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Abstract
Background 
Among 35.5 million U.S. adults with chronic kidney disease (CKD), more than 557,000 are on dialysis with 
incurred cost ranges from $97,373 to $102,206 per patient per year. Acute kidney injury (AKI) can lead to an 
approximate ninefold increased risk for developing CKD. Significant knowledge gaps exist in understanding 
AKI to CKD progression. We aimed to develop and test a hybrid clustering algorithm to investigate the clinical 
phenotypes driving AKI to CKD progression. 

Methods
This retrospective observational study utilized data from 90,602 patient electronic health records (EHR) from 
2010 to 2022. We classified AKI into three groups: Hospital Acquired AKI (HA-AKI), Community Acquired AKI 
(CA-AKI), and No-AKI. We developed a custom phenotypic disease and procedure network and a 
complementary variable clustering to examine risk factors among three groups. The algorithm identified top 
three matched clusters.

Results
Among 58,606 CKD patients, AKI group had a higher prevalence of heart failure (21.1%) and Type 2 Diabetes 
(45.3%). The No-AKI group had a higher comorbidity burden compared to AKI group, with average 
comorbidities of 2.84 vs. 2.04; p < 0.05; 74.6% vs. 53.6%. Multiple risk factors were identified in both AKI 
cohorts including long-term opiate analgesic use, atelectasis, history of ischemic heart disease, and lactic 
acidosis. The comorbidity network in HA-AKI patients was more complex compared to the No-AKI group with 
higher number of nodes (64 vs. 55) and edges (645 vs. 520). The HA-AKI cohort had several conditions with 
higher degree and betweenness centrality including high cholesterol (34, 91.10), chronic pain (33, 103.38), 
tricuspid insufficiency (38, 113.37), osteoarthritis (34, 56.14), and removal of GI tract components (37, 68.66) 
compared to the CA-AKI cohort. 

Conclusion
Our proposed custom patient profiling algorithm identifies AKI phenotypes based on comorbidities and medical 
procedures, offering a promising approach to identify early risk factors for CKD using large EHR data. 
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1. Introduction

It has been estimated that over 35.5 million U.S. adults have chronic kidney disease (CKD), yet 9 out of 10 are 
unaware of their disease(1,2). Acute kidney injury (AKI) is independently associated with acute morbidity, 
mortality, and long-term kidney disease(3,4). Hospital-acquired acute kidney injury (HA-AKI) is a 
heterogeneous syndrome and a common complication in acute care settings and within the community. Among 
critically ill adults, up to 60% may experience this potentially preventable organ insult(5). A recent study found 
that patients who underwent dialysis for HA-AKI should receive follow up care due to its association with 
reduced mortality and lower hospitalization rates(6). However, less than 20% of HA-AKI survivors and only 21-
50% of those who underwent acute dialysis within one year of hospitalization received nephrology follow-
up(7,8). In contrast, AKI acquired in the community, known as community-acquired AKI (CA-AKI) differs in risk 
factors, epidemiology, presentation, and impact compared to HA-AKI. A recent study of 734,340 hospital 
admissions reported that patients with HA-AKI had higher rates of in-hospital mortality (51.58% vs. 26.07%), 
longer average hospital stays (35.84 ± 34.62 days vs. 21.25 ± 22.35 days), and a greater need for dialysis 
during hospitalization (2.06% vs. 1.45%) compared to those with CA-AKI (9).

The association between the initial occurrence of AKI and long-term risk of CKD is multifactorial and 
complex(10). Assessing the risk of AKI and its acceleration toward CKD or end-stage renal disease (ESRD) is 
a key area of research, with significant work focusing on its severity, recurrence, etiology, and clinical 
biomarkers(3,11). Studies have shown that patients who experience AKI have an approximately ninefold 
increased adjusted risk of developing CKD (pooled adjusted hazard ratio [HR] 8.8, 95% CI 3.1–25.5) and a 
threefold increased adjusted risk of progressing to ESRD (pooled adjusted HR 3.1, 95% CI 1.9–5.0)(12). 
Additionally, a 2016 study estimated that the prevalence of recurrent AKI after a first episode could be as high 
as 25% (13). AKI also contributes to a higher incidence of cardiovascular disease, AKI recurrence, and 
progression to CKD(3,9,14–16). However, identifying those at the highest risk, quantifying the extent of renal 
damage, and predicting the rate of disease progression remains challenging, even with well-known associated 
comorbidities such as hypertension, diabetes mellitus, and pre-existing CKD. No study has fully explored the 
relationship between comorbidities, medical procedures following AKI, and long-term kidney injury. Therefore, 
improving clinical phenotyping after an AKI event and understanding the trajectory toward CKD remains an 
area requiring further exploration and validation. 

To better understand the multifactorial and complex progression, it is crucial to group clinical phenotypes and 
find the trajectory towards CKD which warrant a robust and comprehensive clustering methods. Traditional 
patient-centric clustering techniques, such as consensus clustering(17,18), K-means (19,20), latent class 
analysis (LCA) (21), and hierarchical clustering (22), often overlook the underlying data structure and complex 
interactions among variables, as they primarily focus on grouping individuals based on observed similarities. 
To effectively identify different phenotypes, it is essential to group variables (23–25) based on inherent 
correlations and dependencies, which allows fora more granular understanding of data structure and the 
extraction of latent pattern. Furthermore, representing comorbidity relationships as a network can help 
characterize pathways of disease progression to CKD by quantifying and analyzing pairwise interactions 
among variables (26). Current approaches are also limited in their ability to compare clinical phenotypes 
across multiple groups and are generally constrained by small datasets(23–26). Moreover, recent machine 
learning prediction models did not also consider a patient’s comprehensive phenotypic trajectory to predict AKI 
and its long-term outcomes (27–29).  
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To address this, we propose a novel phenotyping framework that employs two complementary methods: 
variable clustering and network-based clustering. We hypothesize that identifying high-risk clinical phenotypes 
through a comprehensive patient profiling algorithm will enhance our understand of factors associated with the 
progression of AKI to CKD. Variable clustering uncovers correlated clinical and demographic variables, 
revealing underlying patterns that influence disease progression. In contrast, network-based clustering 
constructs networks of variables, offering both visual and analytical insights to identify and group critical 
comorbidities and procedures that drive the progression from AKI to CKD. These two approaches complement 
each other by cross-referencing identified clusters, ensuring robust and accurate phenotyping. By integrating 
these methods and analyzing a large EHR dataset, our study aims to provide a comprehensive understanding 
of the factors driving AKI to CKD progression, thereby facilitating improved clinical decision-making and patient 
care. Additionally, this research contrasts phenotypes across distinct AKI subpopulations (HA-AKI, CA-AKI) to 
identify disease-specific trajectories.

2. Methods 

2.1 Study Design and Setting
This was a single center, STROBE-compliant retrospective observational study involving 90,602 patients with 
records from February 2010 to 2022. Given the retrospective nature of the data, informed consent was not 
required, as all patient information was de-identified prior to use. The study received an exemption from the 
Human Research Review Committee at the West Virginia University Institutional Review Board (IRB: # 
2212689753)

2.4 Data sources
Data were obtained from the electronic health records (EHR) of a single Health Care Organization (HCO), 
namely, West Virginia University (WVU), using TriNetX on 13/06/2022. TriNetX is a global health research 
network that connects pharmaceutical companies, study sites, investigators and patients by sharing real-world 
data to facilitate clinical and observational research. The dataset typically includes information on diagnoses, 
procedures, encounters, medications, laboratory results, vital signs, genomic data, tumor properties, oncology 
treatments, tumor, chemotherapy lines, cohort details, and demographics. 

2.2 Participants 
Patients aged 18 years and older diagnosed with CKD using ICD-9-CM code 585 and ICD-10-CM code N18 
were included in the study. These patients were followed retrospectively from the inception of the database until 
September 2022. 

2.3 Definitions, Inclusion, and Exclusion criteria
Prior AKI events were identified using ICD-9-CM code 485 and ICD-10-CM code N17. CKD patients were 
followed for three years to determine the incidence of AKI. Patients with AKI events within three years prior to 
their CKD diagnosis or with any dialysis events before their CKD diagnosis were excluded from the study. HA-
AKI patients were defined as those who had AKI within 90-days of any inpatient hospitalization (identified by 
Current Procedural Terminology (CPT) codes: 99218-99239, 99251-99255, 99291, 99304-99307, 94002, 
G03378,1013699, and 1013659). CA-AKI patients were defined as those who had any AKI events, excluding 
HA-AKI, within three years prior their CKD diagnosis. After applying the inclusion and exclusion criteria, we 
created three cohorts: HA-AKI, CA-AKI, and No-AKI. A study design flow chart is shown in Fig 1.
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Fig 1: Study design schema for the three study cohorts and their timelines. Abbreviations: CKD-Chronic 
Kidney Disease, HA-AKI-Hospital acquired acute kidney injury, and CA-AKI-Community acquired acute kidney 
injury. 

2.7 Identification of Comorbidities and Procedures
We examined and ranked all diagnoses and procedures codes for three cohorts. To obtain more reliable 
estimates, we excluded rarely diagnosed diseases and conducted procedures with a prevalence of less than 
1% across all cohorts. Before ranking, we converted ICD-CM 9 codes to ICD-CM 10 codes to ensure 
consistency across cohorts. For the HA-AKI cohort, there were 64 diagnosis codes and 62 procedures codes. 
For the CA-AKI cohort, there were 62 diagnosis codes and 65 procedure codes. For the No-AKI cohort, there 
were 55 diagnoses codes and 67 procedure codes. Supplementary Tables 1 and 2 provide the ICD-10-CM 
codes and combined CPT codes, along with their prevalence for each cohort, respectively.

2.6 Statistical Analysis
Descriptive statistics were employed to characterize the study population with continuous variables reported as 
means and standard deviations and categorical variables described using frequencies and proportions. 
Baseline characteristics of HA-AKI patient were compared with No-AKI patients, and CA-AKI were compared 
with No-AKI patients using Pearson chi-square tests for categorical variables and independent-samples t-tests 
for continuous variables.      

2.8 Comorbidity network modeling
To understand the risk factor profiles associated with HA-AKI, CA-AKI, and non-AKI patients in relation to 
CKD, we constructed phenotypic disease and procedure network models. We binarized all diagnoses and 
procedures for each cohort based on their presence or absence prior to CKD diagnosis. For procedures, we 
limited the analysis to those occurring within three years before CKD diagnosis. Phenotypic networks were 
then created for each cohort, with nodes representing disease diagnoses (comorbidities) and edges indicating 
co-occurrence relationships between pairs of comorbidities(26,30,31). Network analysis offers a graphical 
representation of the complex patterns among risk factors. To quantify the strength of comorbidities between 
AKI to CKD and No-AKI to CKD groups, we introduced the observed-to-expected ratio (OER)(32). The OERij, 
measures the strength of the comorbidity between disease pair i and j, calculated as the ratio of the observed 
prevalence of the disease pair (O) to the expected prevalence (E), which is determined by the product of the 
prevalence of diseases i and j: 

𝑂𝐸𝑅𝑖𝑗 =
𝐶𝑖𝑗𝑁
𝐶𝑖𝐶𝑗

In this context, Cij represents the co-occurrence count of both diseases (i and j), N is the total number of 
patients in the population, and Ci and Cj are the prevalence of diseases (i and j). The observed-to-expected 
ratio (OER) can be interpreted as a measure of relative risk. An OER greater than1 indicates that the two 
diseases co-occur more frequently in the same patients than would be expected by chance, whereas an OER 
less than 1 suggests that the diseases are mutually exclusive. We included only those pairwise comorbidities 
in the network with a OERs greater than 1, as we aimed to identify risk factors specific to each cohort. To 
highlight prominent risk factors in the network graphs, we set the 90th percentile as the threshold for each 
cohort. For diagnoses, OER thresholds were 1.68, 1.84, and 2.25 for the HA-AKI, CA-AKI, and No-AKI cohorts, 
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respectively. For procedures, the OER thresholds were 2.08, 2.14, 2.75 for the HA-AKI, CA-AKI, and No-AKI 
cohorts, respectively.

To explore the complexity among the diagnoses and procedures, we incorporated five network metrics: 
diameter, degree centrality, betweenness centrality, average nearest neighbor path length, and closeness 
centrality (33). Degree centrality represents the number of direct connections a node has with other diseases 
or procedures. An edge in the network signifies the interaction or relationship between nodes. The average 
degree is the mean number of edges connected to each node. The diameter of the network indicates the 
maximum number of edges that must be traversed to travel between the most distant nodes. Betweenness 
centrality measures the extent to which a node lies on the shortest paths between other pairs of nodes in the 
network. Closeness centrality is the reciprocal of the sum of the shortest path lengths between a node and all 
other nodes in a network. A higher closeness centrality value indicates that a disease is more likely to be 
diagnosed with other diseases in fewer steps. We used an unweighted edge to represent the presence or 
absence of relationships in a network, which means the network lacks temporal directionality for diseases and 
procedures. To identify cluster of closely related comorbidities, we employed the fast-unfolding cluster 
algorithm for community detection, which optimizes for the highest modularity score across different clustering 
layers (34,35). This analysis allowed us to identify the top three clusters of diagnoses and procedures for each 
cohort. Network analysis was performed using the Gephi network software package (36).

2.9 Hierarchical Diagnosis and Procedure Clustering

To validate the community clustering of variables from the phenotypic network analysis, we employed a 
variable clustering method known as “ClustOfVar“ (37). This advanced algorithm is well-suited for datasets 
containing both quantitative and qualitative variables (37). ClustOfVar provides a comprehensive 
understanding of data structure by grouping variables into clusters based on their similarities. It identifies 
groups of strongly related variables and constructs synthetic variables that summarize these clusters, thereby 
reducing data complexity while preserving key information. The primary metric used in ClustOfVar is the 
homogeneity criterion, which assesses how closely related the variables within a cluster are to a synthetic 
variable representing that cluster. For quantitative variables, homogeneity is measured by the squared 
Pearson correlation, while for qualitative variables, it is measured by the correlation ratio. Mathematically, the 
homogeneity 𝐻(𝐶𝑘) for a cluster Ck is defined as:

𝐻(𝐶𝑘) =
𝑥𝑗∈𝐶𝑘

𝑟2
𝑥𝑗,𝑐𝑘 +

𝑦𝑗∈𝐶𝑘

𝜂2
𝑐𝑘|𝑦𝑗

Where 𝑟2
𝑥𝑗,𝑐𝑘 is the squared Pearson correlation between quantitative variable 𝑥𝑗 and the synthetic variable 𝑐𝑘 

and 𝜂2
𝑐𝑘|𝑦𝑗 is the correlation ratio between qualitative variable 𝑦𝑗 and the synthetic variable 𝑐𝑘. The synthetic 

variable 𝑐𝑘 is created using principal component analysis (PCA) for quantitative variables and multiple 
correspondence analysis (MCA) for qualitative variables. This synthetic variable represents the first principal 
component derived from applying PCA or MCA to all variables within the cluster. We utilized a hierarchical 
clustering approach to perform the clustering process. This method begins by treating each variable as an 
individual cluster and iteratively merges clusters to minimize the loss of homogeneity. The dissimilarity 
between any two clusters 𝐶1 and 𝐶2 is defined as:

𝑑(𝐶1,𝐶2) = 𝐻(𝐶1) + 𝐻(𝐶2) ― 𝐻(𝐶1 ∪ 𝐶2)
The algorithm continues to merge clusters until all variables are consolidated into a single cluster, resulting in a 
dendrogram. This dendrogram can be cut at different levels (k) to achieve the desired number of clusters. The 
hierarchical approach provides a clear visual representation of the clustering process, helping to determine the 
optimal number of clusters. In summary, the ClustOfVar algorithm offers a robust framework for variable 
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clustering by maximizing homogeneity within clusters. It employes advanced statistical methods to handle 
mixed data types, ensuring a comprehensive understanding of the underlying data structures and facilitating 
the identification of meaningful patterns. Supplementary file 1 outlines the steps of the ClustOfVar algorithm in 
Step II. For further details, please refer to Chavent et al.(25) 

Each method identified the top three clusters for diagnoses and procedures within each cohort. We then 
matched these clusters and calculated the similarity percentage among them. The final selection of diagnosis 
and procedure variables was based upon these matches. We anticipated that the hierarchical clustering 
algorithm would yield similarly complex networks of variables as those identified by the phenotypic disease 
network. Details of the algorithms used for comprehensive patient profiling and cluster matching between the 
two methods are provided in Supplementary File 1. 

3. Results

3.1 Demographic and Clinical Characteristics
A total of 58,606 patients were included in the analysis. The sample predominantly comprised White (84.02%), 
non-Hispanic or Latino (82.87%), females (52.03%) with a mean age of 61 years. Table 1 outlines the 
demographic characteristics of individuals with CKD who experienced AKI compared to those who did not. The 
AKI group had a higher proportion of White (88.7%) or non-Hispanic/Latino individuals (90.0%), a slightly 
higher percentage of females (51.4%), and a lower mean age 58.1 years) compared to the No-AKI group (61.6 
years). The AKI group had a significantly lower mean age (65.8 ± 13.4 years) compared to the No-AKI group 
(68.6 ± 13.4 years). Additionally, the No-AKI group had a higher comorbidity burden, with a larger proportion 
having at least two comorbidities (mean number of comorbidities = 2.84 vs. 2.04; p < 0.05; 74.6% vs. 53.6%, 
respectively). Among the No-AKI group, 76.3% had hypertension, 33.7% had nicotine dependence, and 38.8% 
had Type 2 Diabetes Mellitus. In contrast, the AKI group had a higher prevalence of heart failure (21.1%) and 
Type 2 Diabetes Mellitus (45.3%).

Table 1: Demographics characteristics of AKI vs No-AKI and among the groups  
AKI Groups AKI Groups

No AKI (C3) AKI (C1+2) p-
value

HA-AKI CA-AKI No-AKI p-
value

   N=46133      N=12743       N=5981      N=6762      N=46133            

Sex (%)   <0.01                                       <0.01

   Male 24448 (53.0) 6186 (48.5)  2902 (48.5) 3284 (48.6) 24448 (53.0)          

   Female 21671 (47.0) 6552 (51.4)  3077 (51.4) 3475 (51.4) 21671 (47.0)          

    Unknown  14 (0.03)    5 (0.04)    2(0.03)   3(0.04)   14(0.03)           

Race (%)   <0.01                                        
<0.01  

  White 38172 (82.7) 11297 
(88.7)

 217 (3.63) 300 (4.44) 1658 (3.59)          

  Non-White 1658 (3.59)  517 (4.06)  442 (7.39) 487 (7.20) 6303 (13.7)          

  Unknown 6303 (13.7)  929 (7.29)  5322 (89.0) 5975 (88.4) 38172 (82.7)          

Ethnicity (%)   <0.01                                        
<0.01  
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    Hispanic or 
Latino

 175 (0.38)  40 (0.31)    17 (0.28)  23 (0.34)  175 (0.38)          

    Not Hispanic or 
Latino

37314 (80.9) 11474(90.0)  5346 (89.4) 6128 (90.6) 37314 (80.9)          

    Unknown 8644 (18.7) 1229 (9.64)  618 (10.3) 611 (9.04) 8644 (18.7)          

Age   <0.01                                        
<0.01  

Mean Age (sd)  68.6 (13.4)  65.8 (13.4)  65.1 (13.6) 66.4 (13.2)  68.6 (13.4) 

Age group (%)                            
<0.01  

                                       
<0.01  

    < 44 2429 (5.81)  883 (7.39)           460 (8.19) 423 (6.68) 2429 (5.81)          

    45-64 10707 (25.6) 4057 (34.0)           1994 (35.5) 2063 (32.6) 10707 (25.6)          

    > 64 28662 (68.6) 7009 (58.7)           3161 (56.3) 3848 (60.8) 28662 (68.6)          

Comorbidities (%)                                                                   

Anemia 4648 (10.1) 3832 (30.1) <0.01  1651 (27.6) 2181 (32.3) 4648 (10.1) <0.01

Atrial Fibrillation 3651 (7.91)  365 (2.86) <0.01  187 (3.13) 178 (2.63) 3651 (7.91) <0.01

Anxiety 8703 (18.9) 2225 (17.5) <0.01  981 (16.4) 1244 (18.4) 8703 (18.9) <0.01

Chronic 
obstructive 
pulmonary 
disease

8203 (17.8) 2128 (16.7) <0.01  936 (15.6) 1192 (17.6) 8203 (17.8) <0.01

Heart Failure 7425 (16.1) 2692 (21.1) <0.01  1192 (19.9) 1500 (22.2) 7425 (16.1) <0.01

Hyperlipidemia 17424 (37.8) 2749 (21.6) <0.01  1182 (19.8) 1567 (23.2) 17424 (37.8) <0.01

Hypertension 35184 (76.3) 1524 (12.0) <0.01  552 (9.23) 972 (14.4) 35184 (76.3) <0.01

Nicotine 
dependence

15533 (33.7) 2127 (16.7) <0.01  865 (14.5) 1262 (18.7) 15533 (33.7) <0.01

Obesity 9595 (20.8) 2207(17.3) <0.01  899 (15.0) 1308 (19.3) 9595 (20.8) <0.01

Type 2 Diabetes 
Mellitus

17919 (38.8) 5771 (45.3) <0.01  2625 (43.9) 3146 (46.5) 17919 (38.8) <0.01

Abbreviations: HA-AKI: Hospital acquired acute kidney injury, CA-AKI: Community acquired acute kidney 
injury

3.2. Network analytics of comorbidity and procedures
Fig 2a represents the visual network connections of study participants' diagnoses using ‘betweenness 
centrality’ as the ranking factor to identify key nodes acting as critical ‘bridges’ between components within the 
network. Nodes with high ‘betweenness’ are strategic targets for control. OER values greater than 1 were 
selected to highlight the strength of relationships between variables, with higher OERs indicating stronger 
associations. Multiple nodes (ICD-9/10 codes) were identified in cohorts 1 and 2, but not cohort 3. Notably, the 
key nodes in cohorts 1 and 2 included: Z79.891 (long-term opiate analgesic use), J98.11 (atelectasis), Z82.49 
(history of ischemic heart disease), E87.2(lactic acidosis) and E11.65(Type 2 diabetes mellitus with 
hyperglycemia). In contrast, the most significant nodes in the control group were I25.2, (previous myocardial 
infarction), Z90.49 (absence of other specified parts of digestive tract), and Z82.49 (family history of ischemic 
heart disease). 

Supplementary Fig 1 depicts the network of procedures encountered across the three cohorts (HA-AKI, CA-
AKI, and no-AKI). Several nodes were common to both the HA-AKI and CA-AKI cohorts, including G0479 
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(drug test(s), 84145 (procalcitonin level evaluation), 84295 (sodium concentration measurement), 84540 (urea 
nitrogen measurement), and 86923 (transfusion cross-matching donor blood compatibility). Unique to both the 
control and AKI patient networks were 82607 (vitamin B12measurement) and 83615 (lactate dehydrogenase 
measurement). Nodes specific to cohort 3 (No-AKI) included 83605 (serum lactate measurement) and 85018 
(hemoglobin measurement in whole blood samples). 

Fig 2: The strongest comorbidity associations across the three cohorts: a) HA-AKI, b) CA-AKI, and c) No-AKI. 
Nodes represent comorbidities and are color-coded by disease clusters. Node size reflects 
prevalence, while edge thickness indicates the observed‐to‐expected ratio (OER). Only OER values within the  
90th percentile are displayed. 

Supplementary Fig 2. The strongest associations of medical procedures across the three cohorts: a) HA-AKI, 
b) CA-AKI, and c) No-AKI. Nodes represent procedures and are color-coded by procedure clusters. Node size 
indicates prevalence, while edge thickness represents the observed‐to‐expected ratio (OER). Only OER values 
within the 90th percentile is shown.

Table 2 provides an overview of the network parameters for diagnoses and procedures across the three 
cohorts. While the complexity of the procedure networks was similar among the cohorts, the comorbidity 
network in HA-AKI patients was more complex compared to the No-AKI group, as evidenced by the higher 
number of nodes (64 vs. 55) and edges (645 vs. 520). The diagnosis network in the HA-AKI cohort was also 
more tightly clustered compared to the No-AKI cohort, as indicated by a significantly higher average degree 
(21.68 vs. 16.91, p < 0.04). For procedures, both AKI groups showed significantly higher measures for average 
degree, path length, betweenness and closeness compared to the No-AKI group.  

Fig 3 illustrates the average degree and betweenness measures of the comorbidity network for three cohorts. 
A higher degree value in one cohort suggests a greater number of connections between nodes, indicating a 
higher comorbidity burden. Higher betweenness centrality represents the overlap of comorbid conditions, as 
shown in Fig 3. 

.

Table 2. Network metrics in the comorbidity network of HA-AKI, CA-AKI, and No-AKI patients. 
 Diagnosis Procedure
 HA-AKI CA-AKI No-AKI HA-AKI CA-AKI No-AKI
# patients 5981 6762 46133 5981 6762 46133
Nodes 64 62 55 62 65 67
Edges 645 651 520 768 814 792
Diameter1 5 5 4 4 5  
Metrics  p-

value
 p-

value
  p-

value
 p-

value
 

Avg Degree2 21.68 0.04 21.00 0.05 16.91 24.77 0.05 21.97 <0.01 21.64
Avg Path length3 1.91 N/A 1.83 N/A 1.85 1.73 N/A 1.78 N/A 1.99
Avg Betweenness4 33.86 0.07 30.98 0.16 23.04 22.27 <0.01 24.83 <0.01 32.63
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Avg Closeness5 0.53 0.17 0.55 0.22 0.56 0.67 0.12 0.58 0.26 0.53
Modularity
Resolution 1.00 1.18 1.34 1.21 1.14 1.11
Cluster distribution

1 41.18% 37.10% 49.09% 48.39% 49.23% 56.72%
2 32.35% 32.26% 40.00% 38.71% 40.00% 22.39%
3 26.47% 30.65% 10.91% 12.90% 10.77% 20.90%

1Diameter: the maximum value of the weighted distance between any two nodes in the network; 2 Avg. 
Degree: average number of links of all nodes in the network to other nodes; 3Avg path length: the average 
number of steps along the shortest paths for all possible pairs of network nodes; 4Avg Betweenness: how often 
a node is on the shortest path between other nodes in a network; 5Avg. Closeness: the average of the inverse 
of the shortest path lengths between the disease and all other diseases in the graph;  

Abbreviations: AKI: Acute Kidney Injury, HA-AKI: Hospital acquired AKI, CA-AKI: Community acquired AKI. P-
value represents comparison with the No-AKI group, N/A: The path length was very close to each other to 
determine the p-value 

Fig 3. Centrality measures using a) degrees and b) betweenness among the three cohorts (HA-AKI, CA-AKI, 
No-AKI) for comorbidities.

3.3 Matched phenotypes 
Our custom matching algorithm yielded the best alignment of clusters between both methods. Supplementary 
Table 3 shows the percentage of clusters matched by both algorithms. For HA-AKI and CA-AKI, we achieved a 
96% match among commodity phenotypes, while for the No-AKI cohort, the match was 100%. Table 3 
presents the similar phenotypes found across the three cohorts. Among these cohorts, we identified 10 
cardiovascular-related conditions, including hypercholesterolemia, atherosclerotic heart disease without angina 
pectoris, myocardial infarction, non-rheumatic mitral insufficiency, nonrheumatic tricuspid insufficiency, atrial 
fibrillation, heart failure, cardiomegaly, chest pain, and abnormal ECG/EKG findings. However, the degree and 
betweenness centrality differ across the cohorts. 

Betweenness centrality measures the extent to which a node lies on the shortest paths between other nodes, 
indicating its influence within the network by controlling the flow of information. In the HA-AKI cohort, conditions 
like chronic pain and osteoarthritis had higher degree and betweenness values (33, 103.38; 34, 56.14) 
compared to CA-AKI (25, 29.49; 26, 35.92) and no-AKI (27, 34.15; 27, 30.11) cohorts, respectively. 
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When comparing HA-AKI to CA-AKI, several conditions exhibited higher betweenness centrality in the HA-AKI 
cohort, including high cholesterol (34, 91.10), chronic pain (33, 103.38), tricuspid insufficiency (38, 113.37), 
osteoarthritis (34, 56.14), general medical examination (32, 35.86), and removal of GI tract components (37, 
68.66). Conversely, in the CA-AKI cohort, cardiomegaly (18, 14.83), abnormal ECG (20, 3.68), follow up exam 
(26, 47.11), and surgery (37, 74.25) showed higher betweenness values. When comparing either AKI cohort to 
the non-AKI group, the non-AKI cohort had higher betweenness centrality for conditions such as obesity (20, 
52.71), myocardial infarction (31, 138.61), cardiomegaly (31, 53.45), abnormal chemistry findings (24, 6.30), 
follow up examinations (38, 96.47), and removal of components of the GI tract (37, 129.14). 

Table 3. Comparison of diagnoses across the three cohorts. Similarities were determined by comparing the 
best-matched clusters identified by both algorithms. The table presents the degree and betweenness values 
for each comorbidity within the cohorts. 

Similarity

HA-AKI 
(Degree, 
Betweenness)

CA-AKI
(Degree, 
Betweenness)

No-AKI
(Degree, 
Betweenness)

Endocrine, nutritional and metabolic diseases

T2DM without complications (E11.9) (17,33.68) (6, 3.56) (4,0)

T2DM with hyperglycemia (E11.65) (30,93.13) (27, 172.36) (15,31.93)

Diseases of the circulatory system

Atherosclerotic heart disease without angina 
pectoris (I25.10) (7,0.11) (7, 0.00)

(6, 0.10)

Myocardial infarction (I25.2) (18,36.84) (18, 23.54) (31, 138.61)

Nonrheumatic mitral insufficiency (I34.0) (31,57.28) (29, 27.86) (24, 16.84)

Nonrheumatic tricuspid insufficiency (I36.1) (38, 113.37) (36, 61.50) (28, 31.93)

Unspecified AFB (I48.91) (5,0.00) (8, 0.00) (6, 0.00)

HF (I50.9) (25,25.95) (26, 29.91) (21, 23.15)

Medication usage

Long-term insulin use (Z79.4) (3,0.00) (3, 0.00) (10,16.04)

Encounter for immunization (Z23) (27,18.38) (13, 1.96) (7, 0.36)

Long term anticoagulants use (Z79.01) (14,6.59) (15, 3.27) (15, 3.45)

Long term drug therapy (Z79.899) (20,1.09) (15, 0.10) (2, 0.00)

Medical Examinations and surgery
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Encounter general medical examination without 
abnormal findings (Z00.00) (32,35.86) (13, 5.65)

(10, 1.71)

Encounter other preprocedural examination 
(Z01.818) (14,3.83) (12, 1.15)

(8, 2.06)

Follow-up examination for conditions other than 
malignant neoplasm (Z09) (27,19.54) (26, 47.11)

(38, 96.47)

Postprocedural removal of a components of the 
digestive tract (Z90.49) (37,68.66) (33, 41.00)

(37, 129.14)

Surgery (Z98.890) (34,45.17) (37, 74.25) (27, 25.43)

Others

Obesity (E66.9) (22,29.88) (19, 35.63) (20, 52.71)

Other chronic pain (G89.29) (33, 103.38) (25, 29.49) (27, 34.15)

Osteoarthritis unspecified site (M19.90) (34,56.14) (26, 35.92) (27, 30.11)

Table 4. Dissimilarities Among the Three Cohorts. In comparing the degree and betweenness of diagnoses 
between the HA-AKI and CA-AKI cohorts, we observed that sepsis (16, 26.31), tachycardia (29, 68.27), and 
dizziness/giddiness (23, 20.92) exhibited higher values in the HA-AKI cohort. Conversely, in the CA-AKI 
cohort, diagnoses such as type 2 diabetes with hyperglycemia (27, 172.36), hypoosmolality and hyponatremia 
(14, 22.00), hypertensive heart disease with heart failure (38, 99.68), COPD (unspecified) (11, 52.62), elevated 
WBC count (29, 22.26), and pleural effusion (24, 27.98) showed higher degree and betweenness compared to 
the HA-AKI cohort. Interestingly, anxiety disorder (A41.9) was the second-highest node in the HA-AKI cohort, 
with values of 36 and 53.95, respectively. It is noteworthy that pleural effusion (J90) had minimal impact on the 
phenotypic network of the CA-AKI cohort. Additionally, certain non-traditional factors, such as unspecified 
constipation, unspecified abdominal pain, and other external hearing aids, exhibited high degree and 
betweenness in both AKI cohorts but were not detected by the combined algorithms in the No-AKI cohort.

Supplementary Table 4 highlights the diagnoses which were not selected by either algorithm across the three 
cohorts, indicating their uniqueness to a specific AKI cohort. For example, in the HA-AKI cohort, distinct 
diagnoses included hypertension (I95.9*, 6,1), dyspnea unspecified (14,25.06), pneumonia (4,5.16), diarrhea 
(16,35.79), nausea with vomiting (14,31.74) and dehydration (2,0). In contrast, in the No-AKI cohort, unique 
findings were family history of IHD (38, 94.38), breast cancer screening (23, 67.08), mammogram screening 
(11, 0.85), screening malignant neoplasm colon (19, 10.43) which were not identified in the AKI cohorts. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 9, 2024. ; https://doi.org/10.1101/2024.09.08.24313275doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.08.24313275
http://creativecommons.org/licenses/by/4.0/


12

Table 4. Dissimilarities of diagnosis among the cohorts. 

Dissimilarity

HA-AKI 
(Degree, 
Betweenness)

CA-AKI
(Degree, 
Betweenness
)

No-AKI
(Degree, 
Betweenness
)

Diseases of the circulatory system
Hypertensive heart disease with HF (I11.0) (31,67.35) (38, 99.68) *

Cardiac arrhythmias (I49.8) (7,1.84) (9, 7.38) *

Localized edema (R60.0) (2,0.00) (7, 2.84) -

Tachycardia unspecified (R00.0) (29,68.27) (31, 24.67) *

Infection
Urinary tract infection, unspecified (N39.0) (17,1.49) (13, 0.00) -

Sepsis (A41.9) (16,26.31) (23, 8.71) * 

Electrolyte abnormalities
Hypoosmolality and hyponatremia (E87.1) (2,0.00) (14, 22.00) *

Acidosis unspecified (E87.2) (18,88.69) (26, 53.61) *

Hyperkalemia (E87.5) (1,0.00) (2, 0.00) *

Hypokalemia (E87.6) (1,0.00) (13, 4.16) -

Diseases of the respiratory system
COPD unspecified (J44.9) (6,17.27) (11, 52.62) -

Atelectasis (J98.11) (32, 118.99) (41, 119.66) *

Diseases of the musculoskeletal system 
Lower back pain (M54.5) (27,52.19) (21, 16.11) *

Soft tissue disorders (M79) (18,39.02) (17, 19.01) -

Weakness (R53.1) (31,25.42) (26, 19.14) -

Other fatigue (R53.83) (16,4.67) (8, 2.33) -

Mental and behavioral disorders
Major depressive episode first (F32.9) (7,0.41) (10, 1.40) -

Dizziness and giddiness (R42) (23,20.92) (14, 9.72) -

Abnormal laboratory findings
Abnormal clinical and laboratory findings 
(R05) (23,70.88) (18, 31.90)

-

Elevated WBC count (D72.829) (19,1.84) (29, 22.26) -

Diseases of the gastrointestinal system
Constipation unspecified (K59.00) (34,41.30) (35, 59.39) -

Unspecified abdominal pain (R10.9) (31,34.48) (27, 22.29) -

Other
External hearing aid (V45.89) (24, 117.32) (24, 128.72) -

Long term aspirin use (Z79.82) (10,1.39) (5, 0.11) -

- Dissimilarities among AKI and No-AKI cohorts but were not identified in the community network clustering 
algorithm. 
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* Not available in the No-AKI dataset before clustering and network analysis

Supplementary Table 4. Unique phenotypes which were not matched by either algorithm.

Supplementary Table 5 shows the similarities in procedures across the three cohorts. Basic metabolic and 
electrolyte panels, along with levels of medical care services, are common across all three cohorts with similar 
centrality and betweenness values. Liver function tests varied among the cohorts. Specifically, HA-AKI had 
higher degree and betweenness values for aspartate aminotransferase enzyme(33, 19.84) compared to the 
other cohorts. In the CA-AKI cohort, alanine aminotransferase and alkaline phosphatase had higher 
betweenness values (27, 86.72) and (31, 45.31), respectively. The coagulation factor prothrombin time (PT) 
exhibited higher degree and betweenness value (34, 64.01) in the non-AKI cohort compared to the other two 
cohorts. Among cardiovascular serum laboratory values, natriuretic peptide and quantitative troponin had 
higher degree and betweenness values (34, 41.77; 30, 10.32) in the HA-AKI cohort relative to the others. In the 
microbiology category, all components except blood aerobic with isolation showed higher degree and 
betweenness in the HA-AKI cohort. For radiology, all imaging studies demonstrated higher degree and 
betweenness in the HA-AKI cohort.

Supplementary Table 5. Similarities of the procedures among the cohorts. 

4. Discussion
4.1 Key findings
We investigated the occurrence of AKI in both community and hospital settings prior to a CKD diagnosis to 
identify key factors influencing future and sustained kidney damage. Early recognition and prevention are 
crucial for reducing CKD risk. Our network analysis corroborates known risk factors for AKI and CKD such as 
anemia, heart failure, and diabetes (Table 2) (38,39). Our algorithm revealed an 80% similarity in clinical 
phenotypes between the AKI (HA-AKI and CA-AKI) and non-AKI cohorts. A significant finding of our study is 
the identification of non-traditional comorbidities and additional risk factors for the progression of AKI to CKD, 
such as psychiatric disorders (e.g., major depressive disorder and anxiety) (Table 5). A 2021 population-
matched cohort study of 30,998 patients with stress-related disorders (SRDs) found that patients with SRDs 
had an increased risk of AKI (HR 1.22, 95% CI 1.04-1.42) and CKD progression (HR 1.23, 95% CI 1.10-1.37) 
(Su et al., 2021). Our study supports these findings by identifying less commonly recognized risk factors for 
AKI and CKD progression through a clustering model (40,41). Although the No-AKI group had a higher 
comorbidity burden, our network clustering analysis revealed greater complexity in the comorbidity networks of 
both AKI cohorts compared to No-AKI cohort. This suggests that clinicians should consider the combined 
burden of risk factors rather than focusing on individual factors when managing AKI patients.

Historically the risk of AKI and its progression to CKD has been associated with factors such as 
increasing age, Black race, male gender, and the presence of multiple comorbidities (42–44).An observational 
study from 2021 suggests that the incidence of AKI increases after the age of 64 (45). However, our findings 
indicate that the AKI cohorts had a lower mean age compared to the non-AKI cohort and were predominantly 
White and female (Table 1). This suggests that AKI is not restricted to the elderly or any specific race or 
gender. The literature supports that older patients are at higher risk for AKI due to age-related declines in renal 
function and a higher number of comorbidities (46,47). Nonetheless, not all comorbidities contribute equally to 
the risk of AKI or CKD progression. Evaluating risk based solely on the number of comorbidities may not fully 
capture the associated risk. In our study, the non-AKI population exhibited a higher comorbidity burden 
compared to the AKI cohorts. These findings suggest that assessing the risk of AKI and its progression to CKD 
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requires a comprehensive examination of various demographic and clinical factors to accurately identify 
specific risk factors and clinical phenotype hazards. 

4.2 Network analysis comparison across three cohorts (HA-AKI, CA-AKI, no-AKI)

In our network analysis across the three cohorts, the AKI cohort exhibited higher quantitative values for edges 
and nodes compared to the non-AKI cohort, indicating a greater number of connections between nodes (Table 
3). This analysis also revealed higher averages for degree and betweenness within the AKI cohort, particularly 
highlighting the overlap of comorbidities and demonstrating more closely clustered variables compared to the 
non-AKI cohort. Clinically, this suggests that the AKI cohort presents greater complexity, necessitating a more 
comprehensive examination of factors when assessing individuals at risk for CKD. Comorbidities shared 
across all cohorts were predominantly cardiac in nature, such as atrial fibrillation, heart failure, and 
atherosclerotic heart disease (Table 2). Conversely, sepsis, a well-known cause of AKI in critically ill patients 
and a major contributor to ICU morbidity and mortality, was highlighted. A 2011 study found that 40% of 
critically ill patients develop sepsis following AKI, indicating that AKI may increase the risk of sepsis (48). The 
challenge of determining which syndrome occurs first is notable, as both conditions are interrelated. Our 
findings align with previous research, particularly in comparing HA-AKI to CA-AKI cohorts. We observed that 
sepsis had higher betweenness in the HA-AKI cohort (26.31 vs. 8.71), underscoring its significant association 
with AKI risk (Table 4). Additionally, diagnoses leading to intravascular volume depletion, such as diarrhea, 
nausea with vomiting, and dehydration, were uniquely associated with the HA-AKI cohort. These results 
support existing literature and further emphasize the importance of these phenotypes in identifying HA-AKI.

4.3 Similarities and Dissimilarities of procedures among cohorts
Our analysis revealed that patients in the AKI cohorts had higher degrees and betweenness for procedures 
related to basic metabolic and electrolyte panels. This is consistent with expectations, as patients with kidney 
disease typically require closer monitoring of serum electrolyte levels (47). In the HA-AKI cohort, aspartate 
aminotransferase enzyme measurements showed higher degrees and betweenness compared to the other 
cohorts. While the development of CKD post-AKI and its associated risk factors are well-documented in 
patients without cirrhosis (49), our study did not include patients with cirrhosis. The increased degree and 
betweenness of aspartate aminotransferase in the HA-AKI cohort may suggest potential hepatic involvement, 
despite the absence of cirrhosis. Conversely, in the non-AKI cohort, cardiovascular serum laboratory values 
such as natriuretic peptide and quantitative troponin levels exhibited higher degrees and betweenness (34, 
41.77; 30, 10.32) compared to the AKI cohorts (13, 4.71; 11, 0.91 and 13, 3.42; 6, 0.37, respectively). This 
finding is contrary to expectations, given the established link between AKI and cardiovascular disease (50). 
This discrepancy highlights an area that warrants further investigation to reconcile these unexpected results.

4.4. Custom combination of clustering and network-based methods
Unlike methods that focus solely on grouping individuals, ClustOfVar analyzes the data structure by clustering 
variables based on their intrinsic relationships. It accommodates both quantitative and qualitative variables, 
creating synthetic variables to reduce complexity while preserving essential information. ClustOfVar enhances 
intra-cluster cohesion through a homogeneity criterion, a feature not commonly emphasized in other methods. 
This approach provides a more nuanced understanding of data complexity, uncovering hidden patterns and 
dependencies that might be missed in patient-level analyses. The hierarchical clustering routine and its 
dendrogram facilitate visual interpretation and the determination of the optimal number of clusters, making it a 
robust tool for analyzing diverse and complex datasets.

4.5 Strengths and implications of the proposed method 
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Our innovative comprehensive patient profiling tool accurately projects a patient’s progression from AKI to CKD 
using diagnosis and procedures data. This custom profiling algorithm integrates two clustering methods 
(ClustOfVar and network-based community clustering), thereby enhancing the validity of traditional clustering 
approaches. Our network analysis not only quantifies the number of comorbidities and procedures associated 
with AKI to CKD progression but also identifies specific types of comorbidities and procedures relevant to the 
patient's journey. This tool confirms established risk factors for AKI to CKD progression, such as hypertension 
and diabetes, and further highlights non-traditional risk factors, including alcohol use disorder and 
characteristics specific to the non-AKI group. This tool can be applied to understand the progression of other 
chronic diseases (e.g., heart failure, COPD, diabetes). For instance, it demonstrates how different 
comorbidities and procedures can be analyzed using our profiling method to elucidate factors influencing the 
transition from AKI to CKD. It identifies both similar and distinct risk factor clusters among patient groups. 
Unlike previous studies that have focused on pre-selected risk factors (e.g., diabetes and hypertension), our 
tool provides a comprehensive list of otherwise unidentified risk factors affecting AKI to CKD progression. 
Additionally, it can be used to assess the long-term impact of chronic diseases, particularly by linking the 
clusters revealed in both clustering and network analyses to demographic factors such as age, gender, race, 
and ethnicity.

4.6. Limitations 
Our study has several limitations that should be considered. First, the retrospective design introduces the risk 
of missing data, which could lead to confounding bias. For instance, AKI and CKD patients were identified 
using ICD-9 and ICD-10 codes due to the absence of serum creatinine values. Second, our definition of CA-
AKI was based on inclusion and exclusion criteria, as we could not measure prior exposure to CA-AKI. Third, 
the results may be affected by residual biases and unmeasured confounders, as some commonly associated 
conditions (e.g., diseases or procedures with <5% prevalence) were excluded. Fourth, our algorithm does not 
capture temporal relationships between comorbidities and procedures related to AKI progression to CKD, 
largely due to gaps in continuous healthcare insurance coverage.

5. Conclusion
Specific therapeutic strategies to prevent the progression from AKI to CKD are currently limited. Our custom 
comprehensive patient profiling algorithm offers a method for grouping and identifying phenotypes of AKI 
patients based on their comorbidities and medical procedures. This approach holds promise for advancing 
research in large cohorts or electronic health records, enabling a deeper understanding of various AKI 
phenotypes and addressing the clinical gap leading to CKD. Future research should include prospective, multi-
center studies to evaluate the impact of different stages and durations of AKI on the risk of long-term CKD 
complications. Additionally, exploring temporal patterns of comorbidities and procedures in relation to other 
chronic diseases using Medicaid and private healthcare claims data could be beneficial. This tool also has the 
potential to uncover non-traditional risk factors for chronic diseases by identifying less prevalent or previously 
unknown comorbidities and procedures.
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