It is made available under a CC-BY 4.0 International license. medRxiv preprint doi: [https://doi.org/10.1101/2024.09.07.24313175;](https://doi.org/10.1101/2024.09.07.24313175) this version posted September 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has grante

Forecasting COVID-19, Influenza and RSV hospitalisations over winter 2023/24 in England

Authors: Jonathon Mellor1*, Maria L. Tang1 , Owen Jones¹ , Infectious Disease Modelling Team, Thomas Ward", Steven Riley^{-,}", Sarah R. Deeny⁻

- 1. Data Analytics and Surveillance Group, UK Health Security Agency, London, UK
- 2. School of Public Health, Imperial College London, London, UK

*Corresponding author: jonathon.mellor@ukhsa.gov.uk

Abstract

winter. System managers can mitigate the impact on patient care when they anticipate hospital
admissions due to these viruses. Hospitalisation forecasts were used widely during the SARS-
CoV-2 pandemic. Now, resurgent seas admissions due to these viruses. Hospitalisation forecasts were used widely during the SARS-CoV-2 pandemic. Now, resurgent seasonal respiratory pathogens add complexity to system planning. We describe how a suite of foreca

planning. We describe how a suite of forecasts for respiratory pathogens, embedded in national regional decision-making structures, were used to mitigate the impact on hospital system and patient care.
We developed forecas and patient care.
We developed forecasting models predicting hospital admissions and bed occupancy two
weeks ahead for COVID-19, influenza, and RSV in England over winter 2023/24. Bed occupancy
forecasts were informed by t We developed for
We developed for
weeks ahead for (
forecasts were inf
time at multiple s
and trend interpre
Admission foreca:
occupancy foreca
and slower movin
of 27.3%, 30.9% a
90% coverages of
These real-time w
for heal Weeks ahead or COVID-19, influenza, and RSV in England over winter 2023/24. Bed occupances weeks ahead for COVID-19, influenza, and RSV in England over winter 2023/24. Bed occupances forecasts were informed by the ensemble forecasts were informed by the ensemble admissions models. Forecasts were delivered in real-
time at multiple scales. The use of sample-based forecasting allowed for effective reconciliation
and trend interpretation.
Admis Admission forecasts, parti
occupancy forecasts had v
and slower moving trends
of 27.3%, 30.9% and 15.7?
90% coverages of 0.439, C
These real-time winter inf
for healthcare system ma
The models were delivere
achieved by pro

The models were delivered regularly and shared widely across the system to key users. This was
achieved by producing reliable, fast, and epidemiologically informed ensembles of models. in and regional decision-making structures, were used to mitigate the impact on hospital systems
and patient care.
We developed forecasting models predicting hospital admissions and bed occupancy two
weeks ahead for COVIDand trend interpretation.

Admission forecasts, particularly RSV and influenza, showed high skill at regional levels. Bed

occupancy forecasts had well-calibrated coverage, owing to informative admissions forecasts

and sl occupancy forecasts had well-calibrated coverage, owing to informative admissions forecast
and slower moving trends. National admissions forecasts had mean absolute percentage errof 27.3%, 30.9% and 15.7% for COVID-19, inf and slower moving trends. National admissions forecasts had mean absolute percentage erroid 27.3%, 30.9% and 15.7% for COVID-19, influenza, and RSV respectively, with corresponding 90% coverages of 0.439, 0.807 and 0.779.
 of 27.3%, 30.9% and 15.7% for COVID-19, influenza, and RSV respectively, with corresponding
90% coverages of 0.439, 0.807 and 0.779.
These real-time winter infectious disease forecasts produced by the UK Health Security Ag of 20% coverages of 0.439, 0.807 and 0.779.

These real-time winter infectious disease forecasts produced by the UK Health Security Agency

for healthcare system managers played an informative role in mitigating seasonal p These real-time winter infectious disease for healthcare system managers played an
The models were delivered regularly and s
achieved by producing reliable, fast, and e
Though, a higher diversity of model approces
MOTE: Th For healthcare system managers played an informative role in mitigating seasonal pressures.
The models were delivered regularly and shared widely across the system to key users. This was
achieved by producing reliable, fas The models were delivered regularly and shared widely across the system to key users. This vachieved by producing reliable, fast, and epidemiologically informed ensembles of models.
Though, a higher diversity of model appr The models were delivered by producing reliable, fast, and epidemiologically informed ensembles of models.
Though, a higher diversity of model approaches could have improved forecast accuracy.
Though, a higher diversity of achieved by producing reliability of model approaches could have improved forecast accuracy.
Though, a higher diversity of model approaches could have improved forecast accuracy.
NOTE: This preprint reports new research th Though, a higher diversity of model approaches could have improved forecast accuracy.
NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical p
NOTE: Thi

1. Introduction

In each year wear field that a method is a strained the community of the United Vestima and Respiratory Syncytial Virus (RSV). Ithe 2023/24 winter season there were 96.6, 76.9 and 37.8 cumulative admissions per 100,000 peo the 2023/24 winter season there were 96.6, 76.9 and 37.8 cumulative admissions per 100,000
people in England with COVID-19, influenza, and RSV respectively [1] [2]. Public health and
healthcare leaders can better use scarc people in England with COVID-19, influenza, and RSV respectively [1] [2]. Public health and
healthcare leaders can better use scarce resources when they can predict hospital admissions
and bed occupancy, reallocating staff people and between the state of the state of the state of the state of the state in the state in the state increased in the state increased in the state increased in the state increased with COVID-19, the state of the stat and bed occupancy, reallocating staff and beds to elective care as emergency admissions
decline.
Forecasting is widely used to give quantitative assessments on future events, harnessing
historic trends and modelled assumpt decline.
Forecasting is widely used to give quantitative assessments on future events, harnessing
historic trends and modelled assumptions. However, infectious disease dynamics are
challenging to confidently understand in Forecast
historic 1
challeng
observat
allocate
England
and resp
healthca
Departm
Infectiou
States by
with cha
betweer
and initia
demand initia
demand initia
demand historic trends and modelled assumptions. However, infectious disease dynamics are
challenging to confidently understand in real-time due to their complexity and partial
observation. When used well, numerical forecasts can challenging to confidently understand in real-time due to their complexity and partial
observation. When used well, numerical forecasts can help inform healthcare plannin
allocate system resources more effectively, leading observation. When used well, numerical forecasts can help inform healthcare plannin;
allocate system resources more effectively, leading to improved health outcomes. With
england the UK Health Security Agency (UKHSA) is re

allocate system resources more effectively, leading to improved health outcomes. Within England the UK Health Security Agency (UKHSA) is responsible for the prevention, prepara
and response to infectious diseases. The Nati England the UK Health Security Agency (UKHSA) is responsible for the prevention, prepara
and response to infectious diseases. The National Health Service England (NHSE) provides
healthcare provision to the population, and and response to infectious diseases. The National Health Service England (NHSE) provides
healthcare provision to the population, and both government organisations are overseen by the
Department of Health and Social Care.
I healthcare provision to the population, and both government organisations are overseen Department of Health and Social Care.

Infectious disease forecasts have been produced for influenza over many years in the Unit

State Department of Health and Social Care.

Infectious disease forecasts have been produced for influenza over many years in the United

States by the Centre for Disease Control (CDC) [3] [4]. Forecasting is not limited to infl Infectious disease forecasts have been
States by the Centre for Disease Contro
with challenges covering West Nile Viru
between government and academia dr
and initiatives were stepped up during
demand [10] [11], used in com States by the Centre for Disease Control (CDC) [3] [4]. Forecasting is not limited to influenza, with challenges covering West Nile Virus [5], Ebola [6], and Chikungunya [7], with collaboratic between government and academ with challenges covering West Nile Virus [5], Ebola [6], and Chikungunya [7], with collaborati
between government and academia driving improvements in the field [8] [9]. These methods
and initiatives were stepped up during between government and academia driving improvements in the field [8] [9]. These methods
and initiatives were stepped up during the SARS-CoV-2 pandemic responding to increased
demand [10] [11], used in communications by th and initiatives were stepped up during the SARS-CoV-2 pandemic responding to increased
demand [10] [11], used in communications by the US CDC to the public.
The SARS-CoV-2 pandemic disrupted seasonal patterns of many respi demand [10] [11], used in communications by the US CDC to the public.
The SARS-CoV-2 pandemic disrupted seasonal patterns of many respiratory viruses, driven
changing population mixing dynamics caused by control interventi The SARS-CoV-2 pandemic disrupted seasonal patterns of many respirat
changing population mixing dynamics caused by control interventions [1]
influenza and RSV transmission. As population mixing returned to pre-par-
disease changing population mixing dynamics caused by control interventions [12], notably limiting
influenza and RSV transmission. As population mixing returned to pre-pandemic levels these
diseases re-emerged in winter 2022/23 [1 influenza and RSV transmission. As population mixing returned to pre-pandemic levels these
diseases re-emerged in winter 2022/23 [13]. Rising emergency hospital admissions due to
influenza, COVID-19, and RSV place direct r

diseases re-emerged in winter 2022/23 [13]. Rising emergency hospital admissions due to influenza, COVID-19, and RSV place direct resource pressure on hospitals [14]. These admissions due to influenza, COVID-19, and RSV pl influenza, COVID-19, and RSV place direct resource pressure on hospitals [14]. These
admissions take up in-patient beds, and the increased demand on hospitals reduces the
planned and non-emergency care available. Therefore admissions take up in-patient beds, and the increased demand on hospitals reduces to planned and non-emergency care available. Therefore, the accurate prediction of inferences and use pressures helps to manage the wider he planned and non-emergency care available. Therefore, the accurate prediction of infectiant disease pressures helps to manage the wider healthcare system.
A range of metrics are commonly used to measure and understand seaso disease pressures helps to manage the wider healthcare system.
A range of metrics are commonly used to measure and understand seasonal respiratory dise
waves, each tackling different policy questions: peak magnitude, peak A range of metrics are commonly used to measure and understand
waves, each tackling different policy questions: peak magnitude,
incidence, and incidence over time [4]. Comparisons between rap
retrospective records give us Waves, each tackling different policy questions: peak magnitude, peak timing, cumulative incidence, and incidence over time [4]. Comparisons between rapid collections and retrospective records give us confidence in our cho incidence, and incidence over time [4]. Comparisons between rapid collections and
retrospective records give us confidence in our choice of metrics indicating suitability for r
time modelling [15]. In addition, we focus on retrospective records give us confidence in our choice of metrics indicating suitabilit
time modelling [15]. In addition, we focus on test-positive diagnosis rather than syn
ensure modelling is specific to a pathogen, allo the modelling is specific to a pathogen, allowing us to model diseases separately [16].
2
2 ensure modelling is specific to a pathogen, allowing us to model distributions \mathcal{C} .

2. Methods

2.1 Data sources

hospital admissions and bed occupancy trends of COVID-19, influenza, and RSV waves. This
breadth of pathogens and metrics modelled was key to the suite's utility. The forecasts wer
used directly to inform national policy d breadth of pathogens and metrics modelled was key to the suite's utility. The forecasts wer
used directly to inform national policy discussions and integrated into regional level decision
making. In this work we outline ou used directly to inform national policy discussions and integrated into regional level decision
making. In this work we outline our approach in delivering this forecasting suite, key
considerations, and describe our real-t making. In this work we outline our approach in delivering this forecasting suite, key
considerations, and describe our real-time results.
2. Dethods
2.1 Data sources
The National Health Service (NHS) is a publicly funded monsiderations, and describe our real-time results.

2.1 Data sources

The National Health Service (NHS) is a publicly funded healthcare system covering Endata collection consistent across hospitals [17]. NHS England geogr 2. Methods
2.1 Data sources
The National Health Service (NHS) is a publicly func
data collection consistent across hospitals [17]. NH
Supplementary Figure 1. Individuals presenting sev
often tested in secondary care settin data collection consistent across hospitals [17]. NHS England geographic structures are given in
Supplementary Figure 1. Individuals presenting severe symptoms of an infectious disease are
often tested in secondary care **Supplementary Figure 1.** Individuals presenting severe symptoms of an infectious disease are often tested in secondary care settings, with diagnostic tests reported to UKHSA via the Second
Generation Surveillance System (supplementary Figure 1. Individuals presenting severe symptoms of an infectious states are compared to UKHSA via the Secondent ested on Surveillance System (SGSS). There is a high ascertainment and coverage of SARS-CoV-2, assertainment can vary with demographics such as age [18] and across primary care,
care, and community settings [19]. More broadly, all-cause hospital admissions can be
predicted by seasonal patterns and environmental effe

2.2 Forecast Models

Statistical and ensemble rationale

model ensembles, which capture uncertainty in possible trends [23], with evidence of improved performance [24] [25]. Model ensembles also reduce our reliance on individual models, care, and community settings [19]. More broadly, all-cause hospital admissions can be
predicted by seasonal patterns and environmental effects [20]. However, presentations due to
infectious disease are less predictable, pa predicted by seasonal patterns and environmental effects [20]. However, presentation infectious disease are less predictable, particularly when seasonal transmission pattern
disrupted. Test-positive hospitalisations; admis infectious disease are less predictable, particularly when seasonal transmission patterns are
disrupted. Test-positive hospitalisations; admissions and bed occupancy, are key metrics for the
pressures sustained by hospital disrupted. Test-positive hospitalisations; admissions and bed occupancy, are key metrics for
pressures sustained by hospitals due to infectious disease. Forecast target definitions are
provided (Table 1), highlighting thei pressures sustained by hospitals due to infectious disease. Forecast target definitions are
provided (Table 1), highlighting their differences.
2.2 Forecast Models
Statistical and ensemble rationale
performance in short-te provided (Table 1), highlighting their differences.

2.2 Forecast Models

Statistical and ensemble rationale

Our modelling suite focusses on statistical forecasts, aligning with the evidence of their st

performance in sh **2.2 Forecast Models**
2.2 Forecast Models
Statistical and ensemble rationale
Our modelling suite focusses on statistical forecase
performance in short-term forecasting tasks, relat
[22]. Alongside their predictive pe ta (yú) (yú) 【yú 】 【yú performance in short-term forecasting tasks, relative to strictly mechanistic approaches [21]
[22]. Alongside their predictive performance, this class of models has fast runtimes, are largely
disease agnostic, and do not r represent and do not require their predictive performance, this class of models has fast runtimes, are large disease agnostic, and do not require substantial historic data. Furthermore, we developed model ensembles, which disease agnostic, and do not require substantial historic data. Furthermore, we developed
model ensembles, which capture uncertainty in possible trends [23], with evidence of improved
performance [24] [25]. Model ensembles model ensembles, which capture uncertainty in possible trends [23], with evidence of impreformance [24] [25]. Model ensembles also reduce our reliance on individual models, improving operational resilience.
Ensemble inclus

Ensemble inclusion criteria

morthannel (24) [25]. Model ensembles also reduce our reliance on individual models,
improving operational resilience.
Ensemble inclusion criteria
In a M-open model combination, for possible candidate models M, we ideally performance interiors.

Ensemble inclusion criteria

In a M-open model combination, for possible candidate models M, we ideally have a bre

modelling approaches to produce combination estimates [26]. However, practical

co Ensemble inclusion criteria
In a M-open model combination,
modelling approaches to produce
considerations are critical in ense
3 In a M-open model combination, for possible candidate models M, we ideally have a breadth of
modelling approaches to produce combination estimates [26]. However, practical
considerations are critical in ensemble design. Ac considerations are critical in ensemble design. Across pathogens and metrics, then
3

-
-
-

reliability. Candidate models are selected if the model:

1. has a total runtime (fitting, inference, post-processing) across all locations for a disea

in fewer than 15 minutes.

2. produces prediction samples (such as po 1. has a total runtime (fitting, inference, post-proc
in fewer than 15 minutes.
2. produces prediction samples (such as posterior
3. improves forecasting capability.
Criteria 1 makes the production of all forecasts feasibl in fewer than 15 minutes.

2. produces prediction samples (such as posterior samples).

3. improves forecasting capability.

Ieria 1 makes the production of all forecasts feasible, allowing for error flagging, model

Ints, produces prediction samp
improves forecasting capa
1 makes the production o
and thorough assurance o
ons in how many individua
esults. Criteria 2 ensures d
ations, such as from local to
nance and utility. We do not
or the 3. improves forecasting capability.

2. improves forecasting capability.

2. eria 1 makes the production of all forecasts feasible, allowing

1.1 makes the production of all forecasts feasible, allowing

1.1 makes the prod

Specific model classes

Era 1 makes the production of all forms, and thorough assurance of resultations in how many individuals are ck results. Criteria 2 ensures desirab regations, such as from local to natioformance and utility. We do not sele reruns, and thorough assurance of results. While models can be run in parallel, there are
limitations in how many individuals are available to run the process, make fixes, and qualit
check results. Criteria 2 ensures desir Ilmitations in how many individuals are available to run the process, make fixes, and qual
check results. Criteria 2 ensures desirable qualities for ensembling and coherence of pred
aggregations, such as from local to nati check results. Criteria 2 ensures desirable qualities for ensembling and coherence of predicting
gregations, such as from local to national levels. Criteria 3 is a holistic evaluation of model
performance and utility. We d aggregations, such as from local to national levels. Criteria 3 is a holistic evaluation of model
performance and utility. We do not select models based on scoring rules alone, but instead
consider the wider properties of performance and utility. We do not select models based on scoring rules alone, but instead
consider the wider properties of a model (reliability, ease-of-use, difference from existing
models) and discussion with surveillan consider the wider properties of a model (reliability, ease-of-use, difference from existing
models) and discussion with surveillance experts.
Specific model classes
A variety of statistical models were used to forecast tr models) and discussion with surveillance experts.
Specific model classes
A variety of statistical models were used to forecast trends, each with different underlying
assumptions. Each model is structured separately for eac Specific model classes
Specific model classes
A variety of statistical models were used to foreca
assumptions. Each model is structured separately
surveillance data being modelled, with key hyperp
The primary model class u assumptions. Each model is structured separately for each disease, adapted to best reflect surveillance data being modelled, with key hyperparameters retuned regularly over the searche primary model class used across the p surveillance data being modelled, with key hyperparameters retuned regularly over the season
The primary model class used across the pathogens was a Generalised Additive Model (GAM),
which uses the semi-mechanistic assumpt The primary model class used across the pathogens was a Generalised Additive Model (GAM),
which uses the semi-mechanistic assumption of a recent growth-rate extrapolated forward in
time [27] via the *mgcv* and *gratia* pac which uses the semi-mechanistic assumption of a recent growth-rate extrapolated forward in
time [27] via the *mgcv* and *gratia* packages [28] [29]. This model has different variations across
the diseases, using different time [27] via the *mgcv* and *gratia* packages [28] [29]. This model has different variations acros
the diseases, using different hierarchical components, geographies, and for the RSV model a
structure pooling trends acros the discussion of the material components, a coupled performance in the RSV model a
structure pooling trends across adjacent age groups. To improve model performance, we
leverage probabilistic catchment areas to define a d structure pooling trends across adjacent age groups. To improve model performance, we
leverage probabilistic catchment areas to define a denominator population for hospital
admissions [30]. Secondly, we use state-space bas Eleverage probabilistic catchment areas to define a denominator population for hospital admissions [30]. Secondly, we use state-space based models, primarily with an Error Trend
Seasonality (ETS) structure fit to each indi admissions [30]. Secondly, we use state-space based models, primarily with an Error Tre
Seasonality (ETS) structure fit to each individual geographic location's time series via the
package [31]. Lastly, syndromic surveilla Seasonality (ETS) structure fit to each individual geographic location's time series via the faind package [31]. Lastly, syndromic surveillance is fed into regression models to predict expected tuture admissions given curr Deaching (171) structure from continuous accommodels to predict expected
package [31]. Lastly, syndromic surveillance is fed into regression models to predict expected
future admissions given current leading indicators lev

Furture admissions given current leading indicators levels [32]. Models ran each week are first
inspected by the modelling team (applying expert judgement), then candidate models are
ensembled. Each model developed is give inspected by the modelling team (applying expert judgement), then candidate models are ensembled. Each model developed is given by disease in Supplementary Table 1.
For the COVID-19 and influenza admissions targets we deve insembled. Each model developed is given by disease in **Supplementary Table 1.**
For the COVID-19 and influenza admissions targets we developed a secondary forecast tar,
requested by users, beds occupied with test-positive ensembled. Each model developed is given by disease in Supplementary rable 1.
For the COVID-19 and influenza admissions targets we developed a secondary for
requested by users, beds occupied with test-positive patients. Th

requested by users, beds occupied with test-positive patients. This is generated by fitting a
convolution between the admissions and occupancy time series, giving an estimate for time-to
discharge, translating the admissio requested by the admissions and occupancy time series, giving an estimate for time
discharge, translating the admissions forecast into an occupancy forecast.
To compare models and tune parameters we use probabilistic scori To compare models and tune parameters we use probabilistic scoring met
weighted interval score, empirical coverage, and bias, calculated using the
package. 90% and 50% prediction intervals are generated, with the 90% are
c weighted interval score, empirical coverage, and bias, calculated using the *scoringutils* [33] R
package. 90% and 50% prediction intervals are generated, with the 90% and median value are
communicated to users, alongside weighted interval score, empirical coverage, and bias, calculated using the scoringulation [33] N
package. 90% and 50% prediction intervals are generated, with the 90% and median value are
communicated to users, alongside paramunicated to users, alongside probabilistic statements assessing trends. While quantitativ
4
4 communicated to users, alongside probabilities assessing trends. While quantitative \mathcal{L}

Benefits of the stacking ensemble approach

modelling team is necessary to exclude models in a given week.
 Benefits of the stacking ensemble approach

Variations on the unweighted average quantile approach to ensembling are widely used in

Peidemic forecasting [3 *Benefits of the stacking ensemble approach*
Variations on the unweighted average quantile approach to ensepidemic forecasting [34] [25]. Instead, we preserve individual n
then perform an unweighted quantile summary of dra epidemic forecasting [34] [25]. Instead, we preserve individual model sample predictions [3
then perform an unweighted quantile summary of draws across all models. This allows us to
apture uncertainty in a granular way whe then perform an unweighted quantile summary of draws across all models. This allows us to
capture uncertainty in a granular way when summarising predictions and avoid relying on
averaging or aggregating point estimates.
Th capture uncertainty in a granular way when summarising predictions and avoid relying on
averaging or aggregating point estimates.
Though this prediction sample approach requires higher data volume than point estimates, a
m averaging or aggregating point estimates.

Though this prediction sample approach requires higher data volume than point estimates

models are run within one team this has a limited impact on operations. By using a predict Though this prediction sample approach respectively and provided are run within one team this has a sample stacking approach, we can produce sample draws to higher geographies, allow other quantities of interest (such as a models are run within one team this has a limited impact on operations. By using a prediction
sample stacking approach, we can produce granular forecasts at local levels then aggregate the
sample draws to higher geographie

3. Results

sample stacking approach, we can produce granular forecasts at local levels then aggregate th
sample draws to higher geographies, allowing for simple reconciliation across space, time, and
other quantities of interest (suc sample draws to higher geographies, allowing for simple reconciliation across space, time, and
other quantities of interest (such as age in the RSV model) [36]. It is important to our users that
we produce national forecas other quantities of interest (such as age in the RSV model) [36]. It is important to our users that
we produce national forecasts (for ministers), low geographies (for health protection teams),
and their coherence is impor we produce national forecasts (for ministers), low geographies (for health protection teams),
and their coherence is important for credibility.
Lastly, the use of prediction samples allows us to assign probabilities to dif and their coherence is important for credibility.
Lastly, the use of prediction samples allows us to assign probabilities to different interpretable
trend categories (stable, increase and decrease) using thresholds agreed Lastly, the use of prediction samples allows us to
Lastly, the use of prediction samples allows us to
trend categories (stable, increase and decrease)
operations experts, achievable at all geographie
<20% to be stable, a p trend categories (stable, increase and decrease) using thresholds agreed with disease and
operations experts, achievable at all geographies. We consider a change over two weeks of
<20% to be stable, a positive change >20% the section of the stable and stable and stable and stategories. We consider a change over two weeks of a categories. We consider a change over two weeks of a categories, a chievable at all geographies. We consider a chang

3.1 Season overview and targets

20% to be stable, a positive change >20% as an increase and a negative change >20% as a

decrease, similar to other experimental approaches worldwide [37].

3. Results

In a time of disrupted and uncertain seasonal pattern decrease, similar to other experimental approaches worldwide [37].

3. Results

In a time of disrupted and uncertain seasonal patterns caused by the SARS-CoV-2 pandemic

chose to forecast our metrics over a forecast horizo **3. Results**

In a time of disrupted and uncertain seasonal patterns caused by the

chose to forecast our metrics over a forecast horizon window, showi

expected to develop. As a trade-off between long forecast horizons wh chose to forecast our metrics over a forecast horizon window, showing how the metric is
expected to develop. As a trade-off between long forecast horizons with high uncertainty and
short horizons with lower utility, we cho expected to develop. As a trade-off between long forecast horizons with high uncertainty
short horizons with lower utility, we chose a consistent 14-day horizon across all models.
provides enough foresight to be useful, wi expectively if the move of the useful, with meaningfully small uncertainty, agreed with end
provides enough foresight to be useful, with meaningfully small uncertainty, agreed with end
users of the forecasts.
3.1 Season o provides enough foresight to be useful, with meaningfully small uncertainty, agreed with end
users of the forecasts.
3.1 Season overview and targets
Each disease is monitored differently across the healthcare system, w provides the forecasts.
 Sach disease is monitored differently across the healthcare system, with different levels of

granularity and quality available. The forecast targets selected for each disease and metric are

giv **3.1 Season overview a**
Each disease is monito
granularity and quality
given in **Table 1**. A key
its accuracy. For opera
every winter week. For
needed, new models ir
timeline of metrics fore granularity and quality available. The forecast targets selected for each disease and metric given in Table 1. A key consideration in the choice of target data is its latency, traded off agits accuracy. For operational eff given in **Table 1**. A key consideration in the choice of target data is its latency, traded off agains
its accuracy. For operational efficiency, forecasts for each disease were not delivered across
every winter week. Forec given in Table 1. A key consideration in the choice of target data is its latency, traded off against
its accuracy. For operational efficiency, forecasts for each disease were not delivered across
every winter week. Foreca every winter week. Forecasts were prioritised based on the trends observed, stopped early if
needed, new models incorporated, and further metrics included as the season progressed. T
timeline of metrics forecasted over the revery winter wind a state of the season and further metrics included as the season progressed. The
timeline of metrics forecasted over the season are given in **Figure 1**.
5 needed, new models incorporated, and further metrics included as the season included as the season are given in Figure 1.
S5 timeline of metrics forecasted over the season are given in Figure 1.
5

Table 1. A breakdown of each forecasting target chosen across diseases and metrics. The National Health Service England (NHSE) Urgent and Emergency Care (UEC) Situational Report is a daily census of aggregate counts. The
Second-Generation Surveillance Service (SGSS) is a national database for infectious disease diagnostic test resul Second-Generation Surveillance Service (SGSS) is a national database for infectious disease diagnostic test results. Within the health geographies of England, a hospital Trust is a collection of hospitals nested within an Integrated Care Board (ICB), nested within an NHS region of the country. The geographic structures are further detailed in Supplementary Figure 1.

Figure 1. The weekly forecasts produced across pathogen and metric. There were no forecasts produced over the winter holiday period. Occupancy metrics began later in the season corresponding to higher pressure periods.

3.2 Innuenza
The seasonal i
Year, and a se
values were w
respectively, t
influenza, the
later in the se
7 Year, and a second larger peak after (**Figure 2**). Observed 14-day admissions and occupancy
values were within the forecasted 90% prediction intervals in 15/19 and 10/11 weeks
respectively, though the admissions forecast p Year, and a second larger peak and the forecasted 90% prediction intervals in 15/19 and 10/11 weeks
values were within the forecasted 90% prediction intervals in 15/19 and 10/11 weeks
respectively, though the admissions fo respectively, though the admissions forecast performed poorly between peaks (F**igure**
influenza, the GAM was included in the ensemble across all weeks, the ETS model inco
later in the season, and leading indicator models u respectively, though the admissions forcedary performed poorly between peaks (Figure 2). For
influenza, the GAM was included in the ensemble across all weeks, the ETS model incorporate
later in the season, and leading ind influenza, the GAM was included included internal was included internal was incrementational was internal was i
later in the season, and leading indicator models used intermittently. later in the season, and leading indicator models used intermittently.

It is made available under a CC-BY 4.0 International license. medRxiv preprint doi: [https://doi.org/10.1101/2024.09.07.24313175;](https://doi.org/10.1101/2024.09.07.24313175) this version posted September 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has grante

 $\frac{1}{2}$ Figure 2. National level a.) influenza admissions and b.) bed occupancy 14-day forecast overlaid. All metrics are 7 day rolling averaged for clarity. Plot c.) shows the models included in the ensemble each week.

3.3 COVID-19

multiple peaks and troughs observed in the admissions and occupancy trends (Figure 3). The
main peak occurred near the New Year. The COVID-19 forecasts have variation in their accuracy
with forecasts generally struggling i multiple peaks and a couple of the New Year. The COVID-19 forecasts have variation in their accurred in the New Year. The COVID-19 forecasts have variation in their accurred with forecasts generally struggling in growth/de with forecasts generally struggling in growth/decline phases, where the models are slow to
adapt to changing trends (Figure 4). Of the five available models for the ensemble, none were
used across all weeks. The GAM was us what and a datapt to changing trends (Figure 4). Of the five available models for the ensemble, none we
adapt to changing trends (Figure 4). Of the five available models for the ensemble, none we
used across all weeks. The adapt to changing trends (Figure 4). On the first details and the figure 4). Of the figure and the ensemble, interval and the ETS model was regularly deployed towards the end of the season.
Indicator models, and the ETS mo indicator models, and the ETS model was regularly deployed towards the end of the sea:

Across frequently, when the sport frequency of the sport of the sea:

The GAM was used to lead the sport of the sport of the sport of indicator models, and the ETS model was regularly deployed towards the end of the season.

It is made available under a CC-BY 4.0 International license. medRxiv preprint doi: [https://doi.org/10.1101/2024.09.07.24313175;](https://doi.org/10.1101/2024.09.07.24313175) this version posted September 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has grante

i
י Figure 3. National level a.) COVID-19 admissions and b.) bed occupancy 14 day forecast overlaid. All metrics are 7 day rolling averaged for clarity. Plot c.) shows the models included in the ensemble each week.

4.4 RSV

Figure 4. National level a.) RSV admissions 14 day forecast overlaid. The metrics are 7-day rolling averaged for clarity. Plot b.) shows the models included each week. RSV forecasts were stopped early when incidence was low to prioritize other forecasts.

4.5 Forecast performance

of forecasts. Measures of performance at a range of breakdowns show varying performance
across diseases, metrics, and geographies (Table 2). Across 90% and 50% coverage scores the
regional forecasts were better calibrated across diseases, metrics, and geographies (**Table 2**). Across 90% and 50% coverage scores the regional forecasts were better calibrated than their national aggregations. The occupancy forecasts for COVID-19 and influenza h across diseases, metrics, and geographies (Table 2). The occupancy of the comparty of the comparty forecasts for COVID-19 and influenza had higher performing central estimates than the corresponding admissions forecasts, a Forecasts for COVID-19 and influenza had higher performing central estimates than the
corresponding admissions forecasts, a result of the slower evolving trend dependent on pa
dmissions.
The forecast performances can also corresponding admissions forecasts, a result of the slower evolving trend dependent on
admissions.
The forecast performances can also be explored relative to the winter epidemic wave p
(Figure 5). For the influenza admissi admissions.

The forecast performances can also be explored relative to the winter epidemic wave peak

(Figure 5). For the influenza admissions, occupancy, and COVID-19 admissions there is a nota

drop in coverage performa The forecast
(Figure 5). F
drop in cove
be calibrate
consistently
epidemic ph
in Suppleme
Table 2. Fore
metrics prese
measure of m
zero, a percer
score account
over all dates
Disease
COVID-19

Table 2. Forecast scoring measures across disease, metric, and geographies. The 90% and 50% coverage metrics present the proportion of true values that fell within the specified prediction intervals, a metrics present the proportion of true values that fell within the specified prediction intervals, a measure of model calibration, with values closer to 0.9 or 0.5 preferred. For forecasts with true values of zero, a percentage error of 100% is assumed to define a consistent measure. The Weighted interval score accounts for model sharpness and bias, with lower scores being preferred. Each score is calculated over all dates predicted, for each weekly prediction.

Figure 5. The a.) 90% and b.) 50% empirical coverage of each disease and metric at national and regional
geographies. The scores are given relative to the peak timing, to evaluate at different phases in the epidemic. geographies. The scores are given relative to the peak timing, to evaluate at different phases in the epidemic. Empirical coverage closer to the dashed line are preferred. The peak date is calculated as the date of maximum seven-day rolling average metric value over the winter period.

4. Discussion

forecasts across three priority diseases in the 2023/24 winter season. Forecasts harnessed the unified data collection of the health service in England, giving high coverage of hospitals, low latency, and granular spatio-t unified data collection of the health service in England, giving high coverage of hospitals, low
latency, and granular spatio-temporal resolution. Some forecasts were particularly accurate
over the season, such as the RSV latency, and granular spatio-temporal resolution. Some forecasts were particularly accurate
over the season, such as the RSV admissions results (Figure 4). However, modelling for COVID
13 over the season, such as the RSV admissions results (**Figure 4**). However, modelling for COVII
13 over the season, such as the RSV admissions results (Figure 4). However, modelling for COVID-

19 and the missions were particularly ventering this season (Figure 2). The increass were wordy that disseminated within the health system, with modellers and operations colleagues collaboration challeng forecasts had high dosely. The resulting forecasts had high utility at both national and regional geographies, aiding
decision makers in their resource allocation decisions.
Forecast users ranged from senior ministers responsible for the nat decision makers in their resource allocation decisions.

Forecast users ranged from senior ministers responsible for the nation's health, to regional

health protection teams, with a variety of use-cases in between (Figure Forecast users ranged from senior ministers responsible
health protection teams, with a variety of use-cases in
were shared each week with the Department of Healt
the Secretary of State and ministers. This aided nations
an

Figure 6. Flow chart of data sources and model dissemination across government decision makers in the 2023/24 season.

Dependionships between disease experts and data collectors to develop useful forecasts
unified data collection enabled geography-specific forecasts to be created, directly su
local operations, strengthening relationships b unified data collection enabled geography-specific forecasts to be created, directly supporting
local operations, strengthening relationships between users and forecasters. By developing the
14 local operations, strengthening relationships between users and forecasters. By developing the
14 local operations, strengthening relationships between users and forecasters. By developing the
14

experiment with new approaches, which will be necessary in future outbreaks. By focus
statistical time-series methods, the suite can be scaled to new diseases and metrics, with
the challenging parameterisation of more mech statistical time-series methods, the suite can be scaled to new diseases and metrics, without
the challenging parameterisation of more mechanistic approaches. A range of model types car
be used with the sample-based ensemb the challenging parameterisation of more mechanistic approaches. A range of model types can be used with the sample-based ensembling, giving strong reconciliation across geographic scales, and allowing for trend categorisa be used with the sample-based ensembling, giving strong reconciliation across geographic
scales, and allowing for trend categorisation that aids decision making.
The modelling suite was developed iteratively over the past scales, and allowing for trend categorisation that aids decision making.
The modelling suite was developed iteratively over the past three years. It began in 2021 a
single COVID-19 model, then for winter 2022/23 evolved in The modelling suite was developed iteratively over the past three years
single COVID-19 model, then for winter 2022/23 evolved into a COVID--
influenza model. Most recently, in 2023/24 we created model ensemble
and influen single COVID-19 model, then for winter 2022/23 evolved into a COVID-19 ensemble and a nev
influenza model. Most recently, in 2023/24 we created model ensembles for both COVID-19
and influenza, with an RSV model added. This influenza model. Most recently, in 2023/24 we created model ensembles for both COVID-19
and influenza, with an RSV model added. This build-up of models over time allowed adaption to
evolving user needs, experimentation wit and influenza, with an RSV model added. This build-up of models over time allowed adaption
evolving user needs, experimentation with new approaches, and streamlining processes in
quieter periods.
The choice of forecasting evolving user needs, experimentation with new approaches, and streamlining processes in
quieter periods.
The choice of forecasting target underpins the utility of the modelling, particularly the forecast
horizon. Statistic

quieter periods.
The choice of forecasting target underpins the utility of the modelling, particularly the fore
horizon. Statistical models have been shown to excel at short horizons, relative to longer ti
periods [22]. Ou The choice of for
horizon. Statistic
periods [22]. Our
reasonable unce
decision makers
horizon is highly
longer term hori
forecasting, whe
The natural exte
textending the fo
To further impro
be considered to
statistical. D horizon. Statistical models have been shown to excel at short horizons, relative to longer time
periods [22]. Our work has a short-term focus, with a 14 day-look-ahead, providing more
reasonable uncertainty in trends compa periods [22]. Our work has a short-term focus, with a 14 day-look-ahead, providing more
reasonable uncertainty in trends compared to other methods. Though, there is less room for
decision makers to plan as the horizon shor reasonable uncertainty in trends compared to other methods. Though, there is less room
decision makers to plan as the horizon shortens. We have found, while short, the 2-week
horizon is highly useful for stakeholders, with decision makers to plan as the horizon shortens. We have found, while short, the 2-week
horizon is highly useful for stakeholders, with meaningful uncertainty. Scenario modelling ove
olonger term horizons has a different p horizon is highly useful for stakeholders, with meaningful uncertainty. Scenario modelling
longer term horizons has a different purpose to the immediate decision making of short-t-
forecasting, where academic collaboration ionger term horizons has a different purpose to the immediate decision making of short-term
forecasting, where academic collaborations have excelled [39].
The natural extensions to this modelling suite are clear: improveme forecasting, where academic collaborations have excelled [39].
The natural extensions to this modelling suite are clear: improvements in forecast accuracy,
extending the forecast horizon, and exploration of other disease t From a transmission of this modelling suite are clear: improve
seterating the forecast horizon, and exploration of other diseases
To further improve situational awareness, combinations of now
be considered to harness inher extending the forecast horizon, and exploration of other disease targets and further granula
To further improve situational awareness, combinations of nowcasting and forecasting shoule
considered to harness inherently lagg To further improve situational awareness, combinations of nowcasting and forecasting should
be considered to harness inherently lagged data. The current suite of models is primarily
statistical. Deploying models with more be considered to harness inherently lagged data. The current suite of models is primarily statistical. Deploying models with more mechanistic approaches, including further disease dynamics assumptions, and incorporating hi statistical. Deploying models with more mechanistic approaches, including further diseasdynamics assumptions, and incorporating historical trends are further avenues for explor [40]. Further diseases should be considered f dynamics assumptions, and incorporating historical trends are further avenues for explorate [40]. Further diseases should be considered for forecasting, creating the capability for responsive modelling work, though this ne

(40). Further diseases should be considered for forecasting, creating the capability for responsive modelling work, though this necessitates improved timeliness of data collection, which currently exists only for influenza responsive modelling work, though this necessitates improved timeliness of data collem which currently exists only for influenza and COVID-19 in England. Increased sharing of code would benefit methods development and assu which currently exists only for influenza and COVID-19 in England. Increased sharing of data code would benefit methods development and assurance, though we must be careful this do
code would benefit methods development an code would benefit methods development and assurance, though we must be careful this does
not limit modellers' agility to deliver in response periods, and flexibility to try new targets and
metrics.
The choice of modelling not limit modellers' agility to deliver in response periods, and flexibility to try new targets and
metrics.
The choice of modelling in-house only, largely due to data sharing challenges, limits the public
availability of metrics.
The choice of modelling in-house only, largely due to data sharing challenges, limits the public
availability of forecast information in real-time. The work being closed source, rather than code
visting in the pub The choi
availabili
existing i
Furthern
model du
internati
importar
15 availability of forecast information in real-time. The work being closed source, rather than codesisting in the public domain, limits the scrutiny and collaboration available for the project.
Furthermore, by focusing effor existing in the public domain, limits the scrutiny and collaboration available for the project.
Furthermore, by focusing efforts within a single team there is a limit to time available for novel
model development. This lea Furthermore, by focusing efforts within a single team there is a limit to time available for no
model development. This leaves expertise, primarily academic, both within England and
internationally, that is not necessarily model development. This leaves expertise, primarily academic, both within England and
internationally, that is not necessarily being leveraged to inform predictions – highlighting the
importance of government and academic internationally, that is not necessarily being leveraged to inform predictions – highlightin
importance of government and academic collaboration. The ensemble is limited by a lack
15 importance of government and academic collaboration. The ensemble is limited by a lack of
15 importance of government and academic collaboration. The ensemble is limited by a lack of \mathcal{L}

with performance at epidemic turning points.

Over the 2023/24 winter season, we delivered a forecasting suite for respiratory diseases

within secondary care in England with a range of statistical and ensemble models. The France 2023/24 winter season, we delivered

within secondary care in England with a range

outputs were used widely across the health sy

decision making at national and local levels. W

for real-time modelling of infectio Within secondary care in England with a range of statistical and ensemble models. These not
potynts were used widely across the health system for situational awareness and support
decision making at national and local leve within secondary care in England with a range of statistical and ensemble models were used widely across the health system for situational anomenss and supported
decision making at national and local levels. We have shown

Acknowledgements

-
-
-
-
-
-
-

outher and interest and the health system and included widely and the health system in termal capability for real-time modelling of infectious diseases supports the delivery of effective public health.

Acknowledgements

W decision making at national and local recess. We have shown that having an internal capability
for real-time modelling of infectious diseases supports the delivery of effective public health.
Acknowledgements
We would like For real-time modelling of infectious diseases supports the derivery of circuitive public health.

Ne would like to specifically thank members of the Infectious Disease Modelling team for the

contributions to the operatio Contributions to the operational delivery of the winter forecasts over the season:

William Ferguson

Jack Kennedy

Emilie Finch

Cliver Polhill

Chetan Chauhan-Sims

Adrian Pritchard

Rachel Christie

In addition, we woul Contributions Termin Contributions to the operation of the operation can be analysts within the NHS England Urgent and addition, we would like to thank th Franchinam Ferguson

Franch Finch

Franch Chill

Franch Chauhan-S

Adrian Pritchard

Rachel Christie

ddition, we would like

e teams for their supp

a used in this work.

ISA have an exemptio

JSA have an exemptio

JSA ha - Emilie Finch
- Oliver Polhill
- Chetan Chauh
- Adrian Pritcha
- Rachel Christie
ddition, we would
e teams for their s
a used in this worl
ical Approval
-
SA have an exem
D6) to allow identi
ecognise trends ir
flict of In - Oliver Polhill
- Chetan Chau
- Adrian Pritch
- Rachel Christ
ddition, we wou
e teams for their
a used in this wo
ical Approval
-
1SA have an exer
06) to allow iden
ecognise trends
flict of Interest
authors have de
a Avai - Chetan Chaul
- Adrian Pritch
- Rachel Christ
ddition, we woule
teams for their
a used in this wor
ical Approval
-
1SA have an exen
06) to allow ident
ecognise trends i
flict of Interest
authors have de
a Availability Sta - Adrian Pritchard
- Rachel Christie
ddition, we would like to t
e teams for their support, a
a used in this work.
ical Approval
-
SA have an exemption un
156 have an exemption un
ecognise trends in, commu
-
flict of Inter - Rachel Christie

ddition, we would like

teams for their sup

a used in this work.

ical Approval

HSA have an exemptia

196) to allow identifial

ecognise trends in, conflict of Interest

authors have declar

a Availabi ddition, we would le
teams for their su
a used in this work.
ical Approval
ISA have an exemp
06) to allow identifi
ecognise trends in,
flict of Interest
authors have decla
a Availability State
ISA¤operates a rob
siders:
•

Care teams for their support, as well as colleagues within the NHS collecting and reporting the
data used in this work.
 Ethical Approval

UKHSA have an exemption under regulation 3 of section 251 of the National Health data used in this work.
 Ethical Approval

UKHSA have an exemption under regulation 3 of section 251 of the National Health Service Act

(2006) to allow identifiable patient information to be processed to diagnose, contr Ethical Approval
UKHSA have an exempt
(2006) to allow identifia
or recognise trends in, (
Conflict of Interest
The authors have decla
Data Availability State
UKHSA¤operates a rob!
considers:
• the benefits anc
• compliance Ethical Approval (2006) to allow identifiable patient information to be processed to diagnose, control, prevent,
or recognise trends in, communicable diseases and other risks to public health.
Conflict of Interest
USHSA para have declared

(2006) to recognise trends in, communicable diseases and other risks to public health.

Conflict of Interest

The authors have declared that no competing interests exist.

Data Availability Statement

UKHSA Poperates a rob **Conflict of Interest**
The authors have declared that no competing interests exist.
 Data Availability Statement

UKHSA^{II}IOPOFTATE UKHSAIIOPOFTATES are rotated considers:

• the benefits and risks of how the data will The authors have de
Data Availability St
UKHSA² Doperates a
considers:
• the benefits
• data minimis
• how the con
16 Data Availability Statement

UKHSA²loperates a robust governance process for applying to

considers:

• the benefits and risks of how the data will be used

• compliance with policy, regulatory and ethical obligati

• da 【 l c
1 Data Availability Statement
UKHSAangerates a robust governance process for applying to access protected data that UNET SAMONG THE SAMONG THAT SAMONG THAT SAMONG THAT SAMONG THE SAMONG THAT SAMONG THE SAMONG THAT SAMONG THE SAMONG THAT SAMONG THAT SAMONG THAT

- considers: •
	- compliance with policy, regulatory and ethical oblig
data minimisation
how the confidentiality, integrity, and availability w
ow the confidentiality, integrity, and availability w • compliance with policy, regulatory and ethical obligations
	- •
	- data minimisation
how the confidentiality, integrity, and availability will be m
and the confidentiality, integrity, and availability will be m how the confidenti
i
 • how the confidentiality, integrity, and availability will be maintained

- retention, archival, and disposal requirements
- best practice for protecting data, including the application of "privacy by design and by

- best practice for protecting data, including the
default", emerging privacy conserving technolc
to protected data is always strictly controlled u
ts.
Welcomes data applications from organisation
ourposes.
est an applicatio default", emerging privacy conserving technologies and contractual controls
to protected data is always strictly controlled using legally binding data sharing
ts.
ts.
www.elcomes data applications from organisations lookin to protected data is always strictly controlled using legally binding data sharits.

Explorements data applications from organisations looking to use protected data

urposes.

Exata application pack or discuss a request fo contracts.

UKHSAläwelcomes data applications from organisations looking to use protected data f

health purposes.

To request an application pack or discuss a request for UKHSA data you would like to st

contact <u>DataAcce</u> UKHSA

DKHSA

DKHSA

Dure To request

contact <u>Da</u>

Referenc

Referenc

Referenc

Https:

respir

seaso

2023-

2023-In UK Health Security Agency, "Surveillance of influenza and other seasonal respiratory

To request an application pack or discuss a request for UKHSA data you would like to submit,

References

11 UK Health Security Agenc To request an app
contact DataAcce
References
References
(1) UK Health Se
viruses in the
https://www
respiratory-v
seasonal-res
(2) UK Health Se
seasonal-res
(2) UK Health Se
season," Ma
https://www
2023-to-202 To reaction parameters and the seasonal responses in the UK, winter 2023 to 2024, "11 June 2024. [Online]. Available:

This in the UK, winter 2023 to 2024, "11 June 2024. [Online]. Available:

https://www.gov.uk/government References

(1) UK Health Security Agency, "Su

viruses in the UK, winter 2023 t

https://www.gov.uk/governme

respiratory-viruses-in-the-uk-w

seasonal-respiratory-viruses-in-

(2) UK Health Security Agency, "Na

season," $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ |
|
|
| viruses in the UK, winter 2023 to 2024," 11 June 2024, [Online]. Available:

https://www.gov.uk/government/statistics/surveillance-of-influenza-and-other-seas

respiratory-viruses-in-the-uk-winter-2023-to-2024/surveillance
-
- https://www.gov.uk/government/statistics/surveillance-of-influenza-and-
respiratory-viruses-in-the-uk-winter-2023-to-2024/surveillance-of-influenza-and-
respiratory-viruses-in-the-uk-winter-2023-to-2024/surveillance-of-inf Season," May 2024.

UK Health Security Agency, "National flu and COVID-19 surveillance reports: 2023 to 2024

https://www.gov.uk/government/statistics/national-flu-and-covid-19-surveillance-reports-

2023-to-2024-season. [Example 2022 (Dnline). Available:

Intes://www.gov.uk/government/statistics/national-flu-and-covid-19-surveillance-reports

2023-to-2024-season. (Accessed 5 September 2024).

[3] C. S. Lutz, M. P. Huynh, M. Schroeder, S. A https://www.gov.uk/government/statis
2023-to-2024-season. [Accessed 5 Septe
C. S. Lutz, M. P. Huynh, M. Schroeder, S.
Fernandez, S. K. Greene, N. Kipshidze ar
public health: a path forward using influ
vol. 19, pp. 1-12, 20 C. S. Lutz, M. P. Huynh, M. Schroeder, S. Anyatonwu,
Fernandez, S. K. Greene, N. Kipshidze and L. Liu, "App
public health: a path forward using influenza forecast
vol. 19, pp. 1-12, 2019.
C. J. McGowan, M. Biggerstaff, M.
-
- [5] K. M. Holcomb, S. Mathis, J. E. Staples, M. Fischer, C. M. Barker, C. B. Beard, R. J. Nett, A. C. Keyel, M. Marcantonio and M. L. Childs, "Evaluation of an open forecasting challenge to Fernandez, S. K. Greene, N. Kipshidze and L. Liu, "Applying infectious disease forecapublic health: a path forward using influenza forecasting examples," *BMC Public He* vol. 19, pp. 1-12, 2019.

[4] C. J. McGowan, M. Bigg public health: a path forward using influenza forecasting examples," *BMC Public Health,* vol. 19, pp. 1-12, 2019.
C. J. McGowan, M. Biggerstaff, M. Johansson, K. M. Apfeldorf, M. Ben-Nun, L. Brooks, M. Convertino, M. Erag public health: a path forward using influenza forecasting examples, "*BMC Public Health,* vol. 19, pp. 1-12, 2019.
C. J. McGowan, M. Biggerstaff, M. Johansson, K. M. Apfeldorf, M. Ben-Nun, L. Brooks, M
Convertino, M. Errag C. J. McGowan, M. Bigg
Convertino, M. Erragun
seasonal influenza in th
2019.
K. M. Holcomb, S. Math
Keyel, M. Marcantonio
assess skill of West Nile
16, no. 1, p. 11, 2023.
C. Viboud, K. Sun, R. Ga Convertino, M. Erraguntla, D. C. Farrow and J. Freeze, "Collaborative efforts to forecast
seasonal influenza in the United States, 2015–2016," Scientific reports, vol. 9, no. 1, p. 68
2019.
[5] K. M. Holcomb, S. Mathis, J. seasonal influenza in the United States, 2015–2016," Scientific reports, vol. 9, no. 1, p. 6
2019.
K. M. Holcomb, S. Mathis, J. E. Staples, M. Fischer, C. M. Barker, C. B. Beard, R. J. Nett, A
Keyel, M. Marcantonio and M. seasonal influenza in the Onted States, 2015–2010, Scientific reports, vol. 5, no. 1, p. 683,
2019.
K. M. Holcomb, S. Mathis, J. E. Staples, M. Fischer, C. M. Barker, C. B. Beard, R. J. Nett, A. C.
Keyel, M. Marcantonio an K. M. I
Keyel,
assess
16, no
C. Vibo Keyel, M. Marcantonio and M. L. Childs, "Evaluation of an open forecasting challenge to
assess skill of West Nile virus neuroinvasive disease prediction," *Parasites & Vectors*, vol.
16, no. 1, p. 11, 2023.
[6] C. Viboud, Keyel, M. Marcantonio and M. Marcantonic Childs, Theorem is prediction, "Parasites & Vectors, vol.
16, no. 1, p. 11, 2023.
C. Viboud, K. Sun, R. Gaffey, M. Ajelli, L. Fumanelli, S. Merler, Q. Zhang, G. Chowell, L.
C. Vibou assess skill of West Nile virus neuroinvasive disease prediction," *Parasites & Vectors,* vol.
16, no. 1, p. 11, 2023.
C. Viboud, K. Sun, R. Gaffey, M. Ajelli, L. Fumanelli, S. Merler, Q. Zhang, G. Chowell, L.
- 16, no. 1, p. 11, 2023. [6] C. Viboud, K. Sun, R. Gaffey, M. Ajelli, L. Fumanelli, S. Merler, Q. Zhang, G. Chowell, L.

-
-
- lessons learnt," *Epidemics*, vol. 22, pp. 13-21, 2018.

S. Y. Del Valle, B. H. McMahon, J. Asher, R. Hatchett, J. C. Lega, H. E. Brown, M. E. Lear

Pantazis, D. J. Roberts and S. Moore, "Summary results of the 2014-2015 D essons learnt, Epidemics, vol. 22, pp. 13-21, 2018.
S. Y. Del Valle, B. H. McMahon, J. Asher, R. Hatchett,
Pantazis, D. J. Roberts and S. Moore, "Summary rest
Chikungunya challenge," *BMC infectious diseases,* vo
S. M. Mat Pantazis, D. J. Roberts and S. Moore, "Summary results of the 2014-2015 DARPA

Chikungunya challenge," *BMC* infectious diseases, vol. 18, pp. 1-14, 2018.

[8] S. M. Mathis, A. E. Webber, T. M. León, E. L. Murray, M. Sun, Chikungunya challenge," *BMC infectious diseases,* vol. 18, pp. 1-14, 2018.

S. M. Mathis, A. E. Webber, T. M. León, E. L. Murray, M. Sun, L. A. White, L. C. Brofreen, A. J. Hu and R. Rosenfeld, "evaluation of FluSight inf E. W. Challenge, B. B. W. Chicketter, T. M. León, E. L. Murray, M. Sun, L. A. White, I
Green, A. J. Hu and R. Rosenfeld, "evaluation of FluSight influenza forecas
22 and 2022–23 seasons with a new target laboratory-confirm Green, A. J. Hu and R. Rosenfeld, "evaluation of FluSight influenza forecasting in the 202:

22 and 2022–23 seasons with a new target laboratory-confirmed influenza

hospitalizations," Nature communications, vol. 15, 2024. 22 and 2022–23 seasons with a new target laboratory-confirmed influenza

hospitalizations," *Noture communications, vol.* 15, 2024.

N. G. Reich, C. J. McGowan, T. K. Yamana, A. Tushar, E. L. Ray, D. Osthus, S. Kandula, L. 22 and 2022, Martian S. T. G. B. Martian S. W. A. B. S. 2024.

22 a. N. G. Reich, C. J. McGowan, T. K. Yamana, A. Tushar, E. L. Ray, D. Osthus, S.

Brooks, W. Crawford-Crudell and G. C. Gibson, "Accuracy of real-time multi nosphanzations, Mutare communications, vol. 15, 2024.

N. G. Reich, C. J. McGowan, T. K. Yamana, A. Tushar, E. L.

Brooks, W. Crawford-Crudell and G. C. Gibson, "Accuracy

ensemble forecasts for seasonal influenza in the U
-
-
- Erich, W. Crawford-Crudell and G. C. Gibson, "Accuracy of real-time multi-model

ensemble forecasts for seasonal influenza in the US," *PLoS computational biology, vol.* 15

no. 11, p. e1007486, 2019.

[10] E. Y. Cramer, Y ensemble forecasts for seasonal influenza in the US," *PLoS computational biology,*
no. 11, p. e1007486, 2019.
E. Y. Cramer, Y. Huang, Y. Wang, E. L. Ray, M. Cornell, J. Bracher, A. Brennen, A. J. C
Rivadeneira, A. Gerding ensemble forecasts for seasonal influenza in the US, "PLOS computational biology, vol. 15,
no. 11, p. e1007486, 2019.
E. Y. Cramer, Y. Huang, Y. Wang, E. L. Ray, M. Cornell, J. Bracher, A. Brennen, A. J. C.
Rivadeneira, A. E. Y. Cramer, Y. Huang, Y. W
Rivadeneira, A. Gerding and
Scientific data, vol. 9, no. 1,
E. Y. Cramer, E. L. Ray, V. K.
Gerding, T. Gneiting, K. H. F
probabilistic forecasts of CC
National Academy of Sciend
H. E. Groves, P Rivadeneira, A. Gerding and K. House, "The United States covid-19 forecast hub data

Scientific data, vol. 9, no. 1, p. 462, 2022.

[11] E. Y. Cramer, E. L. Ray, V. K. Lopez, J. Bracher, A. Brennen, A. J. Castro Rivadeneir Scientific data, vol. 9, no. 1, p. 462, 2022.

E. Y. Cramer, E. L. Ray, V. K. Lopez, J. Bracher, A. Brennen, A. J. Castro Rivadeneira, A.

Gerding, T. Gneiting, K. H. House and Y. Huang, "Evaluation of individual and ensem Scientific data, vol. 3, 110. 1, p. 402, 2022.

E. Y. Cramer, E. L. Ray, V. K. Lopez, J. Bract

Gerding, T. Gneiting, K. H. House and Y. H

probabilistic forecasts of COVID-19 morta
 National Academy of Sciences, vol. 11 Gerding, T. Gneiting, K. H. House and Y. Huang, "Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States," *Proceedings of the* National Academy of Sciences, vol. 119, no. 1 probabilistic forecasts of COVID-19 mortality in the United States," *Proceedings of the National Academy of Sciences, vol.* 119, no. 15, p. e2113561119, 2022.
H. E. Groves, P.-P. Piché-Renaud, A. Peci, D. S. Farrar, S. Bu probabilistic forecasts of Covid-19 mortality in the Onteca States, Trocecultury of the Mational Academy of Sciences, vol. 119, no. 15, p. e2113561119, 2022.
H. E. Groves, P.-P. Piché-Renaud, A. Peci, D. S. Farrar, S. Buck National Actuariny of Sciences, vol. 119, no. 19, p. e2113561119, 2022.
H. E. Groves, P.-P. Piché-Renaud, A. Peci, D. S. Farrar, S. Buckrell, C. Ban
Sevenhuysen, A. Campigotto, J. B. Gubbay and S. K. Morris, "The impac
pan Sevenhuysen, A. Campigotto, J. B. Gubbay and S. K. Morris, "The impact of the pandemic on influenza, respiratory syncytial virus, and other seasonal respirat circulation in Canada: A population-based study," The Lancet Reg pandemic on influenza, respiratory syncytial virus, and other seasonal respiratory virus
circulation in Canada: A population-based study," The Lancet Regional Health–Americas,
vol. 1, 2021.
S. S. Lee, C. Viboud and E. Pete
- reculation in Canada: A population-based study," The Lancet Regional Health-America:
vol. 1, 2021.
S. S. Lee, C. Viboud and E. Petersen, "Understanding the rebound of influenza in the po:
COVID-19 pandemic period holds imp circulation in Canada: A population-based study, The Edited Regional Health–Americas,
S. S. Lee, C. Viboud and E. Petersen, "Understanding the rebound of influenza in the post
COVID-19 pandemic period holds important clues
- s. S. Lee, C. V
S. S. Lee, C. V
COVID-19 pa
International
A. J. Elliot, K.
pressures on
health, vol. 3 [14] A. J. Elliot, K. W. Cross and D. M. Fleming, "Acute respiratory infections and winter International Journal of Infectious Diseases, vol. 122, pp. 1002-1004, 2022.

[14] A. J. Elliot, K. W. Cross and D. M. Fleming, "Ac International Journal of Infectious Diseases, vol. 122, pp. 1002-1004, 2022.
A. J. Elliot, K. W. Cross and D. M. Fleming, "Acute respiratory infections and winte
pressures on hospital admissions in England and Wales 1990–2 International Journal of Infectious Diseases, vol. 122, pp. 1002-1004, 2022.
A. J. Elliot, K. W. Cross and D. M. Fleming, "Acute respiratory infections and
pressures on hospital admissions in England and Wales 1990–2005," pressures on hospital admissions in England and Wales 1990–2005," Journal of put
health, vol. 30, no. 1, pp. 91-98, 2008.
18 pressures on hospital admissions in England and Wales 1990–2009, "Journal of public health, vol. 30, no. 1, pp. 91-98, 2008. h ealth, vol. 30, no. 1, pp. 91-98, 2008.

- "Influenza Hospitalisations in England during the 2022/23 Season: do different data

sources drive divergence in modelled waves? A comparison of surveillance and

administrative data," 20 October 2023. [Online]. Available:
-
-
- sources drive divergence in modelled waves? A comparison of surveillance and
administrative data," 20 October 2023. [Online]. Available:
https://www.medrxiv.org/content/10.1101/2023.10.19.23297248v1.
S. Pei and J. Shaman, administrative data," 20 October 2023. [Online]. Available:

https://www.medrxiv.org/content/10.1101/2023.10.19.23297248v1.

S. Pei and J. Shaman, "Aggregating forecasts of multiple respiratory pathogens s

more accurate f
- https://www.medrxiv.org/content/10.1101/2023.10.19.23

S. Pei and J. Shaman, "Aggregating forecasts of multiple res

more accurate forecasting of influenza-like illness," PLoS co

no. 11, p. e1008301, 2020.

Nation Health Formal J. Shaman, "Aggregating forecasts of multiple respiratory paramore accurate forecasting of influenza-like illness," *PLoS computation*
no. 11, p. e1008301, 2020.
Nation Health Service Digital, "Data collection and c more accurate forecasting of influenza-like illness," PLoS computational biology, vol. 16,

no. 11, p. e1008301, 2020.

[17] Nation Health Service Digital, "Data collection and curation," June 2024. [Online].

Available: h more accurate forecasting of initiation method interminess, *TEOS Computational biology,* vol. 10,
no. 11, p. e1008301, 2020.
Available: https://digital.nhs.uk/data-and-information/data-collection-and-curation.
C. Onwuchek Mation Health Service Digita
Available: https://digital.nh
C. Onwuchekwa, L. M. Mor
D. Gessner, M. Siapka and P
infection in adults due to di
meta-analysis," The Journal
E. Dietz, E. Pritchard, K. Pou
D. Vihta and T. Peto, Available: https://digital.nhs.uk/data-and-information/data-collection-and-curation

18] C. Onwuchekwa, L. M. Moreo, S. Menon, B. Machado, D. Curcio, W. Kalina, J. E. At

D. Gessner, M. Siapka and N. Agarwal, "Underascerta C. Onwuchekwa, L. M. Moreo, S. Menon, B. Machado, D. Curcio, W. Kalina, J. E. Atwe
D. Gessner, M. Siapka and N. Agarwal, "Underascertainment of respiratory syncytial vinfection in adults due to diagnostic testing limitatio D. Gessner, M. Siapka and N. Agarwal, "Underascertainment of respiratory syncytial virus
infection in adults due to diagnostic testing limitations: a systematic literature review and
meta-analysis," The Journal of infectio infection in adults due to diagnostic testing limitations: a systematic literature review and
meta-analysis," The Journal of infectious diseases, vol. 228, no. 2, pp. 173-184, 2023.
E. Dietz, E. Pritchard, K. Pouwels, M. E meta-analysis," The Journal of infectious diseases, vol. 228, no. 2, pp. 173-184, 2023.

E. Dietz, E. Pritchard, K. Pouwels, M. Ehsaan, J. Blake, C. Gaughan, E. Haduli, H. Boothe, K.-

D. Vihta and T. Peto, "SARS-CoV-2, in meta-analysis, The Journal of infectious diseases, vol. 228, no. 2, pp. 173-184, 2023.

E. Dietz, E. Pritchard, K. Pouwels, M. Ehsaan, J. Blake, C. Gaughan, E. Haduli, H. Booth

D. Vihta and T. Peto, "SARS-CoV-2, influenza 19) D. Vihta and T. Peto, "SARS-CoV-2, influenza A/B and respiratory syncytial virus positivity

2022/23

2024. The UK: a longitudinal surveillance cohort," *BMC medicine,* vol. 22, no. 1,

21, 143, 2024.

2015. K. Sahu, B
-
- and association with influenza-like illness and self-reported symptoms, over the 2022/23

winter season in the UK: a longitudinal surveillance cohort," *BMC medicine,* vol. 22, no. 1,

p. 143, 2024.

S. K. Sahu, B. Baffour winter season in the UK: a longitudinal surveillance cohort," *BMC medicine*, vol. 22, no. 1, p. 143, 2024.

S. K. Sahu, B. Baffour, P. R. Harper, J. H. Minty and C. Sarran, "A hierarchical Bayesian model for improving sho Winter season include on. a longitudinal surveinance conort, *Bince Intellance, vol. 22, no. 1,*
S. K. Sahu, B. Baffour, P. R. Harper, J. H. Minty and C. Sarran, "A hierarchical Bayesian
model for improving short-term fore S. K. Sahu, B.
S. K. Sahu, B.
model for imp
meteorologic:
Society, vol. 1
N. G. Reich, L.
A. Tushar and
influenza fore
Sciences, vol.
C. Viboud and
National Acac
J. K. Sivillo, J.
f*orecasting,* v model for improving short-term forecasting of hospital demand by including
meteorological information," Journal of the Royal Statistical Society Series A: Statistics
Society, vol. 177, no. 1, pp. 39-61, 2014.
[21] N. G. Re meteorological information," Journal of the Royal Statistical Society Series A:
Society, vol. 177, no. 1, pp. 39-61, 2014.
N. G. Reich, L. C. Brooks, S. J. Fox, S. Kandula, C. J. McGowan, E. Moore, D. Os
A. Tushar and T. K meteorological information, "Journal of the Royal Statistical Society Series A: Statistics in
Society, vol. 177, no. 1, pp. 39-61, 2014.
N. G. Reich, L. C. Brooks, S. J. Fox, S. Kandula, C. J. McGowan, E. Moore, D. Osthus, Society, vol. 177, no. 1, pp. 33-61, 2014.
N. G. Reich, L. C. Brooks, S. J. Fox, S. Kand
A. Tushar and T. K. Yamana, "A collabora
influenza forecasting in the United State:
Sciences, vol. 116, no. 8, pp. 3146-3154,
C. Vibo A. Tushar and T. K. Yamana, "A collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the United States," Proceedings of the National Academy of Sciences, vol. 116, no. 8, pp. 3146-3154, 2019.
 influenza forecasting in the United States," *Proceedings of the National Academy of*
Sciences, vol. 116, no. 8, pp. 3146-3154, 2019.
C. Viboud and A. Vespignani, "The future of influenza forecasts," *Proceedings of the*
N
-
- influenza forecasting in the United States, Troceedings of the National Academy of
Sciences, vol. 116, no. 8, pp. 3146-3154, 2019.
C. Viboud and A. Vespignani, "The future of influenza forecasts," Proceedings of the
Nation Sciences, vol. 116, no. 8, pp. 3140-3134, 2013.
C. Viboud and A. Vespignani, "The future of inf
National Academy of Sciences, vol. 116, no. 8, ₁
J. K. Sivillo, J. E. Ahlquist and Z. Toth, "An enser
forecasting, vol. [22] C. Viboud and A. Vespignani, "The future of influenza forecasts," Proceedings of are

Mational Academy of Sciences, vol. 116, no. 8, pp. 2802-2804, 2019.

[23] J. K. Sivillo, J. E. Ahlquist and Z. Toth, "An ensemble National Academy of Sciences, vol. 116, no. 8, pp. 2802-2804, 2015.
J. K. Sivillo, J. E. Ahlquist and Z. Toth, "An ensemble forecasting prim
forecasting, vol. 12, no. 4, pp. 809-818, 1997. $[23]$ J. K. Sivillo, J. E. Ahlquist and Z. Toth, "An ensemble forecasting primer," Weather and
forecasting, vol. 12, no. 4, pp. 809-818, 1997. forecasting, vol. 12, no. 4, pp. 809-818, 1997.

-
-
-
- "Comparative assessment of methods for short-term forecasts of COVID-19 hospital
admissions in England at the local level," *BMC Medicine,* vol. 20, no. 1, p. 86, 2022.
[25] K. Sherratt, H. Gruson, H. Johnson, R. Niehus, B admissions in England at the local level," *BMC Medicine*, vol. 20, no. 1, p. 86, 2022.

K. Sherratt, H. Gruson, H. Johnson, R. Niehus, B. Prasse, F. Sandmann, J. Deuschel, D.

Wolffram, S. Abbott and A. Ullrich, "Predicti admissions in England at the local revel, "*BMC Medicine, 1001. 20, no. 2, p. 00, 2021.*
K. Sherratt, H. Gruson, H. Johnson, R. Niehus, B. Prasse, F. Sandmann, J. Deuschel, I
Wolffram, S. Abbott and A. Ullrich, "Predictive Wolffram, S. Abbott and A. Ullrich, "Predictive performance of multi-model ensemble
forecasts of COVID-19 across European nations," eLife, vol. 12, p. e81916, 2023.
[26] Y. Yao, A. Vehtari, D. Simpson and A. Gelman, "Using forecasts of COVID-19 across European nations," eLife, vol. 12, p. e81916, 2023.

Y. Yao, A. Vehtari, D. Simpson and A. Gelman, "Using stacking to average Bayesian

predictive distributions (with discussion)," *Bayesian An*
- generalised additive models, "Matric Communications Medicine, vol. 3, no. 1, p. 190, 2023.

S. N. Wood, "Fast stable restricted maximum likelihood and marginal likelihood estimation

B: Statistical Methodology, vol. 73, no
-
- Forecasts of COVID-19 across European nations, EE. (5 , 6 . 11, p. e01316, 1023.

Y. Yao, A. Vehtari, D. Simpson and A. Gelman, "Using stacking to average Bayesia

predictive distributions (with discussion)," *Bayesian Ana* predictive distributions (with discussion)," *Bayesian Analysis,* vol. 13, no. 3, pp. 917
2018.
27] J. Mellor, R. Christie, C. E. Overton, R. S. Paton, R. Leslie, M. Tang, S. Deeny and T. \
²⁷ Forecasting influenza hospi predictive distributions (with discussion), "*bayesian Analysis, vol.* 13, no. 3, pp. 917-1003,
2018.

J. Mellor, R. Christie, C. E. Overton, R. S. Paton, R. Leslie, M. Tang, S. Deeny and T. Ward,

"Forecasting influenza h J. Mell
"Forec
genera
S. N. V
of sem
B: Stat
G. L. S
[Onlin
S. Mea
hospit
medic.
M. O'l
Series,
projec "Torecasting influenza hospital admissions within English sub-regions using hierarchical

generalised additive models," *Nature Communications Medicine,* vol. 3, no. 1, p. 190, 20:

[28] S. N. Wood, "Fast stable restricted generalised additive models," *Nature Communications Medicine, vol.* 3, no. 1, p. 190, 20
S. N. Wood, "Fast stable restricted maximum likelihood and marginal likelihood estimatiof semiparametric generalized linear models," of semiparametric generalized linear models," Journal of the Royal Statistical Society Series

8: Statistical Methodology, vol. 73, no. 1, pp. 3-26, 2011.

[29] G. L. Simpson, "gratia: Graceful ggplot-Based Graphics and Ot of semiparametric generalized incredictions, solution of such any controls, the Royal Statistical Methodology, vol. 73, no. 1, pp. 3-26, 2011.

G. L. Simpson, "gratia: Graceful ggplot-Based Graphics and Other Functions," J B: Statistical Methodology, vol. 73, no. 1, pp. 3-26, 2011.
G. L. Simpson, "gratia: Graceful ggplot-Based Graphics an
[Online]. Available: https://cran.r-project.org/web/packa
S. Meakin and S. Funk, "Quantifying the impact [30] S. Meakin and S. Funk, "Quantifying the impact of hospital catchment area definitions of hospital admissions forecasts: COVID-19 in England, September 2020–April 2021," *BMC* medicine, vol. 22, no. 1, p. 163, 2024.

[E. Meakin and S. Funk, "Quantifying the impact of hospital catchment area defining the impact of hospital catchment area defining the impaction of a comparation of a comparation of the state. COVID-19 in England, September
-
-
- mospital admissions forecasts: COVID-19 in England, September 2020–April 2021," *BMC*

medicine, vol. 22, no. 1, p. 163, 2024.

[31] M. O'Hara-Wild, R. Hyndman and E. Wang, "fable: Forecasting Models for Tidy Time

Series, mospital admissions forecasts: COVID-19 in England, September 2020–April 2021, BMC
medicine, vol. 22, no. 1, p. 163, 2024.
M. O'Hara-Wild, R. Hyndman and E. Wang, "fable: Forecasting Models for Tidy Time
Series," March 202 medicine, vol. 22, no. 1, p. 163, 2024.
M. O'Hara-Wild, R. Hyndman and E. W
Series," March 2024. [Online]. Availab
project.org/web/packages/fable/inde
J. Mellor, C. E. Overton, M. Fyles, L. C
"Understanding the leading ind [31] M. O'Hara-Wild, R. Hyndman and E. Wang, "fable: Forecasting Models for Tidy Time
Series," March 2024. [Online]. Available: https://cran.r-
project.org/web/packages/fable/index.html.
[32] J. Mellor, C. E. Overton, M. F project.org/web/pathages/mater/indentiation

. Mellor, C. E. Overton, M. Fyles, L. Chawner,

"Understanding the leading indicators of hosp

successive waves in the UK," Epidemiology &

N. Bosse, S. Abbott, H. Gruson, J. Br "Understanding the leading indicators of hospital admissions from COVID-19
successive waves in the UK," *Epidemiology & Infection*, vol. 151, p. e172, 202.
[33] N. Bosse, S. Abbott, H. Gruson, J. Bracher and S. Funk, "scor successive waves in the UK," *Epidemiology & Infection*, vol. 151, p. e172, 2023.
N. Bosse, S. Abbott, H. Gruson, J. Bracher and S. Funk, "scoringutils: Utilities for Scor
Assessing Predictions," 29 November 2023. [Online] successive waves in the OK, Epidemiology & injection, vol. 151, p. e172, 2023.
N. Bosse, S. Abbott, H. Gruson, J. Bracher and S. Funk, "scoringutils: Utilities for
Assessing Predictions," 29 November 2023. [Online]. Availa Assessing Predictions," 29 November 2023. [Online]. Available: https://cran.r-
project.org/web/packages/scoringutils/index.html.
[34] J. W. Taylor and K. S. Taylor, "Combining probabilistic forecasts of COVID-19 mortality
- project.org/web/2017
J. W. Taylor and K. S. Taylor, "Combining probabilist
the United States," *European Journal of Operationa*. the United States," *European Journal of Operational Research*, vol. 304, no. 1, pp. 25-41,
20 the United States," European Journal of Operational Research, vol. 304, no. 1, pp. 23-41,

2023.

-
-
-
-
- ----
K. She
C. Gar
collect
R. Holl
Europ
CDC E_l
Acces
NHS E
Octob
pressu
E. Hov
M. Jun
Ortob
Fressu
F. Hov
Fressu
Fressu
Fressu
Fressu
Fressu
Fressu
Fressu
Fressu
Fressu
Fressu
Fressu
Fressu
Fressu
Fressu
Fressu
Fressu C. Garcia, N. Franco and L. Willem, "Characterising information gains and losses when
collecting multiple epidemic model outputs," *Epidemics*, vol. 47, p. 100765, 2024.
[36] R. Hollyman, F. Petropoulos and M. E. Tipping, collecting multiple epidemic model outputs," *Epidemics*, vol. 47, p. 100765, 2024.

R. Hollyman, F. Petropoulos and M. E. Tipping, "Understanding forecast reconciliation,
 European Journal of Operational Research, vol. collecting multiple epidemic model outputs, "Epidemics, vol. 47, p. 100765, 2024.

R. Hollyman, F. Petropoulos and M. E. Tipping, "Understanding forecast reconciliat
 European Journal of Operational Research, vol. 294, n European Journal of Operational Research, vol. 294, no. 1, pp. 149-160, 2021.

137] CDC Epidemic Prediction Initiative, "Flusight Forecast Data," 2022. [Online]. Available:

https://github.com/cdcepi/Flusight-forecast-data European Journal of Operational Research, vol. 294, no. 1, pp. 149-160, 2021.
CDC Epidemic Prediction Initiative, "FluSight Forecast Data," 2022. [Online]. Ahttps://github.com/cdcepi/Flusight-forecast-data/tree/master/data (137) Thus://github.com/cdcepi/Flusight-forecast-data/tree/master/data-experimental.

[Accessed July 2023].

(38) NHS England, "Operational Pressures Escalation Levels (OPEL) Framework 2023/24,"

(2023 Conline]. Available: (Accessed July 2023).

NHS England, "Operational Pressures Escalation Levels (OPEL) Framework 2023/24,

October 2023. [Online]. Available: https://www.england.nhs.uk/publication/operat

pressures-escalation-levels-opel-fra MHS England, "Operat
October 2023. [Online
pressures-escalation-l
E. Howerton, L. Conta
m. Jung, S. L. Loo and
for informing pandem
1, p. 7260, 2023.
S. Kandula, T. Yamana
and statistical methoc
Interface, vol. 15, no. October 2023. [Online]. Available: https://www.england.nhs.uk/publication/operation-ressures-escalation-levels-opel-framework-2023-24/. [Accessed 28 August 2024].

[39] E. Howerton, L. Contamin, L. C. Mullany, M. Qin, N. G r
E. Howerton, L. Contamin, L. C. Mullany, M. Qin, N. G. Reich, S. Bents, R. K. Borcher
m. Jung, S. L. Loo and C. P. Smith, "Evaluation of the US COVID-19 Scenario Modelir
for informing pandemic response under uncertainty, m. Jung, S. L. Loo and C. P. Smith, "Evaluation of the US COVID-19 Scenario Modeling Hub
for informing pandemic response under uncertainty," *Noture Communications*, vol. 14, no
1, p. 7260, 2023.
[40] S. Kandula, T. Yamana
- for informing pandemic response under uncertainty," *Nature Communications,* vol. 14, no
1, p. 7260, 2023.
S. Kandula, T. Yamana, S. Pei, W. Yang, H. Morita and J. Shaman, "Evaluation of mechanist
and statistical methods i for informing pandemic response under uncertainty, "Nature Communications, vol. 14, no.
1, p. 7260, 2023.
S. Kandula, T. Yamana, S. Pei, W. Yang, H. Morita and J. Shaman, "Evaluation of mechanistic
and statistical methods 5. Kandula, T. Yan
and statistical me
Interface, vol. 15, Final statistical methods in forecasting influenza-like illness," Journal of The Royal Society
Interface, vol. 15, no. 144, p. 20180174, 2018.
 and statistical methods in forecasting influenza-like influenza-like influence interface, vol. 15, no. 144, p. 20180174, 2018. $I = \frac{1}{2}$