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Abstract 

Seasonal respiratory viruses cause substantial pressure on healthcare systems, particularly over 

winter. System managers can mitigate the impact on patient care when they anticipate hospital 

admissions due to these viruses. Hospitalisation forecasts were used widely during the SARS-

CoV-2 pandemic. Now, resurgent seasonal respiratory pathogens add complexity to system 

planning. We describe how a suite of forecasts for respiratory pathogens, embedded in national 

and regional decision-making structures, were used to mitigate the impact on hospital systems 

and patient care.  

We developed forecasting models predicting hospital admissions and bed occupancy two 

weeks ahead for COVID-19, influenza, and RSV in England over winter 2023/24. Bed occupancy 

forecasts were informed by the ensemble admissions models. Forecasts were delivered in real-

time at multiple scales. The use of sample-based forecasting allowed for effective reconciliation 

and trend interpretation. 

Admission forecasts, particularly RSV and influenza, showed high skill at regional levels. Bed 

occupancy forecasts had well-calibrated coverage, owing to informative admissions forecasts 

and slower moving trends. National admissions forecasts had mean absolute percentage errors 

of 27.3%, 30.9% and 15.7% for COVID-19, influenza, and RSV respectively, with corresponding 

90% coverages of 0.439, 0.807 and 0.779.  

These real-time winter infectious disease forecasts produced by the UK Health Security Agency 

for healthcare system managers played an informative role in mitigating seasonal pressures. 

The models were delivered regularly and shared widely across the system to key users. This was 

achieved by producing reliable, fast, and epidemiologically informed ensembles of models. 

Though, a higher diversity of model approaches could have improved forecast accuracy. 
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1. Introduction 

In England, each year respiratory pathogens circulating in the community cause strain on the 

healthcare system, particularly SARS-CoV-2, influenza, and Respiratory Syncytial Virus (RSV). In 

the 2023/24 winter season there were 96.6, 76.9 and 37.8 cumulative admissions per 100,000 

people in England with COVID-19, influenza, and RSV respectively [1] [2]. Public health and 

healthcare leaders can better use scarce resources when they can predict hospital admissions 

and bed occupancy, reallocating staff and beds to elective care as emergency admissions 

decline.   

Forecasting is widely used to give quantitative assessments on future events, harnessing 

historic trends and modelled assumptions. However, infectious disease dynamics are 

challenging to confidently understand in real-time due to their complexity and partial 

observation. When used well, numerical forecasts can help inform healthcare planning to 

allocate system resources more effectively, leading to improved health outcomes. Within 

England the UK Health Security Agency (UKHSA) is responsible for the prevention, preparation, 

and response to infectious diseases. The National Health Service England (NHSE) provides 

healthcare provision to the population, and both government organisations are overseen by the 

Department of Health and Social Care. 

Infectious disease forecasts have been produced for influenza over many years in the United 

States by the Centre for Disease Control (CDC) [3] [4]. Forecasting is not limited to influenza, 

with challenges covering West Nile Virus [5], Ebola [6], and Chikungunya [7], with collaborations 

between government and academia driving improvements in the field [8] [9]. These methods 

and initiatives were stepped up during the SARS-CoV-2 pandemic responding to increased 

demand [10] [11], used in communications by the US CDC to the public.  

The SARS-CoV-2 pandemic disrupted seasonal patterns of many respiratory viruses, driven by 

changing population mixing dynamics caused by control interventions [12], notably limiting 

influenza and RSV transmission. As population mixing returned to pre-pandemic levels these 

diseases re-emerged in winter 2022/23 [13]. Rising emergency hospital admissions due to 

influenza, COVID-19, and RSV place direct resource pressure on hospitals [14]. These 

admissions take up in-patient beds, and the increased demand on hospitals reduces the 

planned and non-emergency care available. Therefore, the accurate prediction of infectious 

disease pressures helps to manage the wider healthcare system.  

A range of metrics are commonly used to measure and understand seasonal respiratory disease 

waves, each tackling different policy questions: peak magnitude, peak timing, cumulative 

incidence, and incidence over time [4]. Comparisons between rapid collections and 

retrospective records give us confidence in our choice of metrics indicating suitability for real-

time modelling [15]. In addition, we focus on test-positive diagnosis rather than syndrome to 

ensure modelling is specific to a pathogen, allowing us to model diseases separately [16]. 
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Over the winter 2023/24 season UKHSA delivered a suite of forecasting models to estimate 

hospital admissions and bed occupancy trends of COVID-19, influenza, and RSV waves. This 

breadth of pathogens and metrics modelled was key to the suite’s utility. The forecasts were 

used directly to inform national policy discussions and integrated into regional level decision 

making. In this work we outline our approach in delivering this forecasting suite, key 

considerations, and describe our real-time results. 

2. Methods 

2.1 Data sources 

The National Health Service (NHS) is a publicly funded healthcare system covering England, with 

data collection consistent across hospitals [17]. NHS England geographic structures are given in 

Supplementary Figure 1. Individuals presenting severe symptoms of an infectious disease are 

often tested in secondary care settings, with diagnostic tests reported to UKHSA via the Second-

Generation Surveillance System (SGSS). There is a high ascertainment and coverage of SARS-

CoV-2, influenza, and RSV testing in hospitals for differential diagnosis. However, this 

ascertainment can vary with demographics such as age [18] and across primary care, secondary 

care, and community settings [19]. More broadly, all-cause hospital admissions can be 

predicted by seasonal patterns and environmental effects [20]. However, presentations due to 

infectious disease are less predictable, particularly when seasonal transmission patterns are 

disrupted. Test-positive hospitalisations; admissions and bed occupancy, are key metrics for the 

pressures sustained by hospitals due to infectious disease. Forecast target definitions are 

provided (Table 1), highlighting their differences. 

 

2.2 Forecast Models 

Statistical and ensemble rationale 

Our modelling suite focusses on statistical forecasts, aligning with the evidence of their strong 

performance in short-term forecasting tasks, relative to strictly mechanistic approaches [21] 

[22]. Alongside their predictive performance, this class of models has fast runtimes, are largely 

disease agnostic, and do not require substantial historic data. Furthermore, we developed 

model ensembles, which capture uncertainty in possible trends [23], with evidence of improved 

performance [24] [25]. Model ensembles also reduce our reliance on individual models, 

improving operational resilience. 

Ensemble inclusion criteria 

In a M-open model combination, for possible candidate models M, we ideally have a breadth of 

modelling approaches to produce combination estimates [26]. However, practical 

considerations are critical in ensemble design. Across pathogens and metrics, there is a single-
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day turnaround from modelling to dissemination, highlighting the importance of speed and 

reliability. Candidate models are selected if the model: 

1. has a total runtime (fitting, inference, post-processing) across all locations for a disease 

in fewer than 15 minutes. 

2. produces prediction samples (such as posterior samples). 

3. improves forecasting capability. 

Criteria 1 makes the production of all forecasts feasible, allowing for error flagging, model 

reruns, and thorough assurance of results. While models can be run in parallel, there are 

limitations in how many individuals are available to run the process, make fixes, and quality 

check results. Criteria 2 ensures desirable qualities for ensembling and coherence of prediction 

aggregations, such as from local to national levels. Criteria 3 is a holistic evaluation of model 

performance and utility. We do not select models based on scoring rules alone, but instead 

consider the wider properties of a model (reliability, ease-of-use, difference from existing 

models) and discussion with surveillance experts. 

Specific model classes 

A variety of statistical models were used to forecast trends, each with different underlying 

assumptions. Each model is structured separately for each disease, adapted to best reflect the 

surveillance data being modelled, with key hyperparameters retuned regularly over the season. 

The primary model class used across the pathogens was a Generalised Additive Model (GAM), 

which uses the semi-mechanistic assumption of a recent growth-rate extrapolated forward in 

time [27] via the mgcv and gratia packages [28] [29]. This model has different variations across 

the diseases, using different hierarchical components, geographies, and for the RSV model a 

structure pooling trends across adjacent age groups. To improve model performance, we 

leverage probabilistic catchment areas to define a denominator population for hospital 

admissions [30]. Secondly, we use state-space based models, primarily with an Error Trend 

Seasonality (ETS) structure fit to each individual geographic location’s time series via the fable 

package [31]. Lastly, syndromic surveillance is fed into regression models to predict expected 

future admissions given current leading indicators levels [32]. Models ran each week are first 

inspected by the modelling team (applying expert judgement), then candidate models are 

ensembled. Each model developed is given by disease in Supplementary Table 1.  

For the COVID-19 and influenza admissions targets we developed a secondary forecast target 

requested by users, beds occupied with test-positive patients. This is generated by fitting a 

convolution between the admissions and occupancy time series, giving an estimate for time-to-

discharge, translating the admissions forecast into an occupancy forecast.  

To compare models and tune parameters we use probabilistic scoring methods, primarily the 

weighted interval score, empirical coverage, and bias, calculated using the scoringutils [33] R 

package. 90% and 50% prediction intervals are generated, with the 90% and median value are 

communicated to users, alongside probabilistic statements assessing trends. While quantitative 
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scoring is a key component in defining and improving our ensemble, expert judgement in the 

modelling team is necessary to exclude models in a given week. 

Benefits of the stacking ensemble approach 

Variations on the unweighted average quantile approach to ensembling are widely used in 

epidemic forecasting [34] [25]. Instead, we preserve individual model sample predictions [35], 

then perform an unweighted quantile summary of draws across all models. This allows us to 

capture uncertainty in a granular way when summarising predictions and avoid relying on 

averaging or aggregating point estimates.  

Though this prediction sample approach requires higher data volume than point estimates, as 

models are run within one team this has a limited impact on operations. By using a prediction 

sample stacking approach, we can produce granular forecasts at local levels then aggregate the 

sample draws to higher geographies, allowing for simple reconciliation across space, time, and 

other quantities of interest (such as age in the RSV model) [36]. It is important to our users that 

we produce national forecasts (for ministers), low geographies (for health protection teams), 

and their coherence is important for credibility. 

Lastly, the use of prediction samples allows us to assign probabilities to different interpretable 

trend categories (stable, increase and decrease) using thresholds agreed with disease and 

operations experts, achievable at all geographies. We consider a change over two weeks of 

<20% to be stable, a positive change >20% as an increase and a negative change >20% as a 

decrease, similar to other experimental approaches worldwide [37]. 

3. Results  

In a time of disrupted and uncertain seasonal patterns caused by the SARS-CoV-2 pandemic we 

chose to forecast our metrics over a forecast horizon window, showing how the metric is 

expected to develop. As a trade-off between long forecast horizons with high uncertainty and 

short horizons with lower utility, we chose a consistent 14-day horizon across all models. This 

provides enough foresight to be useful, with meaningfully small uncertainty, agreed with end 

users of the forecasts. 

3.1 Season overview and targets 

Each disease is monitored differently across the healthcare system, with different levels of 

granularity and quality available. The forecast targets selected for each disease and metric are 

given in Table 1. A key consideration in the choice of target data is its latency, traded off against 

its accuracy. For operational efficiency, forecasts for each disease were not delivered across 

every winter week. Forecasts were prioritised based on the trends observed, stopped early if 

needed, new models incorporated, and further metrics included as the season progressed. The 

timeline of metrics forecasted over the season are given in Figure 1. 
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Our confidence in each data stream, and what is interesting to the users of our forecast varies 

by disease, and therefore the spatial resolution we model is not consistent across diseases. 

COVID-19 admissions have the highest quality of reporting, in part due to their high priority 

during the pandemic, though age information is no longer captured. Alternatively, for RSV, as 

individual data are processed by UKHSA, stratifications by age are possible allowing for models 

that incorporate demographic effects.  

Table 1. A breakdown of each forecasting target chosen across diseases and metrics. The National Health Service 

England (NHSE) Urgent and Emergency Care (UEC) Situational Report is a daily census of aggregate counts. The 

Second-Generation Surveillance Service (SGSS) is a national database for infectious disease diagnostic test results. 

Within the health geographies of England, a hospital Trust is a collection of hospitals nested within an Integrated 

Care Board (ICB), nested within an NHS region of the country. The geographic structures are further detailed in 

Supplementary Figure 1. 

Disease Metric Data source 
Forecast 

granularity 
Definition 

COVID-19 

 

Admissions NHSE UEC 

SitRep 

(aggregate) 

Hospital Trust Daily count of new inpatients with a 

positive SARS-CoV-2 test in the past 24 

hours. 

Bed 

occupancy 

NHSE UEC 

SitRep 

(aggregate) 

NHS region Daily count of inpatients in beds with 

a positive SARS-CoV-2 test. 

Influenza 

 

Admissions NHSE UEC 

SitRep 

(aggregate) 

Integrated Care 

Board 

Daily count of new inpatients with a 

positive influenza test in the past 24 

hours. 

Bed 

occupancy 

NHSE UEC 

SitRep 

(aggregate) 

NHS region Daily count of inpatients in beds with 

a positive influenza test. 

RSV Admissions SGSS 

(individual) 

Age group and 

NHS region 

Daily count of first positive RSV tests 

for an inpatient . 
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Figure 1. The weekly forecasts produced across pathogen and metric. There were no forecasts produced over the 

winter holiday period. Occupancy metrics began later in the season corresponding to higher pressure periods. 

3.2 Influenza 

The seasonal influenza epidemic in 2023/24 was characterized by a small peak before the New 

Year, and a second larger peak after (Figure 2). Observed 14-day admissions and occupancy 

values were within the forecasted 90% prediction intervals in 15/19 and 10/11 weeks 

respectively, though the admissions forecast performed poorly between peaks (Figure 2). For 

influenza, the GAM was included in the ensemble across all weeks, the ETS model incorporated 

later in the season, and leading indicator models used intermittently. 
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Figure 2. National level a.) influenza admissions and b.) bed occupancy 14-day forecast overlaid. All metrics are 7-

day rolling averaged for clarity. Plot c.) shows the models included in the ensemble each week. 
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3.3 COVID-19 

Unlike influenza, there were COVID-19 admissions at non-zero levels at the start of winter, with 

multiple peaks and troughs observed in the admissions and occupancy trends (Figure 3). The 

main peak occurred near the New Year. The COVID-19 forecasts have variation in their accuracy, 

with forecasts generally struggling in growth/decline phases, where the models are slow to 

adapt to changing trends (Figure 4). Of the five available models for the ensemble, none were 

used across all weeks. The GAM was used most frequently, with sporadic use of leading 

indicator models, and the ETS model was regularly deployed towards the end of the season. 
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Figure 3. National level a.) COVID-19 admissions and b.) bed occupancy 14 day forecast overlaid. All metrics are 7-

day rolling averaged for clarity. Plot c.) shows the models included in the ensemble each week. 
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4.4 RSV 

Relative to influenza and COVID-19, the peak in the RSV epidemic was earlier in the season, 

occurring in November (Figure 4). All but two 14-day forecasted 90% prediction intervals 

contain the observed values, capturing the trend in the epidemic well across the wave (Figure 

4). One single model, the GAM with age and regional stratifications, was used to forecast this 

year. 

 
Figure 4. National level a.) RSV admissions 14 day forecast overlaid. The metrics are 7-day rolling averaged for 

clarity. Plot b.) shows the models included each week. RSV forecasts were stopped early when incidence was low 

to prioritize other forecasts. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 8, 2024. ; https://doi.org/10.1101/2024.09.07.24313175doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.07.24313175
http://creativecommons.org/licenses/by/4.0/


12 
 

4.5 Forecast performance 

Quantitative evaluation of forecast accuracy is critical to the communication and improvement 

of forecasts. Measures of performance at a range of breakdowns show varying performance 

across diseases, metrics, and geographies (Table 2). Across 90% and 50% coverage scores the 

regional forecasts were better calibrated than their national aggregations. The occupancy 

forecasts for COVID-19 and influenza had higher performing central estimates than the 

corresponding admissions forecasts, a result of the slower evolving trend dependent on past 

admissions. 

The forecast performances can also be explored relative to the winter epidemic wave peak 

(Figure 5). For the influenza admissions, occupancy, and COVID-19 admissions there is a notable 

drop in coverage performance following the epidemic peak, indicating models may struggle to 

be calibrated at this point. Notably, as with the results in Table 2, the regional coverage is 

consistently better than at national levels, particularly for the COVID-19 models, even across 

epidemic phases. Further scoring metrics, such as the coverage deviation and bias are explored 

in Supplementary Tables 2 & 3. 

Table 2. Forecast scoring measures across disease, metric, and geographies. The 90% and 50% coverage 

metrics present the proportion of true values that fell within the specified prediction intervals, a 

measure of model calibration, with values closer to 0.9 or 0.5 preferred. For forecasts with true values of 

zero, a percentage error of 100% is assumed to define a consistent measure. The Weighted interval 

score accounts for model sharpness and bias, with lower scores being preferred. Each score is calculated 

over all dates predicted, for each weekly prediction.  

Disease Metric Geography 
90% 

coverage 

50% 

coverage 

Percent of 

median 

estimates within 

20% of true value 

Mean 

absolute 

percentage 

error 

Weighted 

interval 

score 

COVID-19 admissions nation 0.439 0.198 42.5 27.3 57 

COVID-19 admissions region 0.835 0.422 40.7 34.0 8.2 

Influenza admissions nation 0.807 0.438 39.1 30.9 26 

Influenza admissions region 0.875 0.506 26.9 48.4 5.4 

RSV admissions nation 0.779 0.397 72.5 15.7 16 

RSV admissions region 0.859 0.514 43.2 37.7 3.9 

COVID-19 occupancy  nation 0.526 0.281 83.6 10.7 0.17 

COVID-19 occupancy region 0.810 0.419 72.2 14.9 0.19 

Influenza occupancy nation 0.889 0.556 80.2 10.0 0.087 

Influenza occupancy region 0.861 0.517 65.8 18.9 0.15 
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Figure 5. The a.) 90% and b.) 50% empirical coverage of each disease and metric at national and regional 

geographies. The scores are given relative to the peak timing, to evaluate at different phases in the epidemic. 

Empirical coverage closer to the dashed line are preferred. The peak date is calculated as the date of maximum 

seven-day rolling average metric value over the winter period. 

4. Discussion 

In this manuscript we describe the approach taken by modellers at UKHSA to deliver a suite of 

forecasts across three priority diseases in the 2023/24 winter season. Forecasts harnessed the 

unified data collection of the health service in England, giving high coverage of hospitals, low 

latency, and granular spatio-temporal resolution. Some forecasts were particularly accurate 

over the season, such as the RSV admissions results (Figure 4). However, modelling for COVID-

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 8, 2024. ; https://doi.org/10.1101/2024.09.07.24313175doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.07.24313175
http://creativecommons.org/licenses/by/4.0/


14 
 

19 admissions were particularly challenging this season (Figure 2). The forecasts were widely 

disseminated within the health system, with modellers and operations colleagues collaborating 

closely. The resulting forecasts had high utility at both national and regional geographies, aiding 

decision makers in their resource allocation decisions. 

Forecast users ranged from senior ministers responsible for the nation’s health, to regional 

health protection teams, with a variety of use-cases in between (Figure 6). National forecasts 

were shared each week with the Department of Health and Social Care to support oversight by 

the Secretary of State and ministers. This aided national-level decisions on system performance 

and operating policy over the winter, along with other analyses. At a sub-national level, 

forecasts were shared at weekly regional operational meetings held by NHS England. This gave 

foresight for regional decision-makers on hospital capacity, operational pressure [38], and 

coordination of mutual aid between hospitals and regions. Forecasts were also used by regional 

health protection teams to anticipate pressure on public health response. 

 

  

Figure 6. Flow chart of data sources and model dissemination across government decision makers in the 2023/24 

season.  

Developing a modelling suite in-house allowed UKHSA modellers to leverage existing 

relationships between disease experts and data collectors to develop useful forecasts. Granular, 

unified data collection enabled geography-specific forecasts to be created, directly supporting 

local operations, strengthening relationships between users and forecasters. By developing the 
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forecasting suite within a single team, it was straightforward to create new targets and 

experiment with new approaches, which will be necessary in future outbreaks. By focusing on 

statistical time-series methods, the suite can be scaled to new diseases and metrics, without 

the challenging parameterisation of more mechanistic approaches. A range of model types can 

be used with the sample-based ensembling, giving strong reconciliation across geographic 

scales, and allowing for trend categorisation that aids decision making.  

The modelling suite was developed iteratively over the past three years. It began in 2021 as a 

single COVID-19 model, then for winter 2022/23 evolved into a COVID-19 ensemble and a new 

influenza model. Most recently, in 2023/24 we created model ensembles for both COVID-19 

and influenza, with an RSV model added. This build-up of models over time allowed adaption to 

evolving user needs, experimentation with new approaches, and streamlining processes in 

quieter periods. 

The choice of forecasting target underpins the utility of the modelling, particularly the forecast 

horizon. Statistical models have been shown to excel at short horizons, relative to longer time 

periods [22]. Our work has a short-term focus, with a 14 day-look-ahead, providing more 

reasonable uncertainty in trends compared to other methods. Though, there is less room for 

decision makers to plan as the horizon shortens. We have found, while short, the 2-week 

horizon is highly useful for stakeholders, with meaningful uncertainty. Scenario modelling over 

longer term horizons has a different purpose to the immediate decision making of short-term 

forecasting, where academic collaborations have excelled [39]. 

The natural extensions to this modelling suite are clear: improvements in forecast accuracy, 

extending the forecast horizon, and exploration of other disease targets and further granularity. 

To further improve situational awareness, combinations of nowcasting and forecasting should 

be considered to harness inherently lagged data. The current suite of models is primarily 

statistical. Deploying models with more mechanistic approaches, including further disease 

dynamics assumptions, and incorporating historical trends are further avenues for exploration 

[40]. Further diseases should be considered for forecasting, creating the capability for 

responsive modelling work, though this necessitates improved timeliness of data collection, 

which currently exists only for influenza and COVID-19 in England. Increased sharing of data and 

code would benefit methods development and assurance, though we must be careful this does 

not limit modellers’ agility to deliver in response periods, and flexibility to try new targets and 

metrics. 

The choice of modelling in-house only, largely due to data sharing challenges, limits the public 

availability of forecast information in real-time. The work being closed source, rather than code 

existing in the public domain, limits the scrutiny and collaboration available for the project. 

Furthermore, by focusing efforts within a single team there is a limit to time available for novel 

model development. This leaves expertise, primarily academic, both within England and 

internationally, that is not necessarily being leveraged to inform predictions – highlighting the 

importance of government and academic collaboration. The ensemble is limited by a lack of 
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mechanistic dynamic components, such as susceptible population depletion, which may help 

with performance at epidemic turning points. 

Over the 2023/24 winter season, we delivered a forecasting suite for respiratory diseases 

within secondary care in England with a range of statistical and ensemble models. These model 

outputs were used widely across the health system for situational awareness and supported 

decision making at national and local levels. We have shown that having an internal capability 

for real-time modelling of infectious diseases supports the delivery of effective public health. 
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