1 Original Article

2 Title Page:

- 3 Title: Development of a machine-learning model for therapeutic efficacy prediction of
- 4 preoperative treatment for esophageal cancer using single nucleotide variants of
- 5 autophagy-related genes
- 6
- 7 Authors' names: Yutaka Miyawaki¹, Masataka Hirasaki^{2,3}*, Yasuo Kamakura², Tomonori
- 8 Kawasaki⁴, Yasutaka Baba⁵, Tetsuya Sato⁶, Satoshi Yamasaki², Hisayo Fukushima², Kousuke
- 9 Uranishi³, Yoshinori Makino², Hiroshi Sato¹, Tetsuya Hamaguchi^{2,7}

10

- 11 Authors' affiliations:
- 12 ¹ Department of Gastroenterological Surgery, Saitama Medical University International
- 13 Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
- 14 ² Department of Clinical Cancer Genomics, Saitama Medical University International Medical
- 15 Center, 1397-1 Yamane, Hidaka, Saitama 350-1298, Japan

- 16 ³ Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical
- 17 University, 1397-1 Yamane, Hidaka, Saitama 350-1298, Japan
- 18 ⁴ Department of Pathology, Saitama Medical University International Medical Center, 1397-1
- 19 Yamane, Hidaka, Saitama 350-1298, Japan
- ⁵ Department of Diagnostic Radiology, Saitama Medical University International Medical Center,
- 21 1397-1 Yamane, Hidaka, Saitama 350-1298, Japan
- 22 ⁶ Biomedical Research Center, Faculty of Medicine, Saitama Medical University, 1397-1
- 23 Yamane, Hidaka, Saitama 350-1298, Japan
- 24 ⁷ Department of Medical Oncology, Gastroenterological Oncology, Saitama Medical University
- 25 International Medical Center, 1397-1 Yamane, Hidaka, Saitama 350-1298, Japan
- 26
- 27 Masataka Hirasaki is an equally contributed first author.
- 28
- 29 · Corresponding author: Masataka Hirasaki, PhD
- 30 Department of Clinical Cancer Genomics, Saitama Medical University International Medical
- 31 Center, 1397-1 Yamane, Hidaka, Saitama 350-1298, Japan

32 Tel.: +81-42-984-4111

- 33 Fax: +81-42-984-4741
- 34 Email: hirasaki@saitama-med.ac.jp
- 35
- 36 Keywords: Biomarker; Esophageal Cancer; Machine Learning; Neoadjuvant Therapy;
- 37 Recurrence.

38

- 39 Word count: 4814 words
- 40 Number of Figures: 4
- 41 Number of Tables: 4
- 42 Number of Supporting Information: 6
- 43

44 Abstract

- 45 Neoadjuvant chemotherapy with cisplatin + 5-fluorouracil followed by radical surgery is the
- 46 standard treatment for stage II and III esophageal cancers. Although, a more potent regimen
- 47 comprising cisplatin + 5-fluorouracil with docetaxel, has shown superiority in overall survival

48	compared to the cisplatin + 5-fluorouracil regimen, it involves worsening of Grade 3 or higher
49	adverse events due to docetaxel. Based on these reports, this study aimed to construct a
50	prognostic system for cisplatin + 5-fluorouracil regimens, particularly for locally advanced
51	cancers, to guide selection of neoadjuvant chemotherapy. Biopsy specimens from 82 patients
52	who underwent a cisplatin + 5-fluorouracil regimen plus radical surgery at Saitama Medical
53	University International Medical Center between May 2012 and June 2020 were analyzed.
54	Variants in 56 autophagy- and esophageal cancer-related genes were identified using targeted
55	enrichment sequencing. Overall, 13 single nucleotide variants, including eight
56	non-synonymous group single nucleotide variants predicting recurrence were identified using
57	Fisher's exact test with recurrence as a two-group event, which showed a significant difference
58	($p < 0.05$). Additionally, machine learning was used to predict recurrence using 21 features,
59	including eight patient backgrounds. The results showed that the Naive Bayes was highly
60	reliable with an accuracy of 0.88 and Area Under the Curve of 0.9. Thus, we constructed a
61	machine learning model to predict recurrence in patients with esophageal cancer treated with
62	a cisplatin + 5-fluorouracil regimen. We believe that our results will provide useful guidance for
63	the selection of neoadjuvant adjuvant chemotherapy, including the avoidance of docetaxel.

64	Abbreviations: CF: cisplatin + 5-fluorouracil; DCF: docetaxel + CF; OS: overall survival;
65	RNA-seq: RNA sequencing; SNV: single nucleotide variant; AUC: area under the curve; ROC:
66	Receiver Operating Characteristic; CIL: chemotherapy-induced leukopenia; RFS:
67	recurrence-free survival; INDELs: insertions and deletions; ESCC: esophageal squamous cell
68	carcinoma
69	

70 Introduction

71 Esophageal cancer ranks seventh in terms of incidence and sixth in terms of overall mortality 72 among all cancers¹. The conventional standard treatment for stages II and III esophageal 73 cancer in Japan is neoadjuvant chemotherapy with cisplatin + 5-fluorouracil (CF), followed by 74 radical surgery². According to previous reports, the 5-year survival rate for stage II cancers 75 after neoadjuvant chemotherapy with the CF regimen is 69%. However, the 5-year survival 76 rate for stage III cancer is poor at 52%, indicating that neoadjuvant chemotherapy with CF 77 regimen has a limited effect in locally advanced cases^{3,4}. Therefore, a more potent 78 neoadjuvant chemotherapy regimen with docetaxel + CF (DCF) has attracted attention in 79 recent years. A phase III trial (JCOG1109) comparing the superiority of neoadjuvant

80	chemotherapy with DCF and CF regimens demonstrated an overall survival (OS) advantage in
81	the neoadjuvant DCF arm 5 . Based on these results, neoadjuvant DCF therapy became the
82	standard treatment in Japan in February 2022 ⁶ . However, the exacerbation of adverse events
83	with docetaxel, specifically grade 3 or higher leukopenia (6.7–63.8%), neutropenia
84	(23.4–85.2%), and hyponatremia (6.2– 26.0%), have also been reported simultaneously 5 . The
85	high level of chemotherapy-related adverse events may potentially force a series of treatment
86	interruptions, prevent the maintenance of ideal chemotherapy dose intensity, and make it
87	difficult to complete treatment, including subsequent surgery. Chemotherapy-induced
88	leukopenia (CIL) is also a known prognostic factor of chemotherapy in some malignancies,
89	although it is not currently evident in esophageal cancer ⁷⁻⁹ . Based on these results, we believe
90	that the establishment of prognostic markers, especially for CF regimens for cT3 resectable
91	advanced esophageal cancers, will provide useful guidance in the selection of neoadjuvant
92	chemotherapy, including the avoidance of docetaxel administration.
93	

94 Autophagy is a highly regulated process of degradation and recycling of cellular components.

95 The most important feature of autophagy is that it degrades intracellular proteins and

96	organelles and recycles them as a new source of nutrients ¹⁰ . Recently, autophagy was shown
97	to contribute to the acquisition of chemotherapy resistance in established cancers via
98	intracellular recycling, provide a substrate for metabolism, and maintain a functional pool of
99	mitochondria ¹¹ . In patients with esophageal cancer receiving CF and DCF regimens, a high
100	expression of PINK1, an initiator of mitophagy, was associated with poor prognosis, suggesting
101	that PINK1-mediated mitophagy contributed to resistance to neoadjuvant therapy ¹² . However,
102	it was not established as a biomarker because high PINK1 protein expression did not correlate
103	with the response to neoadjuvant chemotherapy in biopsy specimens obtained before
104	neoadjuvant chemotherapy. In contrast, we previously reported that single-nucleotide variants
105	in PINK1 may be biomarkers for non-recurrence in patients with colorectal cancer treated with
106	postoperative adjuvant chemotherapy ¹³ .
107	This study aimed to construct a prognostic system for CF regimens, particularly for locally
108	advanced cancers. The single nucleotide variants (SNVs) and insertions and deletions (INDELs)
109	for autophagy- and esophageal cancer-related genes were identified in a sample of patients
110	who received neoadjuvant chemotherapy with a CF regimen for esophageal squamous cell
111	carcinoma (ESCC). The identified SNVs and INDELs were statistically examined, with recurrence

- as an event between the two groups. Finally, a machine-learning model was constructed to
- 113 predict recurrence by comprehensively considering 13 variants that were significantly
- 114 correlated with recurrence. This provided a useful guidance for the selection of neoadjuvant
- 115 chemotherapy, including avoiding docetaxel administration.
- 116

117 Material and methods

- 118 Tissue samples
- 119 Ninety-one patients with esophageal cancer who underwent a neoadjuvant CF regimen plus
- 120 radical surgery at Saitama Medical University International Medical Center between May 2012
- 121 and June 2020 were eligible. Of these, samples from 82 patients with sufficient DNA content
- 122 were included in this study (Table 1). The location of tumor cells in the tissue specimen was
- 123 determined both visually and microscopically by a pathologist using hematoxylin and
- 124 eosin-stained (H&E) sections, which were taken from paraffin blocks of biopsy specimens of
- 125 the esophageal cancer tissue.
- 126

127

128

129 Target sequencing in clinical ESCC cases

- 130 A total of 56 autophagy- and ESCC-related genes were selected for original target enrichment
- sequencing. The autophagy-related genes were largely the same as those previously reported;
- 132 however, some genes were added or deleted ^{13,14}. The whole-genome analysis of 552
- esophageal squamous cell carcinoma cases identified cancer driver genes. Among them, 19
- 134 genes with a high frequency of occurrence were selected ¹⁵. The target regions were designed
- to enrich the exonic regions and exon-intron junctions of all 56 genes (Table S1). The mean
- 136 percentile of the covered target regions was 99.57%.
- 137

138 DNA extraction, library preparation, and data analysis for targeted capture sequencing

139 Biopsy specimens from 82 patients were analyzed. The assessment and recovery of cancerous

- 140 areas were performed using previously reported methods ^{13,16}. From the extracted DNA, a
- 141 library of all the exon sequences of the 56 genes was prepared using the HaloPlex Target
- 142 Enrichment kit (Agilent Technologies, Santa Clara, CA, USA), according to the manufacturer's
- 143 instructions. The libraries were high-throughput sequenced on a NextSeq platform (Illumina,

- San Diego, CA, USA) with 150 bp paired-end reads according to the manufacturer's protocol.
- 145 The data were analyzed using previously reported methods ¹³. SNVs with multiple allelic
- 146 characteristics were excluded. A violin plot was generated using the R package
- 147 (https://bioconductor.org/packages/release/-bioc/html/edgeR.html).
- 148
- 149 Study design and statistical analysis
- 150 A 2×2 cross-tabulation table was created with and without variants, and with and without
- 151 recurrence. A Fisher's exact test was performed using R based on the cross-tabulation table to
- 152 examine the association between gene variants and recurrence.
- 153 The variants with a preliminarily inferred association with postoperative recurrence were
- examined for their associations with OS and recurrence-free survival (RFS). OS was defined as
- 155 the period from the date of surgery to the date of death. RFS was defined as the period from
- 156 the date of surgery to the date of first evidence of relapse. For patients who did not show
- 157 relapse or die, RFS or OS was censored at the last confirmed date of no recurrence. OS and RFS
- 158 were analyzed using the Kaplan–Meier method, and significance was determined by the
- 159 log-rank test using the open-source Python software package. The median follow-up period for

160	patients surviving without death was 51.2 (range: 7.0–107.8) months. Survival analysis was
161	performed for 78 cases which had sufficient sample volume to allow the analysis of all variants
162	that were candidates for prognostic factors. Univariate and Multivariate survival analyses were
163	performed using a stratified Cox proportional hazard model. In the multivariate analyses,
164	covariates were selected using backward elimination. All statistical tests were two-sided, and p
165	< 0.05 was considered statistically significant.
166	
167	RNA extraction, library preparation, and data analysis for RNA sequence
168	Total RNA was isolated from formalin-fixed paraffin-embedded (FFPE) biopsy specimens (n =
168 169	Total RNA was isolated from formalin-fixed paraffin-embedded (FFPE) biopsy specimens (n = 15) from patients with esophageal cancer were treated between 2012 and 2019. Libraries for
168 169 170	Total RNA was isolated from formalin-fixed paraffin-embedded (FFPE) biopsy specimens (n = 15) from patients with esophageal cancer were treated between 2012 and 2019. Libraries for RNA sequencing were prepared from total RNA as described previously ¹⁷ . Of the 15 specimens,
168 169 170 171	Total RNA was isolated from formalin-fixed paraffin-embedded (FFPE) biopsy specimens (n = 15) from patients with esophageal cancer were treated between 2012 and 2019. Libraries for RNA sequencing were prepared from total RNA as described previously ¹⁷ . Of the 15 specimens, eight and seven specimens showed non-recurrence and recurrence, respectively.
168 169 170 171 172	Total RNA was isolated from formalin-fixed paraffin-embedded (FFPE) biopsy specimens (n = 15) from patients with esophageal cancer were treated between 2012 and 2019. Libraries for RNA sequencing were prepared from total RNA as described previously ¹⁷ . Of the 15 specimens, eight and seven specimens showed non-recurrence and recurrence, respectively. The resulting library was sequenced on an Illumina HiSeqX platform (2 × 150-bp read length).
168 169 170 171 172 173	Total RNA was isolated from formalin-fixed paraffin-embedded (FFPE) biopsy specimens (n = 15) from patients with esophageal cancer were treated between 2012 and 2019. Libraries for RNA sequencing were prepared from total RNA as described previously ¹⁷ . Of the 15 specimens, eight and seven specimens showed non-recurrence and recurrence, respectively. The resulting library was sequenced on an Illumina HiSeqX platform (2 × 150-bp read length). Data analysis was based on previously reported methods with some modifications ¹⁷ .
168 169 170 171 172 173 174	Total RNA was isolated from formalin-fixed paraffin-embedded (FFPE) biopsy specimens (n = 15) from patients with esophageal cancer were treated between 2012 and 2019. Libraries for RNA sequencing were prepared from total RNA as described previously ¹⁷ . Of the 15 specimens, eight and seven specimens showed non-recurrence and recurrence, respectively. The resulting library was sequenced on an Illumina HiSeqX platform (2 × 150-bp read length). Data analysis was based on previously reported methods with some modifications ¹⁷ . Differentially Expressed Genes (DEGs) were defined as genes that showed a two-fold or

176	recurrence and non-recurrence groups and a significant difference of $p < 0.05$. The significance
177	estimate of the differences in gene expression, such as the p-value, was calculated using
178	expected counts from the RSEM software package using edgeR package in R, and a volcano
179	plot figure was generated using R. The DAVID database (https://david.ncifcrf.gov/) was used
180	for Gene Ontology (GO) analyses. STRING
181	(https://stringdb.org/cgi/input?sessionId=b89PQA39oVO5&input_page_show_search=on)
182	analysis was used to identify protein-protein interaction networks associated with highly
183	expressed transcripts. Raw counts from the gene expression data were normalized to log
184	counts per million (log-CPM) and further transformed into z-scores. Principal component
185	analysis (PCA) and heat map plots were created using R, based on log-CPM (z-score) values.
186	
187	Machine learning model construction
188	The model development was performed using the Google Collab platform, and Pycaret was
189	the first package used for machine learning, which required the installation of packages
190	containing pandas, NumPy, warnings, and Pycaret (Moez A. PyCaret: an open-source, low-code
191	machine learning library in Python. https://www.pycaret.org). Feature sets from eight

192	different patient backgrounds and 21 different patient backgrounds + <u>SNVs were separately</u>
193	entered into Pycaret. Pycaret divided each set into training (70%) and independent test
194	cohorts (30%) to build a recurrence prediction model. Each feature set was trained on 15
195	machine learning models, and the stability of the models was evaluated by performing 10-fold
196	cross-validation of the performance of each model and the genomic features that contributed
197	the most to automatic generation in the training cohort. The most accurate models were
198	subjected to hyperparameter tuning, and the tuned models were assembled using the
199	blending method. The missing values in the SNVs were filled using Pandas df. fillna
200	(data.mean()).
201	
202	Results
203	Original target enrichment sequencing
204	Biopsy specimens from patients with esophageal cancer undergoing radical surgery after
205	treatment with the CF regimen were used to identify SNVs and INDELs for 56 genes related to
206	autophagy and esophageal cancer using targeted enrichment sequencing to construct a
207	prognostic system for the CF regimen. Between May 2012 and June 2020, 91 patients

208	underwent the CF regimen + radical surgery at Saitama Medical University International
209	Medical Center, of which 82 patients were eligible for the study after the required amount of
210	DNA was obtained. The clinical characteristics of the 82 patients are presented in Table 1.
211	Among the 82 patients, 45 experienced recurrence, representing a 55% recurrence rate.
212	Next-generation sequencing yielded a median of 2,252,009 reads per sample (range:
213	714,042–6,247,424 reads per sample). Among the designed target bases, 87.1% (range:
214	40.2–98.4% per sample) had at least a 15-fold coverage, with a mean coverage of 660 fold
215	(range: 156.11–1,963 fold) per nucleotide in the coding region of the target gene (Fig 1A-B).
216	
217	Breakdown of SNVs and INDELs
218	The next-generation sequencing data analysis only reported the presence of AltSeq (Alt, any
219	other allele found at that locus); therefore, if there were no sequence reads, AltSeq was
220	considered absent. Variant filtering based on criteria such as depth of coverage, variant allele
221	frequency, and AltSeq counts reduces false-positive results and ensures confidence in the
222	detected variants. By setting thresholds for "Depth of coverage ≥ 15, Variant allele frequency ≥

223 5%, and AltSeq \geq 2", we aimed to ensure that detected variants were supported by enough

224	sequencing reads and were present at a significant level to be considered genuine (Fig 1C). The
225	original target enrichment sequencing for cases with neoadjuvant chemotherapy showed that
226	a total of 12,562 SNVs or INDELs were detected within the target region (Fig 1D). Among these
227	variants, 7,962 were non-synonymous SNVs, indicating that they resulted in amino acid
228	changes in the protein sequences. Additionally, 88 frameshift deletions and 17 frameshift
229	insertions were detected, indicating that these alterations caused a shift in the reading frame
230	of the gene. The SNVs associated with stop-gain variants were identified at 596 locations (Fig
231	1D). These variants resulted in premature termination of protein synthesis.
232	
232 233	Variants correlated with recurrence
232 233 234	Variants correlated with recurrence We examined the associations among SNVs, INDELs, and recurrence. The variants found in a
232 233 234 235	Variants correlated with recurrence We examined the associations among SNVs, INDELs, and recurrence. The variants found in a sample of 82 patients with recurrence were treated as binary events and subjected to Fisher
232 233 234 235 236	Variants correlated with recurrence We examined the associations among SNVs, INDELs, and recurrence. The variants found in a sample of 82 patients with recurrence were treated as binary events and subjected to Fisher exact tests. Thirteen variants were significantly different (p < 0.05). Among these variants,
232 233 234 235 236 237	Variants correlated with recurrence We examined the associations among SNVs, INDELs, and recurrence. The variants found in a sample of 82 patients with recurrence were treated as binary events and subjected to Fisher exact tests. Thirteen variants were significantly different (p < 0.05). Among these variants, eight were non-synonymous SNVs, four were synonymous SNVs, and one was a splicing-site
232 233 234 235 236 237 238	Variants correlated with recurrence We examined the associations among SNVs, INDELs, and recurrence. The variants found in a sample of 82 patients with recurrence were treated as binary events and subjected to Fisher exact tests. Thirteen variants were significantly different (p < 0.05). Among these variants, eight were non-synonymous SNVs, four were synonymous SNVs, and one was a splicing-site variant (Table 2).

0	Λ	Λ
2	4	υ

241

242 Survival analysis of 13 candidate SNVs in RFS and OS

- 243 The RFS was analyzed for 13 identified variants. The results indicated significant differences in
- 244 RFS for six of these variants (Fig 2A-B and Table S2). The OS analysis was also performed for
- 245 the 13 identified variants, with significant differences observed for two variants, ATG2A
- 246 p.R478C (p < 0.005) and ULK2 splice sites (p=0.05) (Fig 2C-D).
- 247 The variants in ATG2A p.R478C, extracted as candidate prognostic factors, showed an
- 248 association with RFS and OS in univariate analysis (p=0.025 and 0.002, respectively). The
- variants in the ULK2 splice site were associated with RFS but not with OS (p=0.016 and 0.054,
- 250 respectively). Additionally, multivariate Cox regression analysis revealed that the presence of
- 251 variants in ATG2A_R478C or the absence of variants in ULK2_1442-2G>T (p=0.046, hazard
- 252 ratio=2.076) and conventional open thoracotomy (p=0.018, hazard ratio=2.096) were
- 253 independent prognostic factors for RFS. Likewise, multivariate Cox regression analysis of OS
- 254 revealed that the presence of variants in ATG2A_R478C or the absence of variants in

255 ULK2_1442-2G>T (p=0.029, hazard ratio=2.764) and clinical lymph node metastasis (p=0.040,

256 hazard ratio=2.604) were independent prognostic factors for OS (Table	s 3–4	ł).
---	-------	-----

257

258 Correlation between pathogenic/likely pathogenic SNVs and recurrence rate

259 The SNVs and INDELs classified as pathogenic or likely pathogenic mutations in ClinVar were

- 260 found at 212 locations in 22 genes, including 17 esophageal cancer-related genes. Among
- 261 these variants, 11 were frameshift deletions, 15 were splicing variants, 95 were
- 262 non-synonymous SNVs, and 87 were stop-gain variants. Fisher's exact test was conducted for
- 263 each gene to assess its association with recurrence; however, none of the genes showed
- 264 statistically significant differences (Fig 1S). Moreover, pathogenic/likely pathogenic variants
- were observed in 81 of the 82 analyzed specimens. This suggests that while these variants
- 266 were prevalent among the patient samples, they did not appear to significantly influence
- 267 recurrence or prognosis.

268

269 Machine learning model to predict recurrence

270 In this study, 13 SNVs were identified as candidate predictors of recurrence after neoadjuvant

- 271 chemotherapy with the CF regimen for esophageal cancer. However, some specimens had
- 272 multiple types of SNVs, thus, the question remained as to which SNVs should be trusted for
- 273 prediction (Fig 2SA). Therefore, we investigated the construction of a recurrence prediction
- 274 model using machine learning, considering 21 factors, including the SNVs found in this study
- and patient background (Fig 2SB).
- 276 Fifteen algorithms were trained using the Pycaret classification module, and 21 features,
- 277 including patient background and SNV, to construct a model with recurrence as the correct
- answer. The accuracy level of the entire model was compared based on the accuracy value,
- and the results showed the highest value of 0.8467 for Naive Bayes (Table S3). Furthermore,

when tune_model was used for accuracy, the value became 0.88, which was defined as the

- final_model (Fig 3A). When eight types of patient backgrounds were used as features, the
- accuracy was 0.5633 in Naïve Bayes (Fig 3A). Additionally, other evaluation metrics such as
- 283 Recall, Precision (Prec.), F1 Score, Kappa, and Matthews Correlation Coefficient (MCC) also
- demonstrated the superiority of the model using all 21 factors, including SNVs (Fig 3A). These

- 285 results showed that incorporating SNVs along with patient background information
- significantly improved the predictive performance of the model.
- 287 A Receiver Operating Characteristic (ROC) curve for Naive Bayes was generated, showing an
- Area Under the Curve (AUC) value of 0.9 for both class 0 (no recurrence) and class 1
- (recurrence) (Fig 3B). This AUC value indicated that this model had an excellent discriminative
- ability to distinguish between possible recurrences.
- 291 The confusion matrix was one of the representations used in machine learning to evaluate the
- 292 performance of classification models. From the confusion table, the true positive value was
- seven, which was higher than the false negative value of four (Fig 3C). Furthermore, it is
- 294 noteworthy that the number of true negatives was 14 and the number of false positives was 0
- 295 (Fig 3C). These results suggested that the Naive Bayes classification model had high
- 296 performance in terms of both sensitivity (true positive rate) and specificity (true negative rate)
- in predicting recurrence in patients with esophageal cancer.
- 298
- 299 Comparison of the expressions of coding RNAs between recurrence and non-recurrence

300 groups

301	This study demonstrated several predictive systems for ineffective CF regimens. Therefore, to
302	propose a selective treatment for the poor response group, we performed a comprehensive
303	expression analysis to understand the biological characteristics of the poor response group. In
304	the analysis of differential gene expression between recurrence and non-recurrence
305	specimens among 19,972 coding genes, 187 genes were found to have higher expression levels
306	in the recurrence group compared to the non-recurrence group, whereas 128 genes showed
307	lower expression levels in the recurrence group compared to the non-recurrence group based
308	on the criteria of fold change \geq 2 and p-value < 0.05 (Fig 4A).
309	GO analysis using the DAVID database revealed the enrichment of specific biological processes
310	associated with highly expressed genes in the recurrence and recurrence-free groups. In the
311	recurrence group, 21 genes with high expression were enriched in processes related to the
312	"G-protein coupled receptor (GPCR) signaling pathway" (Fig 4B). In contrast, in the
313	recurrence-free group, eight and seven genes with high expression were enriched in processes
314	related to "keratinization" and "epidermis development," respectively (Fig 4C). These genes,
315	especially those contributing to the "GPCR signaling pathway," may be potential additional
316	therapeutic targets for patients with poor response to the CF regimen.

317

318 Possibility of predicting recurrence by analysis of gene set expression levels 319 Recurrence was predicted by analyzing the expression levels of 34 genes associated with the 320 three GO terms. Initially, the expression levels of the 34 genes among the samples were 321 visualized using a heat map to gain insight into the differences and similarities between the 322 samples. Hierarchical cluster analysis was used to group the samples based on similarities in 323 their gene expression profiles. The results showed that except for the 44 ESC samples, the 324 samples predominantly clustered into two main groups: recurrence and non-recurrence (Fig 325 4D). Principal component analysis (PCA) was performed on the expression data of 34 genes. 326 Plotting the data in the first two principal components showed that, excluding the 44 ESC 327 samples as in the hierarchical cluster analysis, recurrence could effectively distinguish 328 non-recurrence samples in the first principal component (Fig 4E). 329 The expression levels of 56 genes related to autophagy and esophageal cancer were also 330 examined. Only CDKN2A showed a significant difference at p > 0.02, with an approximately 331 7.6-fold increase in expression in the recurrent group compared to that in the non-recurrence 332 group (Fig 4A). Clustering and PCA were performed on 37 autophagy-related genes (Fig 3S

333 A-B); however, the results did not clearly distinguish non-recurrence from relapse. This

- 334 suggested that the 56 genes associated with autophagy and esophageal cancer were not
- compatible with the prediction of recurrence by expression level analysis.
- 336

337 Discussion

- 338 Although neoadjuvant chemotherapy with DCF therapy, a three-drug combination regimen for
- 339 resectable locally advanced esophageal cancer, is expected to prolong the prognosis of
- 340 postoperative survival, the high incidence of adverse events, such as myelosuppression, is a
- 341 major clinical issue. CF, a conventional neoadjuvant chemotherapy regimen, showed superior
- 342 tolerability in terms of drug toxicity, although its prolonged postoperative prognostic effect
- 343 was less satisfactory than that of DCF therapy. We identified various autophagy- and
- 344 esophageal cancer-related gene variants as biomarkers that could predict the efficacy of CF
- 345 therapy prior to treatment. Eventually, we constructed a machine learning model that was
- 346 highly predictive of postoperative recurrence based on 21 factors consisting of clinical factors
- 347 and SNVs. We also established a highly heterogeneous treatment selection system using the
- 348 machine-learning model.

349	In surgical specimens from patients with esophageal cancer receiving neoadjuvant
350	chemotherapy, a high expression of PINK1 protein, an initiator of mitophagy, correlated with
351	poor response to neoadjuvant chemotherapy with CF or DCF regimen; however, this
352	correlation was not observed in biopsy specimens taken prior to chemotherapy. Thus, PINK1
353	protein expression is not considered a predictive biomarker for response to neoadjuvant
354	chemotherapy with CF or DCF regimen in patients with esophageal cancer. In contrast to
355	PINK1 protein expression, the 13 SNVs identified in this study were prognostic predictors of
356	neoadjuvant chemotherapy with the CF regimen in patients with esophageal cancer.
357	Specifically, SNVs such as $p.R478C$ in ATG2A and in the splice site of ULK2 were found to be
358	significant. These SNVs are reported for the first time as prognostic predictors of esophageal
359	cancer. However, SNVs in PINK1 (c.1018G>A and c.1562A>C), which were previously suggested
360	to be prognostic factors for 5-FU-based adjuvant chemotherapy in colon cancer, showed no
361	significance in ESCC. Conversely, SNVs identified in esophageal cancer did not show significant
362	differences in colorectal cancer. The difference in the prognosis-related SNVs between
363	colorectal cancer and ESCC suggests that the genetic characteristics affecting treatment
364	response and outcome may differ significantly between different cancer types. This

365 underscores the importance of considering organ-specific genetic profiles when developing

- 366 personalized medical approaches.
- 367

368	ATG2A plays an important role in autophagosome formation, an early step in autophagy, and
369	promotes the lipid translocation required for autophagosome membrane expansion ¹⁸ . ATG2A
370	promotes colony formation and migration in glioblastoma cell lines by activating autophagy.
371	This suggests that it is involved in cancer progression and therapeutic response ¹⁹ . ATG2A
372	p.C478 minor variant was found to be significantly associated with worse RFS and OS
373	compared to p.R478 major variant. This suggests that the p.C478 variant may contribute to a
374	poor response to CF regimens by activating autophagy. In silico analysis with PolyPhen2, the
375	p.C478 variant was "probably damaging," with a score of 1.000, indicating that the high score
376	was functionally significant. Further biochemical characterization is needed to better
377	understand the functional impact and role of p.C478 mutation in ATG2A during neoadjuvant
378	chemotherapy for esophageal cancer. Such characterization efforts may pave the way for the
379	development of targeted therapies aimed at modulating the activity of this mutant and for the
380	identification of biomarkers to guide treatment decisions, especially in relation to CF regimens.

381	Thirteen variant	s showed significa	nt differences in	predicting	recurrence after	r treatment with
-----	------------------	--------------------	-------------------	------------	------------------	------------------

- 382 CF regimens for esophageal cancer. Therefore, we constructed a machine learning method to
- 383 predict recurrence using 21 features, including eight patient backgrounds and 13 SNVs, which
- showed high accuracy (0.88) and AUC (0.9).
- 385
- 386 However, this study had some limitations. First, the differences in the importance of the

387 features of the 13 SNVs were examined; however, the Naïve Bayes algorithm was difficult to

- 388 compute directly and has not been shown. Second, in this study, the hyperparameters were
- 389 optimized collectively using the tune model function; however, it was also possible to
- 390 effectively tune the individual parameters. Third, the number of samples was limited because

the test sample was 25, and the cohort was single. In contrast, PCA and hierarchical clustering

- 392 analyses of 34 genes identified as DEGs in the expression analysis of recurrent and
- 393 non-recurrent groups suggested the possibility of predicting recurrence. In the confusion
- 394 matrix shown in Figure 3C, there were four cases of non-recurrence in which recurrence was
- 395 expected. In the future, we would like to consider improving the decision rate when SNVs
- analysis and pathological image results are added to machine learning features.

397

398	Prognostic prediction of CF regimens by SNVs showed that the ATG2A p.R478C ($p < 0.005$) and
399	ULK2 splice site (p=0.05) variants were candidates. Furthermore, when machine learning was
400	performed, considering information from the 13 SNVs as features, the AUC=0.9 was high. As
401	the purpose of the RNA-seq analysis in this study was to determine the biological
402	characteristics of the recurrent group, the number of samples was limited to 15. In the future,
403	the number of specimens should be 82, the same as in the SNVs analysis, to examine whether
404	prognosis can be predicted by expression analysis. We would also like to consider improving
405	the decision rate when the results of the expression analysis are added to the machine
406	learning features.
407	Genes contributing to the GPCR signaling pathway were enriched in the recurrent group. They
408	are located on the cell membrane and transduce extracellular signals to produce key
409	physiological effects ²⁰ . Activated by external signals through coupling to different G proteins or
410	arrestins, GPCRs elicit a cyclic adenosine 3,5-monophosphate (cAMP) response, calcium
411	mobilization, and phosphorylation of extracellular signal-regulated protein kinases
412	1/2(pERK1/2) ^{21,22} . As one of the most successful therapeutic target families, GPCRs have

413	undergone a transition from random ligand screening to knowledge-driven drug design ²¹ . Of
414	the 826 human GPCRs, approximately 350 were regarded as druggable and 165 were validated
415	drug targets ²¹ . GNG4, which was highly expressed in the recurrent group, is a member of the
416	G-protein γ family, which typically transduces signals from upstream GPCRs ²³ . GNG4 is
417	upregulated in primary gastric cancer and liver metastatic lesions. High expression of GNG4 in
418	primary cancer tissues are associated with shorter OS and likelihood of liver recurrence.
419	Functional assays revealed that GNG4 promoted cancer cell proliferation, cell cycle, and
420	adhesion ²⁴ . Tumor formation in GNG4-knockout cells was moderately reduced in a
421	subcutaneous mouse model and strikingly attenuated in a mouse model of liver metastasis ²⁴ .
422	Genes contributing to the GPCR signaling pathway that were highly expressed in the recurrent
423	group, particularly GNG4, are potential drug targets.
424	The other limitations were that this study was a small-sample single-center study, and future
425	validation with a larger cohort is needed. Second, the median follow-up period of surviving
426	patients was relatively short, and further follow-up studies are required to evaluate the
427	long-term results of this study. Third, the biochemical functions of the variants identified in
428	this study are unknown.

429	Nonetheless, we believe that our model for predicting the efficacy of CF therapy is significant
430	because it is expected to avoid excessive drug toxicity caused by DCF therapy while
431	simultaneously providing a non-inferior therapeutic effect. The therapeutic effect of standard
432	DCF therapy can be expected even in cases in which CF therapy is deemed ineffective. In
433	future studies, it will be necessary to examine whether our model for predicting the efficacy of
434	CF therapy is relevant to predict the efficacy of DCF therapy, particularly if patients who are
435	expected to receive ineffective CF therapy can be rescued by DCF therapy.
436	In conclusion, candidate genes were identified to predict the prognosis of CF regimens, and a
437	machine learning model was constructed to further predict recurrence. We believe that this
438	information will be useful for the selection of neoadjuvant chemotherapy, including the
439	avoidance of docetaxel. The avoidance of unnecessary drugs may provide useful guidance not
440	only for patients, but also for health economics.
441	
442	Acknowledgments
443	We thank the staff of the Division of Analytical Science, Hidaka Branch of the Biomedical

444 Research Center, Saitama Medical University, for providing research equipment and offering

445 important advice. We would like to thank Editage (www.editage.jp) for English language

- 446 editing.
- 447
- 448
- 449
- 450

451 Availability of data and materials

- 452 The data are not publicly available because of privacy and ethical restrictions. Access to the
- 453 data and calculation methods can be obtained from the corresponding author upon request
- 454 via email (hirasaki@saitama-med.ac.jp).

455

456 **Disclosure:**

457 **Funding Information**

- 458 This work was supported by the Hidaka Project (4-D-1-04) and Takeda Science Foundation
- 459 (MH). MH is the recipient of a grant from the Japan Society for the Promotion of Science (JSPS)
- 460 KAKENHI (grant number: 21K06825).

461

462 **Conflict of Interest**

463 All authors declared that there are no conflicts of interest.

464

465

466

467 Ethics Statement

- 468 Approval of the research protocol by an Institutional Reviewer Board. This study adhered to
- the ethical standards of the Declaration of Helsinki and its subsequent amendments. This study
- 470 was approved by the Institutional Review Board of the Saitama Medical University
- 471 International Medical Center (2022-113 and 2024-055).

472 - Informed Consent. The requirement for informed consent was waived by the Institutional

- 473 Review Board of Saitama Medical University International Medical Center in view of the
- 474 retrospective nature of this study.
- 475 Registry and the Registration No. of the study/trial. N/A.
- 476 Animal Studies. N/A.

477

478 Author Contributions

- 479 YM collected patient data, performed statistical analysis, and prepared the manuscript. MH
- 480 performed the chromosomal DNA and total RNA extraction, analyzed and interpreted the data
- 481 from the next-generation sequencer, and prepared the manuscript. YK prepared sections of
- 482 FFPE samples. TK determined the tumor area. YB is an advisor for machine learning. TS and YS
- 483 are advisors for bioinformatics. HF, KU, YM, HS and TH designed and supervised the study and
- 484 revised the manuscript. All the authors have read and approved the final version of the
- 485 manuscript.

486 **References**

- Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of
 Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin.
 2021;71(3):209–249. doi: 10.3322/CAAC.21660.
- 490 2. Kitagawa Y, Uno T, Oyama T, et al. Esophageal cancer practice guidelines 2017 edited by
 491 the Japan Esophageal Society: part 1. Esophagus. 2019;16(1):1–24. doi:
- **492** 10.1007/s10388-018-0641-9.
- 493 3. Yokota T, Ando N, Igaki H, et al. Prognostic Factors in Patients Receiving Neoadjuvant
- 494 5-Fluorouracil plus Cisplatin for Advanced Esophageal Cancer (JCOG9907). Oncology.
 495 2015;89(3):143–151. doi: 10.1159/000381065.
- 496 4. Ando N, Kato H, Igaki H, et al. A randomized trial comparing postoperative adjuvant
 497 chemotherapy with cisplatin and 5-fluorouracil versus preoperative chemotherapy for

498		localized advanced squamous cell carcinoma of the thoracic esophagus (JCOG9907). Ann
499		Surg Oncol. 2012;19(1):68–74. doi: 10.1245/S10434-011-2049-9/FIGURES/5.
500	5.	Kato K, Ito Y, Daiko H, et al. A randomized controlled phase III trial comparing two
501		chemotherapy regimen and chemoradiotherapy regimen as neoadjuvant treatment for
502		locally advanced esophageal cancer, JCOG1109 NExT study.
503		https://doi.org/101200/JCO2022404_suppl238 2022;40(4_suppl):238–238. doi:
504		10.1200/JCO.2022.40.4_SUPPL.238.
505	6.	Kitagawa Y, Ishihara R, Ishikawa H, et al. Esophageal cancer practice guidelines 2022
506		edited by the Japan esophageal society: part 1. Esophagus. 2023;20(3):343–372. doi:
507		10.1007/s10388-023-00993-2.
508	7.	Shitara K, Matsuo K, Takahari D, et al. Neutropenia as a prognostic factor in advanced
509		gastric cancer patients undergoing second-line chemotherapy with weekly paclitaxel.
510		Ann Oncol. 2010;21(12):2403–2409. doi: 10.1093/ANNONC/MDQ248.
511	8.	Hara H, Mizusawa Junki, Hironaka Shuichi, et al. Influence of preoperative
512		chemotherapy-induced leukopenia on survival in patients with esophageal squamous
513		cell carcinoma: exploratory analysis of JCOG9907. Esophagus. 2021;18:41–48. doi:
514		10.1007/s10388-020-00752-7.
515	9.	Miyoshi N, Yano M, Takachi K, et al. Myelotoxicity of preoperative chemoradiotherapy is
516		a significant determinant of poor prognosis in patients with T4 esophageal cancer. J Surg
517		Oncol. 2009;99(5):302-306. doi: 10.1002/JSO.21235.
518	10.	Devenport SN, Shah YM. Functions and Implications of Autophagy in Colon Cancer. Cells.
519		2019;8(11)1349. doi: 10.3390/CELLS8111349.
520	11.	Wang Y, Liu HH, Cao YT, et al. The Role of Mitochondrial Dynamics and Mitophagy in
521		Carcinogenesis, Metastasis and Therapy. Front Cell Dev Biol. 2020;8:413. doi:
522		10.3389/FCELL.2020.00413.
523	12.	Yamashita K, Miyata H, Makino T, et al. High Expression of the Mitophagy-Related
524		Protein Pink1 is Associated with a Poor Response to Chemotherapy and a Poor Prognosis
525		for Patients Treated with Neoadjuvant Chemotherapy for Esophageal Squamous Cell
526		Carcinoma. Ann Surg Oncol. 2017;24(13):4025–4032. doi: 10.1245/S10434-017-6096-8.
527	13.	Mihara Y, Hirasaki M, Horita Y, et al. PTEN-induced kinase 1 gene single-nucleotide
528		variants as biomarkers in adjuvant chemotherapy for colorectal cancer: a retrospective
529		study. BMC Gastroenterol. 2023;23(1):339. doi: 10.1186/s12876-023-02975-1.

- 530 14. Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of
- assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222. doi:
- **532** 10.1080/15548627.2015.1100356.
- 533 15. Moody S, Senkin S, Islam SMA, et al. Mutational signatures in esophageal squamous cell
 534 carcinoma from eight countries with varying incidence. Nat Genet.
- 535 2021;53(11):1553–1563. doi: 10.1038/s41588-021-00928-6.
- 536 16. Inoue H, Hirasaki M, Kogashiwa Y, et al. Predicting the radiosensitivity of HPV-negative
 537 oropharyngeal squamous cell carcinoma using miR-130b. Acta Otolaryngol.
- 538 2021;141(6):640–645. doi: 10.1080/00016489.2021.1897160.
- 539 17. Ichinose Y, Hasebe T, Hirasaki M, et al. Vimentin-positive invasive breast carcinoma of
 540 no special type: A breast carcinoma with lethal biological characteristics. Pathol Int.
- 541 2023;73(9):413–433. doi: 10.1111/pin.13350.
- 542 18. van Vliet AR, Chiduza GN, Maslen SL, et al. ATG9A and ATG2A form a heteromeric
- 543 complex essential for autophagosome formation. Mol Cell. 2022;82(22):4324-4339.e8.
 544 doi: 10.1016/j.molcel.2022.10.017.
- 545 19. Chu F, Wu P, Mu M, et al. MGCG regulates glioblastoma tumorigenicity via
- 546 hnRNPK/ATG2A and promotes autophagy. Cell Death Dis. 2023;14(7):443. doi:
 547 10.1038/s41419-023-05959-x.
- 548 20. Insel PA, Sriram K, Gorr MW, et al. GPCRomics: An Approach to Discover GPCR Drug
 549 Targets. Trends Pharmacol Sci. 2019;40(6):378–387. doi: 10.1016/J.TIPS.2019.04.001.
- 550 21. Yang D, Zhou Q, Labroska V, et al. G protein-coupled receptors: structure-and
- 551 function-based drug discovery. Signal Transduct Target Ther. 2021;6(1):7. doi:
- 552 10.1038/s41392-020-00435-w.
- 553 22. Wootten D, Christopoulos A, Marti-Solano M, et al. Mechanisms of signalling and biased
 agonism in G protein-coupled receptors. Nat Rev Mol Cell Biol. 2018;19(10):638–653.
 555 doi: 10.1038/s41580-018-0049-3.
- 556 23. Kleuss C, Scherübl H, Hescheler J, et al. Selectivity in Signal Transduction Determined by
 557 γ Subunits of Heterotrimeric G Proteins. Science. 1993;259(5096):832–834. doi:
 558 10.1126/SCIENCE.8094261.
- 559 24. Tanaka H, Kanda M, Miwa T, et al. ARTICLE G-protein subunit gamma-4 expression has
 560 potential for detection, prediction and therapeutic targeting in liver metastasis of gastric
 561 cancer. Br J Cancer 2021;125:220–228; doi: 10.1038/s41416-021-01366-1.

562 Figure legends

563	Fig 1. Results of the original target enrichment sequencing in our ESCC clinical cases
564	(A) The violin plot depicts the distribution of the coverage ratio for each of the 82 multiplexed
565	samples. Percentage of regions had a depth of coverage greater than 15x . (B) The violin plot
566	depicts the distribution of the mean depth for each of the 82 multiplexed samples. (C) Variant
567	filtering thresholds (AltSeq: Alt, any other allele found at that locus). (D) The number of SNVs
568	or INDELs identified by the original target enrichment sequencing is shown. The classification
570	was performed by variant type.
571	Fig 2. Relationship between variants of ATG2A p.R478C and ULK2 splice-site and ESCC
572	prognosis with CF neoadjuvant chemotherapy
573	Relapse-free survival with (A) ATG2A p.R478C or (B) ULK2 1442-1 G> T, respectively. Overall

- 574 survival with or without (C) ATG2A p.R478C or (D) ULK2 1442-1 G>T, respectively.
- 575
- 576 Fig 3. Machine learning model to predict recurrence

577	(A)	An	indicator	to	evaluate	the	prediction	of	recurrence	bv	Naive	Baves	with	patient

- 578 background or patient background + SNVs (single nucleotide variants) as features. (Prec.:
- 579 Precision). (B) The ROC (receiver operating characteristic) curve for fine-tuned Naive Bayes.
- 580 Class 0 implies non-recurrence. Class 1 implies recurrence. (C) Confusion matrix for fine-tuned
- 581 Naive Bayes.

582

583 Fig 4. Expression analysis between recurrence and non-recurrence groups

584	(A)	Volcano	plot	of	differentially	ex pre ssed	genes	between	recurrence	(n=7)	and

- 585 non-recurrence (n=8) groups. Summary of biological processes in gene ontology analysis
- 586 (GO-BP) of genes with elevated expression in recurrence (B) and non-recurrence (C) groups.

587 (D) Heatmap and hierarchical cluster analysis performed on 34 genes. Blue above specimen

588 number means no recurrence, red means recurrence. The color coding next to the gene means

- 589 that the gene is included in the G-protein coupled receptor signaling pathway (red),
- 590 keratinization (blue), and epidermis development (yellow). (E) Principal component analysis
- 591 performed on 34 genes. Red specimen name indicates recurrence group, gray specimen name
- 592 indicates non-recurrence group.

593

594 Supporting	information
----------------	-------------

- 595 Fig. S1. ClinVar-based pathogenic SNVs
- 596 Samples with variants defined as pathogenic/likely pathogenic by ClinVar are shown in red.
- 597 Fisher's exact test was performed for each gene that was determined to be pathogenic/likely
- 598 pathogenic by ClinVar. Path: Pathogenic/Likely Pathogenic variant. RefSeq: allele in the
- 599 reference genome.
- 600 Fig. S2. Variant distribution of specimens and elements of machine learning
- 601 (A) Samples with AltSeq variants are shown in red. Undetected samples with sequence reads
- 602 that do not meet the criteria are shown in yellow. (B) Patient background only is circled in
- 603 yellow. Patient background with additional SNVs information is circled in blue.
- 604

605 Fig. S3. Expression analysis of autophagy-related genes

- 606 (A) Heatmap and hierarchical cluster analysis performed on 37 autophagy-related genes. Blue
- 607 above specimen number indicates no-recurrence, red indicates recurrence. (B) Principal

- 608 component analysis performed on 37 genes. Red specimen name indicates recurrence group,
- 609 gray specimen name indicates no-recurrence group.
- 610
- 611 Tables
- 612 **Table S1**. Targeted genes in clinical cases of esophageal cancer
- 613 Table S2. Overall survival (OS) and recurrence-free survival (RFS) analysis of 13 identified
- 614 variants
- 615 **Table S3.** Results of the Pycaret classification module when patient background + SNVs is the
- 616 feature and recurrence is the correct answer
- 617

Rxiv preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder fo

Rxiv preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted Septem

В

	Patient	Backg	round + SNVs
Pati 1. 2. 3. 4. 5. 6. 7. 8.	Patient I ient Background Gender (Male=1) Age Neo-adjuvant course Tumor location (Lt=1, MT=2, Ut=3) Organization type (scc=1) JES- cT JES-cN JES-cM	Backg 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20	round + SNVs EP300_R1811Q PTCH1_R1390Q ATG2A_R478C ATG7_D619D ULK2_1442-1G>T BNIP3_R204C FAT1_D2040N ULK2_F488L ULK1_T816A BECN1_T434T ZNF750_P206P KMT2D_R4238C
		21.	FAT1_A4300A

Rxiv preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint for the preprint preprint in perpetuity. All rights reserved. No reuse allowed without permission.

Α

medRxiv preprint doi: https://doi.org/10.1101/2024.09.07.24313244; this version posted September 9, 2024. The copyright holder for this preprint **Table** ide was a set of the second s

	n=82
Age years	
Median (range)	68 (51-80)
Gender (%)	
Male / Female	74 (90%) / 8 (10%)
Organization type (%)	
Basaloid/SCC	3 (4%) / 79 (96%)
Neo-adjuvant course (%)	
1 / 2	11 (13%) / 71 (87%)
Tumor location (%)	
Upper/ Middle/ Lower	11 (13%) / 36 (43.5%) / 35 (43.5%)
cT category (%)	
cT1 / T2 / T3	1 (1%) / 3 (4%) / 78 (95%)
cN category (%)	
cN0 / N1 / N2	30 (37%) / 32 (39%) / 20 (24%)
cM category (%)	
cM0 / M1	79 (96%) / 3 (4%)
cStage (%)	
/ / / V	1 (1%) / 30 (37%) / 48 (58%) / 3 (4%)
Recurrence (%)	
non-recurrence / recurrence	37 (45%) / 45 (55%)

medPxisproprint doi: (which was not of Gene symbol	https://doi.org/10.1101/2024 openes_in_clinical_cases certified by peer review) is t Ensembl geneADrig	1 09 07 24313244 this version posted S of esophageal cancer e author/funder, who has granted med hts reserved. No reu socation (())	September 9, 2024. The Rxiv a license to display per Region size (bp)	copyright holder for this preprint the preprint in perpetuity. Coverage region (%)
AJUBA	ENSG00000129474	chr14:23442642-23451485	1901	100
ASXL1	ENSG00000171456	chr20:30946569-31026251	5137	100
ATG10	ENSG00000152348	chr5:81283380-81549254	1053	100
ATG12	ENSG00000145782	chr5:115167491-115177400	780	100
ATG13	ENSG00000175224	chr11:46665832-46693892	2026	99.95
ATG14	ENSG00000126775	chr14:55836327-55878550	1679	100
ATG16I 1	ENSG00000085978	chr2:234160464-234203006	2255	100
ATG16L2	ENSG00000168010	chr11:72525467-72540445	2617	100
ATG2A	ENSG00000110046	chr11:64662435-64684617	6643	99.91
ATG2B	ENSG0000066739	chr14:96752082-96829323	7077	99.93
ATG3	ENSG00000144848	chr3:112251536-112280385	1258	100
ATG4A	ENSG00000101844	chrX:107335047-107396952	1500	100
ATG4B	ENSG00000168397	chr2:242577120-242611689	1975	100
ATG4C	ENSG00000125703	chr1:63269448-63329840	1609	100
ATG4D	ENSG00000130734	chr19:10654757-10663753	1818	100
ATG5	ENSG0000057663	chr6:106494686-106764093	993	100
ATG7	ENSG00000197548	chr3:11340160-11605769	2734	100
ATG9A	ENSG00000198925	chr2:220085159-220092756	2802	100
ATG9B	ENSG00000181652	chr7:150712974-150721520	3116	100
BAP1	ENSG00000163930	chr3:52435679-52443904	3108	100
BCL2L13	ENSG00000099968	chr22:18121450-18210310	1903	99.47
BECN1	ENSG00000126581	chr17:40962768-40975905	1888	92.85
BNIP3	ENSG00000176171	chr10:133782018-133795515	904	100
BNIP3L	ENSG00000104765	chr8:26240637-26362845	813	100
CASP8	ENSG0000064012	chr2:202122945-202151327	2013	100
CDKN2A	ENSG00000147889	chr9:21968198-21994463	1248	100
EP300	ENSG00000100393	chr22:41488999-41574970	7865	99.91
FAT1	ENSG0000083857	chr4:187509736-187630991	14602	99.88
FBXW7	ENSG00000109670	chr4:153244023-153332965	2898	100
FKBP8	ENSG00000105701	chr19:18642969-18653769	1528	100
FUNDC1	ENSG0000069509	chrX:44383434-44402088	568	100
KDM6A	ENSG00000147050	chrX:44732788-44970666	5090	100
KEAP1	ENSG00000079999	chr19:10597318-10614244	2313	100
KMT2C	ENSG00000055609	chr7:151833907-152132881	16122	98.98
KMT2D	ENSG00000167548	chr12:49415553-49449117	17762	99.04
MAP1LC3A	ENSG00000101460	chr20:33137772-33147712	518	100
MTOR	ENSG00000198793	chr1:11167532-11319476	8790	100
NFE2L2	ENSG00000116044	chr2:178092624-178175743	2120	96.79
NOTCH1	ENSG00000148400	chr9:139390513-139440248	8348	99.87
NSD1	ENSG00000165671	chr5:176562095-176722470	8765	99.87
PIK3C3	ENSG00000078142	chr18:39535247-39661111	3436	99.97
PIK3CA	ENSG00000121879	chr3:178916604-178952162	3696	98.78
PIK3R4	ENSG00000196455	chr3:130398149-130464072	4457	99.8
PINK1	ENSG00000158828	chr1:20960032-20977194	1906	100
PRKN	ENSG00000185345	chr6:161771121-163148710	2355	98.22
PTCH1	ENSG00000185920	chr9:98209184-98279112	5200	100
PTEN	ENSG00000171862	chr10:89623697-89725239	1912	100
RB1	ENSG00000139687	chr13:48878039-49054217	3414	99.21
RPTOR	ENSG00000141564	chr1/:/8519420-/8938140	5148	99.44
SQSTM1	ENSG0000161011	cnr5:1/924/92/-1/9263667	1653	100
<i>IP</i> 53	ENSG0000141510	chr1/:/56524/-/5/9922	1660	94.64
ULK1	ENSG000001//169	cnr12:1323/953/-132405916	3775	100
ULK2	ENSG00000083290	CHE17:196/9652-19//0/40	3858	100
VVIP11		chi 17.00417904-00453572	1626	99.75
VVIPIZ	ENSC0000144570	CITE 7:5230041-5270588	1059	100
2111-130	LINGGUUUUU 1410/9	UIII I / .00/ 00000-00/ 90340	2212	100

Table 2. Results of target enrichment sequencing

				<u>Non-re</u>	ecurrence	Rec	urrence	
Gene symbol	Exonic function	Nucleotide change	Aa change	RefSeq (n)	AltSeq (n)	RefSeq (n)	AltSeq (n)	p-value
EP300	non-synonymous SNV	NM_001362843:c.5432G>A	p.R1811Q	31	7	44	0	0.0072
PTCH1	non-synonymous SNV	NM_001354918:c.4169G>A	p.R1390Q	29	6	42	0	0.0062
ATG2A	non-synonymous SNV	NM_001367971:c.1432C>T	p.R478C	37	0	37	7	0.0147
ATG7	synonymous SNV	NM_001144912:c.1857T>C	p.D619D	33	5	45	0	0.0160
ULK2	splicing	NM_001142610:c.1442-1G>T	splicing	19	17	33	10	0.0306
BNIP3	non-synonymous SNV	NM_004052:c.610C>T	p.R204C	28	4	41	0	0.0330
FAT1	non-synonymous SNV	NM_005245:c.6118G>A	p.D2040N	32	4	44	0	0.0348
ULK2	non-synonymous SNV	NM_001142610:c.1464C>A	p.F488L	30	4	41	0	0.0356
ULK1	non-synonymous SNV	NM_003565:c.2446A>G	p.T816A	29	9	24	21	0.0416
BECN1	synonymous SNV	NM_001313998:c.1302G>A	p.T434T	34	4	45	0	0.0378
ZNF750	synonymous SNV	NM_024702:c.618C>T	p.P206P	34	4	45	0	0.0378
KMT2D	non-synonymous SNV	NM_003482:c.12712C>T	p.R4238C	34	4	44	0	0.0397
FAT1	synonymous SNV	NM_005245:c.12900G>A	p.A4300A	34	4	42	0	0.0440

Eighty-four patients were included in the analysis; Fisher's exact test of 560 SNVs or INDELs showed 5 SNVs with p < 0.05. Aa change: amino acid change, RefSeq: allele in the reference genome, AltSeq: Alt, any other allele found at that locus.

medRxiv preprint Table which was	doi: https://doi.org/10.1101/2024.09.07 ନାର୍ଷ ଜେଧାନାଧାରଣ ହେଛି /ହୋଇଡା/୮୭ ୯୯୪୮ ହୋଟ	7.24313244; this v ឈ/furcler,\$whoina	ersion posted Septersion posted Septersion posted aneal Septersion of the second s	ember 9, 2024. The copyri a0icensed@0itipiagdtN@pin	ght holder for this preprint ខ្ជិពិតែt in perpetuity.
Gene symbol	All rights res Nucleotide change	served. No reuse a Aa change	allowed without perr OS	nission. RFS	
EP300	NM_001362843:c.5432G>A	p.R1811Q	0.06	0.02	
PTCH1	NM_001354918:c.4169G>A	p.R1390Q	0.1	0.02	
ATG2A	NM_001367971:c.1432C>T	p.R478C	<0.005	0.02	
ATG7	NM_001144912:c.1857T>C	p.D619D	0.14	0.04	
ULK2	NM_001142610:c.1442-1G>T	splicing	0.05	0.02	
BNIP3	NM_004052:c.610C>T	p.R204C	0.18	0.07	
FAT1	NM_005245:c.6118G>A	p.D2040N	0.14	0.06	
ULK2	NM_001142610:c.1464C>A	p.F488L	0.16	0.06	
ULK1	NM_003565:c.2446A>G	p.T816A	0.08	0.06	
BECN1	NM_001313998:c.1302G>A	p.T434T	0.14	0.06	
ZNF750	NM_024702:c.618C>T	p.P206P	0.16	0.06	
KMT2D	NM_003482:c.12712C>T	p.R4238C	0.15	0.06	
FAT1	NM_005245:c.12900G>A	p.A4300A	0.15	0.07	

Table 3. Univariate and multivariate Cox regression analysis for RFS.

E /		Univariate			Multivariate		
Factor	Category	p value	HR	95% CI	p value	HR	95% CI
Age	≥70 (vs. <70)	0.216	0.679	0.365-1.261			
Sex	female (vs. Male)	0.788	0.880	0.364-2.240			
ASA-PS	2 or 3 (vs. 0or 1)	0.619	1.205	0.577-2.518			
Body Mass Index	≥18.5 (vs. <18.5)	0.889	1.051	0.518-2.134			
Tumor location	Mt or Lt (vs. Ut)	0.196	1.697	0.752-3.825			
clinical tumor depth	cT3 (vs. T1-2)	0.150	0.477	0.170-1.341			
clinical lymph node metastasis	presence (vs. absence)	0.297	1.412	0.735-2.710	0.317	1.414	0.717-2.785
clinical distant meastasis (Supravlavian Lymph node metastases)	presence (vs. absence)	0.705	1.314	0.317-5.450			
Thoracic apprach	OT (vs. MIE)	0.005*	2.315	1.266-4.237	0.018*	2.096	1.138-3.861
variant in ATG2A_R478C	presence (vs. absence)	0.025*	2.469	1.085-5.617			
variant in ULK2_1442-2G>T	absence (vs. presence)	0.016*	2,.331	1.147-4.739			
Either presence of variant in ATG2A_R478C or absence of variant in ULK2_1442-2G>T	(vs. Both of absence of variant in ATG2A_R478C and presence of variant in ULK2_1442-2G>T)	0.016*	2.331	1.146-4.470	0.046*	2.076	1.013-4.255

HR: hazard ratio, CI: confidence interval, Ut: Upper thoracic, Mt: Middle thoracic, Lt: Lower thoracic, OT: Open thoracotomy, MIE: minimally invasive esophagectomy, *: p<0.05,

Table 4. Univariate and multivariate Cox regression analysis for OS.

		Univariate			Multivariate		
Factor	Category	p value	HR	95% CI	p value	HR	95% CI
Age	≥70 (vs. <70)	0.394	0.716	0.330-1.551			
Sex	female (vs. Male)	0.834	0.880	0.264-2.927			
ASA-PS	2 or 3 (vs. 0or 1)	0.302	1.651	0.636-4.284			
Body Mass Index	≥18.5 (vs. <18.5)	0.721	0.856	0.364-2.014			
Tumor location	Mt or Lt (vs. Ut)	0.694	1.237	0.428-3.579			
clinical tumor depth	cT3 (vs. T1-2)	0.862	1.194	0.162-8.819			
clinical lymph node metastasis	presence (vs. absence)	0.077	2.210	0.896-5.451	0.040*	2.604	1.047-6.476
clinical distant meastasis (Supravlavian Lymph node metastases)	presence (vs. absence)	0.651	1.396	0.326-5.969			
Thoracic apprach	OT (vs. MIE)	0.050	2.119	0.983-4.566	0.212	1.650	0.751-3.623
variant in ATG2A_R478C	presence (vs. absence)	0.002*	3.741	1.494-9.366			
variant in ULK2_1442-2G>T	absence (vs. presence)	0.054	2.370	0.959-5.848			
Either presence of variant in ATG2A_R478C or absence of variant in ULK2_1442-2G>T	(vs. Both of absence of variant in ATG2A_R478C and presence of variant in ULK2_1442-2G>T)	0.054	2.371	0.959-5.860	0.029*	2.764	1.109-6.890

HR: hazard ratio, CI: confidence interval, Ut: Upper thoracic, Mt: Middle thoracic, Lt: Lower thoracic, OT: Open thoracotomy, MIE: minimally invasive esophagectomy, *: n<0.05

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	TT (Sec)
nb	Naive Bayes	0.8467	-	0.9417	0.845	0.8729	0.6879	0.7335	0.061
et	Extra Trees C	0.75	-	0.8083	0.695	0.7364	0.4763	0.4945	0.242
lda	Linear Discrir	0.6833	0.7097	0.8667	0.6617	0.7384	0.3208	0.3606	0.038
ridge	Ridge Classif	0.68	0.7764	0.8417	0.6733	0.734	0.325	0.3632	0.036
gbc	Gradient Boo	0.6667	0.6903	0.7583	0.6617	0.6605	0.3297	0.3718	0.119
dt	Decision Tree	0.66	-	0.7417	0.6433	0.6721	0.3013	0.3007	0.046
ada	Ada Boost Cla	0.66	0.7139	0.6917	0.7783	0.6762	0.3131	0.3625	0.115
lr	Logistic Regr	0.6467	0.7208	0.75	0.645	0.6662	0.2883	0.3079	0.552
rf	Random Fore	0.6467	-	0.775	0.605	0.6581	0.2712	0.3059	0.224
xgboost	Extreme Grac	0.6333	-	0.7083	0.6367	0.6324	0.2651	0.3093	0.078
qda	Quadratic Dis	0.5467	-	1	0.5467	0.705	0	0	0.035
dummy	Dummy Class	0.5467	-	1	0.5467	0.705	0	0	0.032
lightgbm	Light Gradier	0.54	-	0.65	0.5733	0.599	0.0483	0.0392	0.205
knn	K Neighbors	0.5067	-	0.5583	0.5983	0.5362	0.0235	0.0217	0.064
svm	SVM - Linear	0.4933	0.3694	0.5	0.3617	0.4052	-0.0667	-0.0707	0.037

Table S3.Results of the Pycaret classification module when Patient Background + SNVs is the feature and recurrence is the correct answer.