1	Effects of Statin Therapy in Patients Treated with Drug-Eluting and Drug-
2	Coated Stents for Femoropopliteal Lesions: STAR-FP Study Outcomes
3	Tatsuro Takei, MD ¹ ; Takahiro Tokuda ² , MD; Naoki Yoshioka ³ , MD; Kenji Ogata ⁴ , MD;
4	Akiko Tanaka ⁵ , MD; Shunsuke Kojima ⁶ , MD; Kohei Yamaguchi ⁷ , MD; Takashi
5	Yanagiuchi ⁸ , MD; Tatsuya Nakama ⁶ , MD: On behalf of the LEADers PAD
6	investigators.
7	1. Department of Cardiology, Tenyoukai Central Hospital, Kagoshima, Japan.
8	2. Department of Cardiology, Nagoya Heart Center, Nagoya, Japan
9	3. Department of Cardiology, Ogaki Municipal Hospital, Ogaki, Japan.
10	4. Department of Cardiology, Miyazaki Medical Association Hospital, Miyazaki, Japan
11	5. Department of Cardiology, Sendai Kousei Hospital, Sendai, Japan
12	6. Department of Cardiology, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu,
13	Japan
14	7. Department of Cardiology, Saiseikai Yokohama City Eastern Hospital, Yokohama,
15	Japan
16	8. Department of Cardiology, Rakuwakai Otowa Hospital, Kyoto, Japan
17	
18	Short title: Statin effects on drug-eluting and drug-coated stents
19	

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

20

CORRESPONDENCE TO:

- 21 Tatsuro Takei, MD
- 22 6-7 Izumi-cho, Kagoshima, Japan.
- 23 Postal code 892-0821
- 24 E-mail: <u>bamboowell.takei@gmail.com</u>
- 25 Mobile phone number: +8190-5190-3617, Fax number: +8190-224-2752

26

Total word count: 4017

28 Abstract

29 Background

30 The effects of statins on drug-eluting stents (DESs) and drug-coated stents (DCSs)

- 31 for femoropopliteal (FP) lesions are not well known. Therefore, this multicenter
- 32 retrospective evaluated the impact of statins on DES and DCS patency.

33 Methods

- 34 Between January 2018 and December 2021, 449 patients were treated with DES
- and DCS at eight cardiovascular centers in Japan (LEADers FP registry). These
- 36 lesions were divided into statin-treated and non-statin-treated arms. After propensity
- 37 score matching, the effects of statins on DES and DCS were evaluated. The 2-year
- 38 primary outcome measure was stent patency. The secondary outcomes included
- 39 secondary patency, clinically driven target lesion revascularization (CD-TLR), limb
- 40 salvage, major adverse limb events (MALE, CD-TLR+ major amputation), and a
- 41 composite of overall survival and MALE or all-cause death at 2 years.

42 **Results**

After propensity score matching, the baseline and procedural characteristics did not
differ significantly between the 135 patient pairs in the statin and non-statin groups.
The primary patency at two years was significantly better in the statin group than in
the non-statin group (86.9% vs. 75.1%, p=0.041). Regarding the secondary

47	endpoints, the statin group demonstrated significantly superior secondary patency
48	and freedom from MALE or all-cause mortality (95.5% vs. 87.0%, p=0.023 and
49	73.7% vs. 60.0%, p=0.012, respectively).
50	Conclusions
51	The results of this retrospective multicenter study demonstrated the superior primary
52	patency in the statin group compared with the non-statin group at two years. These
53	findings suggest that statins improve patency in patients undergoing DES and DCS.
54	Keywords: statin, drug-eluting stent, drug-coated stent, primary patency

56 What is known:

- Statins are useful in the development and suppression of atherosclerotic diseases.
- Statins improve patency of bare-metal stents implanted for femoropopliteal (FP)
- 59 lesions.

60 What this study adds:

- Statin use may improve the patency of drug-eluting and drug-coated stents for FP
- 62 lesions.
- 63

64 Background

65	The outcomes of endovascular therapy (EVT) using drug-eluting stents (DESs,
66	ELUVIA, Boston Scientific, MA, USA) and drug-coated stents (DCSs, Zilver PTX,
67	Cook Medical, Bloomington, IN) in femoropopliteal lesions have been reported and
68	are widely applied in real-world practice. ¹⁻³ The drugs applied to these stents
69	improve patency compared with bare nitinol stents. However, restenosis has not
70	been completely resolved. ^{4,5} While statins reportedly improve the patency of stents
71	implanted in femoropopliteal lesions, ⁶⁻¹⁰ previous studies assessed bare nitinol
72	stents, which differ from the current situation in which paclitaxel devices, such as
73	DES and DCS, are used. These studies were also limited by their small sample
74	sizes, single-center analysis, and lack of propensity score matching. In addition to
75	reducing low-density lipoprotein (LDL) cholesterol levels, statins reportedly to
76	improve the prognosis of patients with coronary artery disease and lower extremity
77	arterial disease. ^{11,12} Statins also relieve ischemic symptoms in the lower
78	extremities. ¹³ In the present study, we retrospectively analyzed multicenter real-world
79	data on femoropopliteal lesions in which DES or DCS was implanted to assess the
80	clinical impact of statins. The main objective was to investigate the effect of DES with
81	or without statins on DES and DCS patency rates. Also, as described above, as

- 82 statins have a variety of effects, the secondary endpoints included limb and life
- 83 expectancies to assess the impact of statins.

84

- 85 Materials and Methods
- 86 **Ethical considerations**
- 87 This study was approved by the medical ethics committees of the investigators'
- respective hospitals and was conducted in accordance with the principles of the
- ⁸⁹ Declaration of Helsinki. Because this was a retrospective observational study that did
- ⁹⁰ not require intervention, the requirement for written informed consent was waived.
- 91 Consent for publication in this retrospective study was obtained from the enrolled
- 92 patients before the interventional procedure.

93

94 **Patient population**

The LEADers registry enrolled 2173 patients who underwent EVT for de novo femoropopliteal
lesions between January 2018 and December 2021 at eight Japanese institutions (Sendai Kosei
Hospital, Tokyo Bay Medical Center, Saiseikai Yokohama Eastern Hospital, Nagoya Heart
Center, Ogaki Municipal Hospital, Miyazaki Medical Association Hospital, Rakuwakai Otowa
Hospital, and Tenyokai Central Hospital). The Effects of Statin Therapy in PAtients Treated with
DRug-Eluting and Drug-Coated Stents for FemoroPopliteal Lesions (STAR-FP) study

101	retrospectively analyzed data from 449 patients from the registry who underwent implantation of
102	an ELUVIA stent or Zilver PTX for femoropopliteal lesions. All enrolled patients had intermittent
103	claudication, rest pain, or ischemic foot wounds (Rutherford classification 1–6). This cohort also
104	included patients treated with ELUVIA or Zilver PTX combined with other devices (drug-coated
105	balloons, bare nitinol stents, and stent-grafts). The patients were divided into statin and non-
106	statin groups based on their statin therapy status at the time of EVT. The first lesion was used as
107	the reference lesion for patients whose bilateral limbs were treated. In addition, propensity-
108	matched analyses were performed to adjust for patient and lesion characteristics and
109	background.
110	Independent investigators collected patient-specific, angiographic, procedural, and
111	follow-up data from individual hospital databases. Follow-up after EVT was
112	performed according to the protocols of the individual hospitals and physicians and
113	included ankle-brachial index (ABI), duplex ultrasound, or lower-extremity
114	angiography.
115	
116	Interventional procedures
117	Interventional procedures were performed with a 5-7 Fr sheath inserted into the
118	common femoral artery via a crossover or ipsilateral approach. Immediately before

8

the procedure, 5,000 U of heparin was administered intra-arterially. Guidewires with

120	diameters of 0.014, 0.018, and 0.035 inches were used. The treatment strategy was
121	determined at the discretion of each operator. The need for antithrombotic therapy or
122	statin administration was determined by the respective physicians and operators.
123	Outcome assessments
124	Restenosis was defined as a peak systolic velocity ratio of \ge 2.4 by duplex
125	ultrasound, a decrease in ABI of 0.15 or more, and \ge 50% stenosis or obstruction on
126	lower extremity angiography. Target lesion revascularization (TLR) was defined as
127	the need for reintervention or surgical revascularization.
128	Primary patency was defined as the absence of restenosis or recanalization of the
129	treated lesion. Secondary patency was defined as the absence of re-occlusion.
130	Major adverse limb events (MALEs) included a composite of clinically driven TLR
131	(CD-TLR) and major amputations.
132	
133	Statistical analysis
134	The statistical analyses were performed using JMP Pro version 16 (SAS Institute,
135	Inc., Cary, NC, USA). SAS version 9.4 (SAS Institute, Inc., Cary, NC, USA) was used
136	to perform the interaction analyses. Data on the baseline patient and lesion

137 characteristics are presented as means ± standard deviation for continuous variables

138 and as frequencies (percentages) for categorical variables, unless otherwise noted.

139	Only one dataset was represented by median values, as noted. Statistical
140	significance was set at p<0.05. Differences in baseline characteristic categories
141	between the groups were analyzed using t-tests and chi-square tests for continuous
142	and categorical variables, respectively. When comparing clinical outcomes between
143	the statin and non-statin groups, propensity score matching was used to minimize
144	the effect of group differences on baseline characteristics. The propensity scores
145	were calculated using a logistic regression model. Logistic analysis was performed
146	and matched according to age, sex, symptoms, body mass index, ambulatory status,
147	smoking, hypertension, diabetes, chronic kidney disease, medications, history of
148	coronary artery disease, ankle-brachial pressure ratio, lesion location, reference
149	vessel diameter, lesion length, chronic total occlusion (CTO), peripheral artery
150	calcium scoring system classification, and below-knee outflow. A caliper cutoff of 0.2
151	was used for propensity score matching.
152	Results
153	Baseline characteristics
154	As shown in the study flowchart (Figure 1), 135 pairs (statin and non-statin groups)
155	were evaluated for clinical outcomes after propensity score matching. Baseline

156 characteristics of the patients are shown in Table 1. The overall population (n=449)

157 demonstrated significant differences between the statin (n=264) and non-statin

158	groups (n=185) in terms of age, ambulatory status, diabetes, coronary artery
159	disease, dialysis, symptoms, ABI, and lesion length. Baselines between the two
160	matched groups were analyzed, and all p-values were >0.05. Regarding the
161	standardized differences, the CTO length was only slightly longer in the statin group.
162	Outcome measures
163	Table 2 shows cholesterol levels and procedural characteristics in the matched
164	population. Total and LDL cholesterol levels differed significantly between the two
165	groups (159 ± 37 mg/dl vs. 174 ± 41 mg/dl, p=0.0027, and 84 ± 31 mg/dl vs. 99 ± 31
166	mg/dl, p=0.0002, respectively). High-density lipoprotein (HDL) levels did not differ
167	significantly between the groups. In the statin group, 95.6% and 4.4% of patients
168	were on strong and standard statins, respectively. The use of ELUVIA and Zilver
169	PTX and drug-coated balloons or other scaffold devices in combination therapy did
170	not differ significantly between the two groups. Regarding drug-coated balloon types,
171	the Ranger (Boston Scientific, MA, USA) was more frequently used in the non-statin
172	group (0% vs. 2.2%, p=0.04, respectively), while the IN.PACT (Medtronic, MN, USA)
173	and LUTONIX (BD, NJ, USA) were statistically equivalent (9.6% vs. 14.1%, p=0.25,
174	7.4% vs. 3.0%, p=0.81, respectively). Regarding scaffold devices, the use of bare
175	nitinol stents and VIABAHN (Gore, Flagstaff, AZ) did not differ significantly between
176	the two groups. The nitinol stents used in this study were the S.M.A.R.T. (Cordis

177	Corporation, Miami Lakes, Florida) and Supera (Abbott Vascular, Santa Clara, CA).
178	Residual stenosis, stent size diameter, and stent length also did not differ
179	significantly between the two groups.
180	Figure 2 shows the 2-year primary patency rates for the statin and non-statin
181	groups. Primary patency was significantly higher in the statin group than in the non-
182	statin group (86.9% vs. 75.1%, p=0.041). The mean follow-up period was 460 \pm 265
183	days, and 36 patients in the matched population developed restenosis at the treated
184	site.
185	Figure 3 shows each clinical outcome, including the 2-year secondary patency. The
186	two-year secondary patency rate was significantly higher in the statin group than in
187	the non-statin group (95.5% vs. 87.0%, p=0.023). However, freedom from CD-TLR,
188	limb salvage, freedom from MALE, and overall survival rates did not differ
189	significantly between the two groups (85.5% vs. 84.2%, p=0.37; 97.4% vs. 95.5%,
190	p=0.42; 86.9% vs. 79.9%, p=0.17; and 80.9% vs. 72.3%, p=0.07, respectively). One
191	of the composite outcomes, freedom from MALE or all-cause death, was significantly
192	superior in the statin group than in the non-statin group (73.7% vs. 60.0%, p=0.012).
193	Evaluation of freedom from acute limb ischemia due to stent thrombosis using
194	Kaplan–Meier estimates showed no significant difference between the two groups
195	(98.4% vs. 97.5%, p=0.62).

196 Interactions in each subgroup with respect to primary patency are shown in Figure 4. No interaction was observed in any of the subgroups ($p \ge 0.05$). Regarding sex, 197 male patients tended to benefit more from statin therapy compared with female 198 patients (p=0.06). 199 200 201 Discussion 202 In this study, based on LEADers registry data, the statin group showed significantly 203 204 better primary patency compared with the non-statin group. The Kaplan–Meier curves for primary and secondary patency showed differences between the two 205 206 groups starting around 12 and 6 months, respectively. This finding may be attributed 207 to the effect of statins in preventing atherosclerosis and the progression of in-stent restenosis.^{14,15} In addition to lowering LDL cholesterol levels and inhibiting 208 atherosclerosis progression, statins also have anti-inflammatory and endothelial 209 210 function-improving effects, which may improve the patency rates of DES and DCS.¹⁶ 211 However, statins are not effective in preventing perioperative patency loss in bypass grafts after DES or DCS implantation.¹⁷ Unfortunately, the results of the present 212 study also showed no effect of statins on improving freedom from CD-TLR, limb 213 salvage, or MALE. 214

215	The statin group in the present study demonstrated superior primary and secondary
216	patency rates compared with the non-statin group. The incidence of stent occlusion
217	is relatively high among recurrent ELUVIA-treated lesions. ¹⁸ Moreover, the incidence
218	of cumulative stent occlusion does not plateau and continues to increase in Zilver
219	PTX. ¹⁹ As completely occluded stent restenosis is associated with increased risks of
220	recurrent refractory stent restenosis and surgical revascularization, the clinical utility
221	of statins, which may improve secondary patency, may be significant. ²⁰ The results
222	of a study examining the mechanism of in-stent reocclusion using angioscopy
223	suggested the potential influence of organic stenosis in the stent or at the edge. ²¹
224	Therefore, the better secondary patency in the statin group in the present study may
225	have been due to the inhibition of organic stenosis progression.
226	European, United States, and Japanese guidelines strongly recommend the
227	administration of statins to patients with lower extremity arterial disease (LEAD) to
228	improve life expectancy. ^{22,23} In the present study, the administration of statins to only
229	58.8% of patients may have resulted in an underestimation of LEAD. The log-rank
230	test results of the 2-year overall survival rate in this study showed a better trend in
231	the statin group (p=0.07). The results of the Wilcoxon test showed a significantly
232	better prognosis in the statin group than in the non-statin group (p=0.036).
233	Evaluation of the composite of MALE or all-cause death, which was assessed as the

234	best endovascular versus surgical therapy in patients with chronic limb-threatening
235	ischemia. ²⁴ showed that freedom from MALE or all-cause death was significantly
236	higher in the statin group than in the non-statin group, suggesting the efficacy of
237	statins.
238	The results of the interaction analysis showed no significant differences between
239	the subgroups (p>0.05). Although not statistically significant, a trend toward an
240	interaction between sexes was observed. A meta-analysis on the effects of statins
241	reported no significant differences between men and women, ²⁵ possibly due to the
242	high proportion of men (approximately 70%) and low number of women in this
243	cohort.
244	In addition to the aforementioned reports of statins improving patency in the
245	femoropopliteal region, statins also reportedly improve patency in iliac artery stents
246	and bypass grafts. ²⁶⁻²⁸ Future studies should examine the effects and long-term
247	outcomes of statin use in other cohorts.
248	
249	Limitations
250	This study has several limitations. For instance, while information on statin dosing
251	was available at the time of EVT, compliance with subsequent dosing was unknown.
252	Additionally, the LEADers registry is a retrospective study and it is difficult to assess

253	compliance with statin medications. This study also performed propensity score
254	matching using lesion length and CTO presence or absence; however, the
255	standardized difference was slightly >10% for CTO lesion length (p=0.38). Stuart
256	reported that a standardized difference of <25% is a balanced matching model; thus,
257	a value of 10.8 should not significantly affect the results. ²⁹ As this study used real-
258	world data, it included cases in which the device was used in combination with other
259	devices. Therefore, an interaction analysis was performed, which showed no
260	interaction in the subgroups treated with DCB plus DES or DCS versus DCS or DES
261	alone.
262	
263	Conclusion
264	The results of this retrospective multicenter study demonstrated superior primary
265	and secondary patency in the statin group compared with the non-statin group at 2
266	years. These findings suggest that statins may be effective in improving DES and
267	DCS patency. Freedom from a composite of MALE and all-cause death at 2 years
268	was also higher in the statin group than in the non-statin group.
269	Availability of data and materials

- 270 The datasets used and/or analyzed in this study are available from the
- 271 corresponding author upon reasonable request.

272

273 Non-standard Abbreviations and Acronyms

- EVT: endovascular therapy
- 275 DES: drug-eluting stent
- 276 DCS: drug-coated stent
- 277 FP: femoropopliteal
- 278 CD-TLR: clinically driven-target lesion revascularization
- 279 MALE: major adverse limb event
- 280 CTO: chronic total occlusion
- 281 LEAD: lower extremity arterial disease
- 282

283 Acknowledgments:

We thank Editage for editing and reviewing the manuscript for English language.

285

- 286 Sources of Funding
- 287 This study received no funding to support the research.

- 289 Disclosures
- 290 Conflicts of interest: None

- 291
- 292 Consent for publication
- 293
- ORCID id
- 295 Tatsuro Takei
- 296 <u>https://orcid.org/0000-0001-8733-473X</u>
- 297
- 298

299 References

- 1. lida O, Fujihara M, Kawasaki D, Mori S, Yokoi H, Miyamoto A, Kichikawa K,
- 301 Nakamura M, Ohki T, Diaz-Cartelle J, et al. 24-Month efficacy and safety results
- 302 from Japanese patients in the IMPERIAL randomized study of the Eluvia drug-
- 303 eluting stent and the Zilver PTX drug-coated stent. *Cardiovasc Intervent Radiol*
- 304 2021;44:1367–1374. doi: 10.1007/s00270-021-02901-6.
- 2. Müller-Hülsbeck S, Benko A, Soga Y, Fujihara M, lida O, Babaev A, O'Connor D,
- 306 Zeller T, Dulas DD, et al. Two-Year Efficacy and Safety Results from the
- 307 IMPERIAL randomized study of the Eluvia polymer-coated drug-eluting stent and
- 308 the Zilver PTX polymer-free drug-coated stent. *Cardiovasc Intervent Radiol*.
- 309 2021;44:368–375. doi: 10.1007/s00270-020-02693-1.

310	3.	Shibata T, Iba Y, Shingaki M, Yamashita O, Tsubakimoto Y, Kimura F, Hatada A,
311		Kasashima F, Ueno K, Nakanishi K, et al. One year outcomes of Zilver PTX
312		versus Eluvia for femoropopliteal disease in real-world practice: REALDES Study.
313		J Endovasc Ther. 2023:15266028231179861. doi: 10.1177/15266028231179861.
314	4.	Kurata N, Iida O, Takahara M, Asai M, Okamoto S, Ishihara T, Nanto K, Tsujimura
315		T, Hata Y, Toyoshima T, et al. Comparing predictors influencing restenosis
316		following high-dose drug-coated balloon angioplasty and fluoropolymer-based
317		drug-eluting stenting in femoropopliteal artery lesions. J Endovasc Ther.
318		2023:15266028231209234. doi:10.1177/15266028231209234.
319	5.	Soga Y, Fujihara M, Tomoi Y, Iida O, Ishihara T, Kawasaki D, Ando K. One-year
320		late lumen loss between a polymer-coated paclitaxel-eluting stent (Eluvia) and a
321		polymer-free paclitaxel-coated stent (Zilver PTX) for femoropopliteal disease. J
322		Atheroscler Thromb. 2020:164–171. doi: 10.5551/jat.50369.
323	6.	Kim W, Gandhi RT, Peña CS, Herrera RE, Schernthaner MB, Acuña JM, Becerra
324		VN, Katzen BT. The influence of statin therapy on restenosis in patients who
325		underwent nitinol stent implantation for de novo femoropopliteal artery disease:
326		two-year follow-up at a single center. J Vasc Interv Radiol. 2016:1494–501. doi:
327		10.1016/j.jvir.2016.05.037.

328	7.	de Grijs D, Teixeira P, Katz S. The association of statin therapy with the primary
329		patency of femoral and popliteal artery stents. J Vasc Surg 2018:1472–1479. doi:
330		10.1016/j.jvs.2017.09.022.
331	8.	Siracuse JJ, Gill HL, Cassidy SP, Messina MD, Catz D, Egorova N, Parrack I,
332		McKinsey JF. Endovascular treatment of lesions in the below-knee popliteal
333		artery. J Vasc Surg. 2014:356–361. doi: 10.1016/j.jvs.2014.02.012. Epub 2014
334		Mar 18.
335	9.	Aiello FA, Khan AA, Meltzer AJ, Gallagher KA, McKinsey JF, Schneider DB.
336		Statin therapy is associated with superior clinical outcomes after endovascular
337		treatment of critical limb ischemia. J Vasc Surg. 2012:371–379; discussion 380.
338		doi: 10.1016/j.jvs.2011.08.044.
339	10	. Braun SK, Jorge DW, Bortolanza G, da Rocha JBT. Effects of statin use on
340		primary patency, mortality, and limb loss in patients undergoing lower-limb arterial
341		angioplasty: a systematic review and meta-analysis. Int J Clin Pharm. 2023:17–
342		25. doi: 10.1007/s11096-022-01513-5.
343	11	. Westin GG, Armstrong EJ, Bang H, Yeo KK, Anderson D, Dawson DL, Pevec
344		WC, Amsterdam EA, Laird JR. Association between statin medications and
345		mortality, major adverse cardiovascular event, and amputation-free survival in

- 346 patients with critical limb ischemia. *J Am Coll Cardiol* 2014:682–690. doi:
- 347 10.1016/j.jacc.2013.09.073.
- 12. Orkaby AR, Driver JA, Ho YL, Lu B, Costa L, Honerlaw J, Galloway A, Vassy JL,
- 349 Forman DE, Gaziano JM, et al. Association of statin use with all-cause and
- 350 cardiovascular mortality in US veterans 75 years and older. *JAMA*. 2020:68–78.
- doi: 10.1001/jama.2020.7848. Erratum in: JAMA. 2020;3241468.
- 13. Mohler ER 3rd, Hiatt WR, Creager MA. Cholesterol reduction with atorvastatin
- improves walking distance in patients with peripheral arterial disease. *Circulation*.

354 2003 (12):1481–1486. doi: 10.1161/01.CIR.0000090686.57897.F5.

- 14. Watts GF, Lewis B, Brunt JN, Lewis ES, Coltart DJ, Smith LD, Mann JI, Swan AV.
- 356 Effects on coronary artery disease of lipid-lowering diet, or diet plus
- 357 cholestyramine, in the St Thomas' Atherosclerosis Regression Study (STARS).
- 358 *Lancet.* 1992;339:563–599. doi: 10.1016/0140-6736(92)90863-x.
- 15. Walter DH, Schächinger V, Elsner M, Mach S, Auch-Schwelk W, Zeiher AM.
- 360 Effect of statin therapy on restenosis after coronary stent implantation. Am J
- 361 Cardiol. 2000;85:962–968. doi: 10.1016/s0002-9149(99)00910-8
- 16. Momin A, Melikian N, Wheatcroft SB, Grieve D, John LC, El Gamel A, Marrinan
- 363 MT, Desai JB, Driver C, Sherwood R, et al. The association between saphenous
- vein endothelial function, systemic inflammation, and statin therapy in patients

- ³⁶⁵ undergoing coronary artery bypass surgery. *J Thorac Cardiovasc Surg*.
- 366 2007;134:335–341. doi: 10.1016/j.jtcvs.2006.12.064.
- 17. Scali ST, Beck AW, Nolan BW, Stone DH, De Martino RR, Chang CK, Rzucidlo
- 368 EM, Walsh DB. Completion duplex ultrasound predicts early graft thrombosis
- 369 after crural bypass in patients with critical limb ischemia. *J Vasc Surg*.
- 370 2011;54:1006–1110. doi: 10.1016/j.jvs.2011.04.021.
- 18. lida O, Takahara M, Soga Y, Yamaoka T, Fujihara M, Kawasaki D, Ichihashi S,
- Kozuki A, Nanto S, Sakata Y, et al. 1-Year outcomes of fluoropolymer-based
- drug-eluting stent in femoropopliteal practice: predictors of restenosis and
- aneurysmal degeneration. *JACC Cardiovasc Interv*. 2022;15:630–638. doi:
- 375 10.1016/j.jcin.2022.01.019.
- 19. lida O, Takahara M, Soga Y, Nakano M, Yamauchi Y, Zen K, Kawasaki D, Nanto
- 377 S, Yokoi H, Uematsu M, et al. 1-Year results of the ZEPHYR Registry (Zilver PTX
- for the femoral artery and proximal popliteal artery): Predictors of Restenosis.
- 379 *JACC Cardiovasc Interv.* 2015;8:1105–1112.
- 380 20. Tosaka A, Soga Y, Iida O, Ishihara T, Hirano K, Suzuki K, Yokoi H, Nanto S,
- 381 Nobuyoshi MI. Classification and clinical impact of restenosis after
- femoropopliteal stenting. *J Am Coll Cardiol*. 2012 3;59:16–23. doi:
- 383 10.1016/j.jacc.2011.09.036.

21. 1511111a1a 1, 110a O, Okamolo S, 1 ujila ivi, iviasuua ivi, ivalilo K, shiilaki 1, K
--

- 385 Tsujimura T, Okuno S, et al. Potential mechanisms of in-stent occlusion in the
- 386 femoropopliteal artery: an angioscopic assessment. *Cardiovasc Interv Ther.*
- 387 2017;32:313–317. doi: 10.1007/s12928-016-0411-3.
- 388 22. Aboyans V, Ricco JB, Bartelink MEL, Björck M, Brodmann M, Cohnert T, Collet
- JP, Czerny M, De Carlo M, Debus S, et al. 2017 ESC Guidelines on the
- 390 Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the
- 391 European Society for Vascular Surgery (ESVS): Document covering
- 392 atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal,
- ³⁹³ upper and lower extremity arteries Endorsed by: the European Stroke
- 394 Organization (ESO), The Task Force for the Diagnosis and Treatment of
- 395 Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of
- the European Society for Vascular Surgery (ESVS). *Eur Heart J.* 201839:763–
- 397 816. doi: 10.1093/eurheartj/ehx095.
- 398 23. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman
- 399 DE, Fleisher LA, Fowkes FG, Hamburg NM, Kinlay S, et al. 2016 AHA/ACC
- 400 Guideline on the Management of Patients With Lower Extremity Peripheral Artery
- 401 Disease: Executive Summary: A Report of the American College of
- 402 Cardiology/American Heart Association Task Force on Clinical Practice

- 403 Guidelines. *J Am Coll Cardiol*. 2017;69:1465–1508. doi:
- 404 10.1016/j.jacc.2016.11.008. Epub 2016 Nov 13. Erratum in: J Am Coll Cardiol.
- 405 2017;69:1520. doi: 10.1016/j.jacc.2017.02.003.
- 406 24. Farber A, Menard MT, Conte MS, Kaufman JA, Powell RJ, Choudhry NK, Hamza
- 407 TH, Assmann SF, Creager MA, Cziraky MJ, et al. Surgery or endovascular
- 408 therapy for chronic limb-threatening ischemia. N Engl J Med. 2022;387:2305–
- 409 2316. doi: 10.1056/NEJMoa2207899. Epub 2022 Nov 7.
- 410 25. Kostis WJ, Cheng JQ, Dobrzynski JM, Cabrera J, Kostis JB. Meta-analysis of
- statin effects in women versus men. *J Am Coll Cardiol*. 2012;59:572–582. doi:
- 412 10.1016/j.jacc.2011.09.067. Erratum in: J Am Coll Cardiol. 2012 Apr
- 413 17;59(16):1491.
- 414 26. Haraguchi T, Masanaga T, Fujita T, Otake R, Hachinohe D, Kaneko U, Kashima
- 415 Y, Sato K. Comparative 2-year outcomes of the Misago stent versus other self-
- 416 expandable nitinol stents for the endovascular treatment of aortoiliac disease. J
- 417 *Cardiovasc Surg* (Torino). 2023;64:422–429. doi: 10.23736/S0021-
- 418 **9509.23.12500-6**.
- 419 27. Henke PK, Blackburn S, Proctor MC, Stevens J, Mukherjee D, Rajagopalin S,
- 420 Upchurch GR Jr, Stanley JC, Eagle KA. Patients undergoing infrainguinal bypass
- 421 to treat atherosclerotic vascular disease are underprescribed cardioprotective

- 422 medications: effect on graft patency, limb salvage, and mortality. *J Vasc Surg*.
- 423 200439:357–65. doi: 10.1016/j.jvs.2003.08.030.
- 424 28. Klingelhoefer E, Bergert H, Kersting S, Ludwig S, Weiss N, Schönleben F,
- 425 Grützmann R, Gäbel G. Predictive factors for better bypass patency and limb
- 426 salvage after prosthetic above-knee bypass reconstruction. J Vasc Surg. 2016
- 427 Aug;64(2):380-388.e1. doi: 10.1016/j.jvs.2016.02.059.
- 428 29. Stuart EA. Matching methods for causal inference: A review and a look forward.
- 429 *Stat Sci.* 2010;25:1–21. doi: 10.1214/09-STS313.

430

431 **Table and Figure Legends**

- 432 Table 1. Baseline characteristics before and after matching
- 433 Values are expressed as means ± standard deviations or numbers (percentages).
- 434 CKD, chronic kidney disease; PACSS, peripheral artery calcium scoring

435

- 436 Table 2. Cholesterol levels and procedural characteristics after matching
- 437 Values are expressed as means ± standard deviations or numbers (percentages).
- 438 LDL, low-density lipoprotein; HDL, high-density lipoprotein; DCB, drug-coated

439 balloon.

- 441 **Figure 1**. Study flowchart
- 442 DES, drug-eluting stent; DCS, drug-coated stent; FP, femoropopliteal; CD-TLR,
- 443 clinically driven target lesion revascularization; MALE, major adverse limb event
- 444 **Figure 2.** Primary patency in the matched population
- 445 **Figure 3.** Secondary outcome
- 446 **Figure 4.** Interaction analysis for each subgroup with respect to primary patency
- 447 CLTI, chromic limb-threatening ischemia; ABI, ankle-brachial index; CTO, chronic
- total occlusion; PACSS, peripheral artery calcium scoring system; DES, drug-eluting
- stent; DCS, drug-coated stent; DCB, drug-coated balloon.

group

risk

Hazard ratio for restenosis

P for interaction

Table 1. Baseline characteristics before and after matching

	Overall popula	ation (before n	natching)	Matched population			
	Statin	Non-statin	P value	Statin	Non-statin	P value	Standardized
	(n=264)	(n=185)		(n=135)	(n=135)		difference (%)
Male	189 (71.6)	125 (67,6)	0.36	94 (69.6)	91(67.4)	0.69	4.8
Age, y	73.9 ± 8.4	76.3 ± 10.6	0.0055	75.1± 7.7	75.5 ± 11.0	0.70	5.3
Body mass index <18 (kg/m ²)	31 (11.7)	27 (14.6)	0.38	18 (13.3)	21 (15.6)	0.60	6.3
Non-ambulatory	39 (14.8)	50 (27.0)	0.0015	22 (16.3)	26 (19.3)	0.52	7.7
Current smoker	72 (27.3)	49 (26.5)	0.85	38 (28.2)	37 (27.4)	0.90	2.2
Diabetes mellitus	175 (66.3)	105 (56.8)	0.04	78 (57.8)	80 (59.3)	0.80	3.0
Hypertension	233 (88.3)	152 (82.2)	0.07	113 (83.7)	116 (85.9)	0.61	6.2
History of coronary artery disease	137 (51.9)	60 (32.4)	<0.0001	48 (35.6)	54 (40.0)	0.45	9.2
CKD (eGFR <60 ml/min/1.73m)	186 (70.5)	138 (74.6)	0.33	95 (70.4)	100 (74.1)	0.50	8.2
CKD without dialysis	114 (43.2)	68 (36.8)	0.17	46 (34.1)	49 (36.3)	0.80	3.0
CKD with dialysis	72 (27.3)	71 (38.4)	0.013	49 (36.3)	51 (37.8)	0.7	4.7
Antiplatelet drug use	260 (98.5)	181 (97.8)	0.61	131 (97.0)	132 (97.8)	0.7	4.7
Cilostazol use	28 (10.6)	24 (13.0)	0.44	19 (14.1)	15 (11.1)	0.46	8.9
Direct oral anticoagulant use	31 (11.7)	26 (14.1)	0.47	17 (12.6)	16 (11.9)	0.85	2.2
Chronic limb-threatening ischemia	93 (35.2)	102 (55.1)	<0.0001	60 (44.4)	61 (45.2)	0.90	1.5
Intermittent claudication	171 (64.8)	83 (44.9)	<0.0001	75 (55.6)	74 (54.8)	0.90	1.5
Ankle-brachial index	0.57 ± 0.26	0.46±0.28	<0.0001	0.52 ± 0.29	0.50 ± 0.26	0.54	7.5
Missing data	15 (5.7)	15 (8.1)	0.31	0 (0)	0 (0)	1.0	0.0
Lesion length (mm)	204 ± 101	229 ± 100	0.0092	215 ± 99	223 ± 95	0.51	7.9
Chronic total occlusion	151 (57.2)	115 (62.2)	0.29	77 (57.0)	82 (60.1)	0.54	7.5
Length of chronic total occlusion (mm)	122 ± 104	127 ± 112	0.59	132 ± 106	119 ± 108	0.38	10.8
Involving popliteal lesion	84 (31.8)	69 (37.3)	0.23	47 (34.8)	48 (35.6)	0.90	1.6
PACSS grade 0/1/2	161 (61.0)	113 (61.1)	0.98	84 (62.2)	82 (60.7)	0.80	3.0
PACCS grade 3/4	103 (39.0)	72 (38.9)	0.98	51 (37.8)	53 (39.3)	0.80	3.0
Proximal reference diameter (mm)	6.2 ± 0.9	6.3 ± 0.8	0.40	6.2 ± 1.0	6.2 ± 0.8	0.78	6.5
Distal reference diameter (mm)	5.8 ± 0.8	5.6 ± 0.9	0.10	5.7 ± 0.7	5.7 ± 0.8	0.67	5.1
Intravascular ultrasound use	217 (87.5)	162 (89.0)	0.63	115 (88.5)	118 (88.7)	0.95	1.0
No runoff	19 (7.2)	13 (7.1)	0.95	9 (6.7)	10 (7.4)	0.81	2.9
1-2 runoffs	200 (75.8)	144 (77.8)	0.61	106 (78.5)	103 (76.3)	0.66	5.3
3 runoffs	45 (17.0)	28 (15.1)	0.59	20 (14.8)	22 (16.3)	0.7370	4.1

Values are expressed as the means ± standard deviations or numbers (percentages). CKD, chronic kidney disease; PACSS, peripheral artery calcium scoring system.

Table 2. cholesterol level and procedural characteristics after matching

	Statin	Non-statin	P value
	(n=135)	(n=135)	
Total cholesterol (mg/dl)	159 ± 37	174 ± 41	0.0027
Missing data	3 (2.2)	6 (4.5)	0.30
LDL cholesterol (mg/dl)	84 ± 31	99 ± 31	0.0002
Missing data	2 (1.5)	5 (3.7)	0.20
HDL cholesterol (mg/dl)	48 ± 15	49 ± 19	0.77
Missing data	2 (1.5)	6 (4.5)	0.14
Strong statin	129 (95.6)	-	-
Standard statin	6 (4.4)	-	-
Zilver PTX stent	14 (10.4)	10 (7.4)	0.39
ELUVIA stent	121 (89.6)	126 (93.3)	0.27
Combination with DCB	23 (17.0)	31 (23.0)	0.22
Use of IN.PACT	13 (9.6)	19 (14.1)	0.25
Use of Ranger	0 (0)	3 (2.2)	0.04
Use of Lutonix	10 (7.4)	4 (3.0)	0.81
Combination with other scaffold device	7 (5.2)	4 (3.0)	0.35
Use of Bare nitinol stent (Supera or S.M.A.R.T.)	5 (3.7)	2 (1.5)	0.24
Use of VIABAHN	2 (1.5)	2 (1.5)	1.0
Residual stenosis after stent implantation	0 (0, 50)	0 (0, 40)	0.74
Stent size (mm)	6.4 ± 0.5	6.4 ± 0.5	0.91
Stent length (mm)	219 ± 102	210 ± 102	0.49

Values are expressed as the means ± standard deviations or numbers (percentages). The residual stenosis after stent implantation was expressed as median (minimum, maximum). LDL, low density lipoprotein; HDL, high density lipoprotein, DCB, drug coating balloon.