC} = 55 (Fig. 2).

The remaining are ambiguous cases involving either two classes {MHG, GCB} = 1, {MHG, ABC}

= 9, {GCB, ABC} = 135, or all three {MHG, GCB, ABC} = 49. Among the 194 uncertain cases,

most of them involve double predictions (145 cases) of GCB and APC classes, which is also

inline with the principal component analysis in Fig. 3. Both single and double predictions

provide insights beyond what a non-conformalized learning approach alone can offer and can

be useful in preventing erroneous predictions that are of major importance in clinical decision-

making.

To evaluate the reliability of the prediction regions on unseen data we sought to examine the

fundamental exchangeability assumption on an external diffuse large B-cell lymphoma gene ex-

pression dataset (GEO Data series: GSE117556). The gene expression profiles were produced

from 789 RNA samples extracted from formalin-fixed, paraffin-embedded biopsies using Illu-

mina’s HumanHT-12 WG-DASL V4.0 beadchip array. To assess the level of distribution shift

we applied the MMD measure and compared the produced probability distributions of the two

datasets. Fig.4 shows the distribution shift between the two datasets. We computed an MMD
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Figure 3: Principal Component Analysis (PCA). Left: PCA analysis of the samples without unclassified
cases (UNC), revealing a small overlap between subtypes ABC and GCB. Right: PCA analysis of the
dataset including unclassified cases (UNC), shows the UNC class overlapping with subtypes ABC and
GCB.

statistic of 0.0011 and performed a permutation test to determine the p-value, which was found

to be 0.017. Since this p-value is less than the significance level a=0.05, we reject the null

hypothesis that the two datasets are generated from the same distribution. The robustness of

the conformalized model under the distribution-shifted data was examined by estimating the

classification performance of the ICP model on the external data. For a 95% significant level,

the ICP model resulted in 26 misclassifications while the XGboost model alone failed to cor-

rectly classify 129 samples, out of the 789 samples. The ICP model flagged 112 out of the 129

misclassified samples as uncertain cases to be further assessed by clinical experts. The erro-

neous predictions of the conformalized model, limit by 80% the risk of failure on data under

distributional shift. However, there is an increased number of double predictions that mainly

involve the GCB and ABC samples accounting totally for 225 samples and 77 cases for triple

predictions. On the contrary, the MHG class does not show significant overlap with the GCB

and ABC samples, accounting totally for 2 and 14 cases, respectively.

The results indicate that MHG has a separable transcriptional signature while deeper investi-

gation is needed to accurately discriminate the GCB and ABC molecular profiles. Despite its

ability to protect from false predictions, the conformalized model is more conservative than the

XGboost model in making accurate singleton predictions (482 in total, of which {MHG} = 32,

{GCB} = 295, {ABC} = 155). In other words CP effectively minimizes the risk of underestimating

uncertainties at the expense of a lower number of definitive assessments.
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Figure 4: Visualization of the distribution shift between the two diffuse large B-cell lymphoma datasets
based on the maximum mean discrepancy (MMD).

Overall, in this generalizability test the ICP model achieved 96.6% empirical coverage on the

unseen dataset. In principle, we proved the ability of our conformal classifier to generalize to

data with different distributions, a significant advantage in medical applications where data

heterogeneity is a common issue. These results, shown in Table 1, demonstrate the robustness

of the conformal classifiers in handling data with varying distributions, but also the need to

promote the adoption of CP-based frameworks in genomic medicine to be able to draw safer

and more definitive conclusions.

Table 1: Performance of the non-conformal and the conformalized binary and multiclass models
(95% confidence interval).
Experiment Non-conformal model Conformalized model Comparison

Model Error rate E. coverage Error rate UNC rate Error Detection
TCP (Binary) SVM 12.50% 93.75% 6.25% 12.50% 50.00%
ICP (Test) XGBoost 16.25% 95.20% 4.80% 35.60% 70.50%

ICP (Validation) XGBoost 16.35% 96.70% 3.3% 38.18% 86.82%

4.3 Predicting pharmacological response of cancer cell lines to afatinib

In the regression use case, we implemented an ICP approach to predict the resistance of cancer

cell lines to afatinib, an antineoplastic agent that is used to treat locally advanced andmetastatic

non-small cell lung cancer. Instead of categorizing samples into binary classes drug responses

are quantified based on continuous drug concentrations that caused inhibition of 50% cell

viability (IC50), with higher IC50 values indicating greater resistance. In this study, we sought to

evaluate the scalability and robustness of CP uncertainty-aware regression models in predicting

IC50 values using gene expression levels of cancer cell lines. The model was trained on a

dataset of 765 cancer cell lines, each one including the expression levels of 17,613 genes and

the corresponding IC50 values were recorded after 72 hours of afatinib treatment. The pre-

processing steps, including outlier management and feature selection, refined the dataset to
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677 cell lines with IC50 ranging between 0.00316 and 675, and identified 10 significant genes,

meeting the i.i.d. assumption. A Random Forest (RF) algorithm was employed as the baseline

regressionmodel, the absolute deviation from the ground truth and the predicted value was used

as non-conformity measure in the ICP model and the empirical coverage was used to evaluate

the performance of the conformal predictor. The predicted IC50 values of the RF regressor had

a mean squared error (MSE) of 14.35 and an R-squared value of 0.84 for 20% of the cell lines

included in the test data.

As expected, the model exhibits significant deviation from the ground truth, mainly due to the

heterogeneity of cancer types included in the dataset. To address this issue and better capture

the variability in the data, we incorporated an inductive conformal predictor into the decision-

making process. The ICP framework was employed to quantify the uncertainty of point predic-

tions, providing a range within which the IC50 values are likely to fall. This approach aimed to

reduce MSE and to provide a more precise and reliable estimation of the drug response for each

cell line. Setting the significant level of 90%, and computing the non-conformity scores for the

calibration set (20% of the training data), we found that at least 90% of the examples in the cal-

ibration set have a deviation value from the true IC50 value below the 6.77. The cutoff was set

to 6.77 as it reflects the challenges faced by the baseline algorithm in accurately predicting new

cases. With this value, we constructed the predicted range by adding and subtracting this value

to every RF prediction. The conformal model constructed prediction ranges that contained the

true IC50 value for 92.6% of the test set. When the same process was repeated with signifi-

cance levels of 85% and 95%, the model achieved coverage rates of 90.6% for an a-Quantile of

6.63 and 95.6% for an a-Quantile of 6.98, as shown in Table 2. These results highlight the scal-

ability of CP and its ability to meet user-defined coverage levels. Additionally, the a-Quantile

in each case defined the size of the prediction intervals, with larger ranges corresponding to

higher desired coverage levels and smaller ranges to lower ones.

Overall, the regression conformal model effectively mitigated the inaccuracies of the baseline

predictions by replacing individual point estimates with prediction intervals that achieve 92.6%

coverage. This improvement is particularly significant in clinical settings, where constraining

the index value to a high probability interval provides more actionable information than a single

estimate with substantial potential deviation. Furthermore, instances where the true value falls

outside the prediction interval serve as important indicators for further investigation, alerting
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Table 2: Performance of the ICP regression model.
Significance level α-Quantile E. coverage

1 0.95 6.98 95.5%
2 0.90 6.77 92.6%
3 0.85 6.63 90.6%

experts for unusual cases that may require additional scrutiny.

5 Discussion

As the advancements in AI technologies are increasingly adopted into real-world problems

the trustworthiness of ML applications in clinical environments is progressively acknowledged.

However, denying taking a prediction risk when confronted with unusual cases is still not part

of the mainstream procedures when building a model. CP is a powerful tool for estimating

uncertainties as it combines favorable features such as i.i.d. assumption, the model-agnostic

mode of application, and the adjustable prediction regions. CP addresses reliability concerns

that often arise when dealing with imbalanced datasets, insufficient conditional coverage, and

domain shifts.44 Particularly in the genomics era, CP can overcome domain shifts caused by

overlooking the heterogeneity introduced during data acquisition processes or data themselves,

e.g. differences in the prevalence of a phenotype across populations. Coupled with larger or

new representative calibration datasets under domain shift, CP provides adequate flexibility to

keep coverage guarantees.

Another important feature is that CP can effectively lie on the top of both DL and ML models.

The fundamental basis is that CP helps to quantify and communicate the model’s uncertainty

effectively depending on the underlying model’s predictions. Traditional ML models typically

deal with lower-dimensional features and simpler decision boundaries. These models typically

provide clear decision rules or margins, which CP can straightforwardly translate into proba-

bilistic measures of uncertainty. In contrast, DL operates on high-dimensional spaces with

complex decision boundaries, capable of capturing intricate patterns and relationships in the

data, which CP can use to generate more detailed and refined prediction intervals. The com-

plexity of DL models allows CP to handle a wider range of applications in DL, such as image

processing (Rouzrokh et.al, 2024), (Randl et.al, 2024), natural language processing? ? graphs

or big data models.49,59 Thus, CP can adapt to the nature of the underlying model, utilizing the
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strengths of both traditional ML and DL to enhance the interpretability and trustworthiness of

the predictions.

On the other hand, interpretability is another major concern, particularly in complex and black-

box deep learning models. CP has been acknowledged for its ability to provide guaranteed

prediction sets and intervals that can be easily understood and communicated, offering a clear

way to measure uncertainty. In addition, the minimal assumptions about the data distribu-

tion enhance interpretability by avoiding strict and probably unrealistic assumptions. However,

the extent to which a conformalized prediction is interpretable partially depends on the inter-

pretability of the underlying models themselves. For example, rule-based models, and decision

trees offer a straightforward interpretation of their predictions contrary to deep neural networks

and non-linear gradient boosting methods.

Although integrating conformal prediction into AI models seems compelling, there are a few lim-

itations to be considered. Distribution-free uncertainty quantification methods, such as CP, are

gaining interest among researchers due to their ability to provide reliable uncertainty estimates

without assuming specific data distributions. CP ensures that, on average, can cover the correct

class with a certain probability (marginal coverage). However, CP cannot provide guarantees

for individual instances or structured subgroups of the data (conditional coverage).Practically, a

conformalized model with a 90% marginal coverage guarantee ensures that the predictive set

covers the correct class with 90% probability on average. This does not mean that each pre-

diction covers the actual class with 90% probability for each individual instance or subgroup

of the data. This limitation is crucial especially when dealing with specific subsets of data

of particular interest, such as rare disease cases or minority classes in classification tasks. In

such cases, researchers must be cautious when interpreting predictions, especially in scenarios

where precise classification for individual instances is crucial.

In addition, challenges such as class imbalance, variance, and distribution shifts between train-

ing and validation data must be examined. These issues are mainly resolved by recalibrating the

data using various combinations of attributes and classes with new data or by the adjustment

of the existing calibration dataset with weights. Still, obtaining new and especially rare data to

train the model with, in real-world scenarios can be challenging.

A reasonable question is how informative a conformal classifier can be in a binary classification

setting when an uncertain prediction contains all the possible labeling options. Krstajic et
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al. question the utility of CP frameworks in binary classification scenarios.39 They reasonably

wonder why someone should choose CP when a good binary classificationmodel is built and how

is it possible to include as correct coverage the predictions in which CP identifies both classes.

In this work, we sought to highlight another aspect that is related to the detection of erroneous

cases of the underlying model. In high-risk genomic medicine predictions, when specialists

want to rely on the predictions of an ML model it is important to give them all the possible

views of these predictions. For example, relying on a good binary classification model without

any other guarantee of the resulting prediction may be a deterrent to incorporating such models

into clinical decision-making. As we proved in the applications of this study, CP managed to

detect the erroneous predictions of the underlying algorithm and classify them as uncertain

cases. In clinical terms, these cases are translated as difficult to classify and consequently, the

decision is risky to be taken by the ML model. In these cases, the contribution of an expert is

necessary to avoid any misconduct.

In our point of view, the behavior of the conformal predictors can be a good step forward in

bridging the trust between the medical community and the predictive modelling applications,

since the latter can work side by side with the experts in the clinical decision-making process

as a powerful and informative tool leaving the final decision to be deployed by experts in am-

biguous cases. Additionally, a singleton prediction mathematically guarantees a safe decision

with high confidence.

Overall, while conformal prediction offers valuable insights and uncertainty estimates for high-

stake decision-making processes, it comes with several considerations and challenges. Ensur-

ing the reliability of a prediction requires addressing issues such as distributional shifts in fea-

ture variables and labels, as well as the availability of representative calibration data. Although

solutions such as recalibration and careful dataset management exist, they may not always be

feasible, particularly in settings with limited data availability or where rare conditions are in-

volved. Despite these challenges, the interpretability and robustness of conformal prediction

make it a promising tool in domains such as healthcare, where the consequences of incorrect

decisions can have a life-threatening impact and the ethical use of the models is mandatory.

In-depth research and practical applications will be essential to address these challenges and

to fully leverage the potential of conformal prediction in real-world scenarios. It is anticipated

that as ML and genomic medicine are progressively infiltrating healthcare environments, CP
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will support more sophisticated approaches and enhance the range of uncertainty-informed

multi-omics applications in clinical environments.
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