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Background: Post-stroke cognitive impairment (PSCI) is highly prevalent across multiple 
cognitive domains. Individualised PSCI prognosis has mainly been researched using global 
cognitive outcomes. Here, we develop and externally validate clinical prediction models for 
overall and domain-specific PSCI, including language, memory, attention, executive 
function, numeracy, and praxis. 

 

Methods: N=430 stroke survivors completed the Oxford Cognitive Screen (OCS) in acute 
care and at 6-month follow-up (binarized outcome; impaired vs unimpaired). Logistic 
regression models were fitted comprising both mandatory clinically-relevant (age, sex, stroke 
severity, education, stroke hemisphere, acute PSCI) and data-driven (acute mood difficulties, 
length of stay in acute care, multimorbidity) predictors using backward elimination (p < 0.10) 
on multiply imputed data. Internal validation used bootstrapping to obtain optimism-adjusted 
performance estimates. External validation used the optimism-adjusted C-Slope as a uniform 
shrinkage factor.   

 

Results: Compared to the overall PSCI model (C-Statistic=0.76 [95% CI=0.71–0.80]), 
comparable or improved optimism-adjusted performance was observed in models of language 
(C-Statistic=0.77 [95% CI=0.72–0.81]) memory (C-Statistic=0.72 [95% CI=0.65–0.75]), and 
attention (C-Statistic=0.74 [0.69–0.78]). Numeracy (C-Statistic=0.69 [95% CI=0.63–0.74]), 
executive function (C-Statistic=0.71 [95% CI=0.65–0.76]), and praxis (C-Statistic=0.60 [95% 
CI=0.53–0.65]) models showed weaker performance. In external validation, the overall PSCI 
model was comparable to development data (C-Statistic=0.74 [95% CI=0.67–0.79]). 

 

Conclusions: Domain-specific prediction models have the potential to offer more meaningful 
PSCI prognoses compared to overall PSCI models. External performance of overall PSCI 
models show promise in different stroke severity cohorts. Future recalibration of memory, 
numeracy, executive function, and praxis models would be beneficial.  

 

Keywords: stroke; cognitive dysfunction, cognitive impairment, prediction modelling, risk 
prediction 
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Introduction 

Stroke is the leading cause of long-term physical and cognitive disability worldwide1. One-

year post-stroke cognitive impairment (PSCI) prevalence estimates range from 40%2 to 98%3, 

with rates of 45%4 to 80%5 in chronic stroke. PSCI negatively impacts patients6, 

caregivers/families7, and has considerable economic costs8.  

 Clinical prediction models have been developed to improve PSCI prognostication, 

chiefly post-stroke cognitive decline and dementia9,10. However, PSCI does not necessarily 

cause cognitive decline or dementia. Research demonstrates that whilst some patients exhibit 

decline, others have a stable, chronic cognitive impairment or even demonstrate continued 

improvement11. New PSCI definitions acknowledge the complex interplay of declining brain 

health, focal brain injury and cognitive recovery, with outcomes including decline, stability, 

and improvement12. PSCI is highly prevalent across multiple cognitive domains of language, 

memory, attention, numeracy, executive function, and praxis13. These impairments have 

previously been studied in isolation, despite research demonstrating differing recovery rates 

across domains (e.g., hemispatial neglect14). 

Existing prediction models of post-stroke dementia15–17 perform poorly in PSCI18,19, 

possibly because specific cognitive domains have different relationships to functional 

outcomes20. Newer models have attempted to improve PSCI prediction, but remain focused 

on traditional clinical and demographic predictors (e.g., age, stroke severity). A recent meta-

analysis (N=160,783) of PSCI predictors reported that, by far, the strongest predictor of 

chronic PSCI was acute cognitive functioning21, demonstrating the importance of baseline 

cognitive performance in developing accurate prediction models22. However, existing PSCI 

prediction models do not routinely include acute cognition as a predictor. With early PSCI 

assessment now recommended by national and international guidelines23–25 acute cognitive 

data should be routinely available and used in PSCI prognostication. 
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Existing PSCI prediction models often assess acute and long-term cognition via 

dementia screening tools (e.g., Mini Mental State Examination). These tools are not suitable 

for left hemisphere stroke due to overreliance on verbal abilities26. Utilizing a stroke-specific 

cognitive screen for PSCI clinical prediction models would avoid assessment confounds and 

is more strongly associated with 6-month cognitive recovery13,27. 

 

Study Aims  

To develop and externally validate clinical prediction models of 6-month PSCI outcomes 

both in overall cognition and across language, memory, attention, numeracy, praxis, and 

executive function domains.  

 

Methods 

The study is a secondary analysis of data collected from the Oxford Cognitive Screening 

Programme. All participants provided informed consent to take part (REC Reference: 

18/SC/0550). 

 

Participants 

Participants comprised a single, consecutively recruited cohort from the John Radcliffe 

Hospital acute stroke ward between March 2012 (first consented participant) to March 2020 

(final follow-up participant). Programme inclusion criteria were 1) stroke diagnosis (first ever 

or recurrent); 2) ≥18 years; 3) ability to remain alert for ≥20 minutes, and 4) ability to provide 

informed consent. Participants completed a brief stroke-specific cognitive assessment acutely 

(N=866) and at 6-months post-stroke (N=430). Stroke severity (National Institute of Health 

Stroke Severity; NIHSS), acute function (Modified Rankin Scale; mRS) and other stroke-

related details were obtained from electronic health records. 
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Study Outcome Measure 

Domain-specific PSCI was assessed using the Oxford Cognitive Screen (OCS28).  

The OCS comprises 12 subtasks forming 6 cognitive domains: Language (picture 

naming, semantics, sentence reading), Memory (orientation, verbal recall, episodic 

recognition), Spatial attention (broken hearts cancellation task), Numeracy (number writing, 

calculation), Praxis (gesture imitation), and Executive Function (mixed trails). Subtask scores 

are binarized as impaired (1) or unimpaired (0) relative to cut-off scores from a normative 

sample. A domain impairment was defined as the presence of any impairment in any subtask 

within that domain. 

 Models developed included overall PSCI severity (total proportion of OCS subtasks 

impaired at 6-months post-stroke; continuous outcome model), and binarized PSCI presence 

in any domain (logistic outcome model). Binary domain-specific impairment scores were 

used in Language, Memory, Spatial Attention, Numeracy, Praxis, and Executive Function 

prediction models. 

 

Analysis  

Analyses were performed in R Version 4.4.029. Baseline descriptive statistics were first 

summarised. R packages used included rms30, psfmi31, mice32, and pmvalsampsize33. Data is 

freely available at https://www.dementiasplatform.uk/ and analysis code at 

https://osf.io/3pc5k/ 

 

Predictor Selection 
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For all models, we selected predictors likely to be available in electronic health 

records upon deployment. This included clinically relevant predictors (age at stroke, sex, 

NIHSS scores, education years, first vs recurrent stroke, type of stroke [ischaemic vs 

haemorrhagic], stroke hemisphere, acute mRS score, and acute cognitive impairment21). We 

additionally included “data-driven predictors” that are are available in electronic health 

records (length of stay in acute care, independence prior to admission, presence of mood 

difficulties during acute care, and Charlson multimorbidity index). Each model therefore had 

13 potential predictors forming an “initial model.” Following predictor selection, 

performance was estimated with clinically relevant predictors and only significant data-

driven predictors retained, labelled throughout the manuscript as the “final model.” Predictor 

selection per model was repeated using bootstrapping across 1000 iterations. 

 

Sample Size Justification 

Sample size sufficiency was evaluated based on the events fraction, total sample size, number 

of predictor parameters, and a target shrinkage factor of >0.90 to minimise overfitting34,35. 

Event fraction rates and assumed apparent Nagelkerke’s R2 performance (0.30) were based on 

previous Oxford Cognitive Screening programme analyses13. For the overall PSCI model (N 

Events=295 of 430), the sample size required was 393 participants. Estimates were larger for 

the Language (1000 participants; N Events=138 of 428), Memory (1016 participants; N 

Events=137 of 430), Attention (638 participants; N Events=187 of 416), Praxis (2912 

participants; N Events=79 of 403), Number (2524 participants; N Events=85 of 420), and 

Executive Function (1724 participants; N Events=98 of 400) models. Given all models are 

intended to be deployed using the OCS, the same predictor selection and development 

process was used across all domains.  
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Missing Data Management 

 Those with complete vs incomplete data at 6-months post-stroke were compared on 

predictor variables. To increase statistical power and reduce bias, multiple imputation was 

conducted across 20 imputed datasets (due to 28.8% and 42.3% missingness in acute NIHSS 

and mRS scores, respectively) with 50 iterations. Data were assumed missing at random 

given that variables with the highest missingness rates (NIHSS and mRS) were historically 

unavailable in electronic health records in earlier recruitment periods. Only predictor 

variables were imputed36. Upon model deployment, missingness is likely to occur (e.g., 

missing stroke severity information) and therefore imputation would be necessary36. 

Sensitivity analyses were conducted investigating the influence of missing information. A 

detailed account of participant attrition in this cohort is elsewhere13.  

 

Model Development and Internal Validation 

Across all models, clinically relevant predictors were retained irrespective of 

statistical significance. Backward stepwise elimination was used to remove only non-

significant (p>0.10) data-driven predictors. This approach was taken given criticisms around 

removing clinically relevant (though statistically insignificant) predictors37. Models 

developed across 20 imputed datasets were compared to complete case data. 

The same model development approach was used for each OCS domain, resulting in 8 

prediction models (2 overall PSCI models, 6 domain-specific).  

Apparent final model performance (i.e., non-significant data-driven predictors 

removed) was evaluated using discrimination (model’s ability to correctly identify 
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individuals with and without 6-month PSCI; estimated via the Area Under the Curve [AUC; 

binary outcome models only], C-Statistic), calibration measures (calibration-in-the-large 

[CITL], calibration slope [C-Slope], calibration plots, Brier scores, observed- expected ratio) 

and goodness-of-fit measures (adjusted R2, continuous PSCI model; Nagelkerke’s R2, binary 

PSCI models). Pooled (across imputed datasets) b-values, odds ratios (ORs), and 

performance statistics are reported per model.  

Optimism-adjusted performance estimates were obtained via bootstrapping each 

model on multiply imputed data across 1000 iterations. The model-specific optimism-

adjusted C-Slope was used as a uniform shrinkage factor and was multiplied with model 

regression coefficients to correct for potential overfitting38,39. Model intercepts were re-

estimated using the shrunken regression coefficients to obtain an accurate CITL. 

Risk groups were created using 10th decile groups on prediction model estimates for 

visualisation purposes via calibration plots.  

 

External Validation 

 The OCS-Care dataset11 was used for external validation. In parallel to OCS-

Recovery data, the OCS-Care dataset (N=264, M age = 68.9) assessed acute PSCI using the 

OCS and 6-months later, comprising a mild severity cohort (Mean NIHSS=2.8). Model 

predictors were collected from electronic health records, except acute mRS scores which 

were not available in the OCS-Care dataset. Many OCS-Care participants had at least one 

cognitive impairment at 6-months (N events=147; 55.6%), versus 70.8% acutely (N 

events=187). When estimating minimum sample size requirements40, this dataset was 

sufficient to estimate a C-Statistic of 0.80 (CI width=0.20), though precise C-Slope estimates 

require a much larger dataset. 
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Shrunken model coefficients obtained through internal validation were applied to the 

OCS-Care data to estimate performance. Performance measures described above (C-Slope, 

CITL, C-Statistic, R2 and Nagelkerke’s R2) were estimated. Overall binary PSCI model 

performance was further evaluated within subgroups by age range, sex, and acute PSCI 

severity. 

 

Results 

Demographics are in Table 1. At 6-months, all participants provided outcome data, though 

there was variation across PSCI domains (Language N=428; Memory N=430; Attention 

N=416; Praxis N=403; Numeracy N=420; Executive Function N=400).  

 Participants with missing 6-month PSCI data were more likely to have higher acute 

PSCI (p<0.0001), be older in age (p=0.02), and have acute language (p<0.01), memory 

(p<0.001), or numeracy impairments (p<0.001). NIHSS and mrS missingness was not related 

to demographic factors (ps>0.15; see Supplemental Materials).  

 

[Table 1] 

Overall PSCI Models 

Pooled shrunken coefficients of the final overall continuous and binary PSCI models are in 

Table 2. Shrunken domain-specific coefficients are in Tables S3–S8.  

[Table 2] 

In the multivariable continuous model of proportion of 6-months OCS tasks impaired, the 

strongest clinically relevant predictors included higher age (pooled B=0.001 [95% CI=0.001–
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0.003]) and a greater proportion of acute OCS tasks impaired (pooled B=0.31 [95% CI=0.26–

0.37]). In bootstrapped and complete case data, the only data-driven predictor retained was 

requiring carer support prior to admission (pooled B=0.09 [95% CI=0.04–0.13]) and 

improved model fit in complete case data (F=3.77, p=0.02). The optimism-adjusted 

performance of the continuous overall PSCI model was good to excellent (C-Slope=0.95, 

CITL=-0.04; MSE=0.02; Adj R2=0.32).  

In the multivariable binary model, higher age (pooled OR=0.93 [95% CI=0.92–0.93]), 

bilateral hemisphere lesions (pooled OR=0.75 [95% CI=0.64–0.88]), fewer years of 

education (pooled OR=0.91 [95% CI=0.89–0.92]), and a greater proportion of acute OCS 

tasks impaired (pooled OR=1.62 [95% CI=1.35–1.95]) were associated with an increased risk 

of 6-month PSCI. No data-driven predictors were retained for the binary PSCI model. The 

final optimism-adjusted performance showed good performance (C-Statistic=0.76 [95% 

CI=0.71–0.80]; C-Slope=0.92 [95% CI=0.74–1.09]; CITL= -1.84 [95% CI= -2.08– -1.62]; 

Brier Score=0.12 [95% CI=0.10–0.14]; Nagelkerke’s R2=0.21).  

In sensitivity analyses using complete case data, there were no notable differences in 

predictor selection for either the continuous or binary overall PSCI models. 

 

[Figure 1] 

 

Language Model 

In the final multivariable language model, higher age (pooled OR=1.00 [95% CI=0.99–

1.01]), years of education (pooled OR=0.99 [95% CI=0.98–1.00]), left hemisphere stroke 

(pooled OR=0.90 [95% CI=0.83–0.99]) and acute language impairments (pooled OR = 1.38 
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[95% CI=1.28–1.49]) were most strongly associated with 6-month language impairment. Of 

the data-driven predictors, only requiring carer support prior to admission was retained 

(pooled OR=1.20 [95% CI=1.04–1.39]).  

 The final optimism-adjusted language model showed good performance (C-

Statistic=0.77 [95% CI=0.72–0.81]; C-Slope=0.90 [95% CI=0.74–1.05]; CITL= -0.99 [95% 

CI= -1.19– -0.79]; Brier Score=0.10 [95% CI=0.08–0.12]; Nagelkerke’s R2=0.25), with no 

notable predictor selection differences in complete case data. 

 

Memory Model 

In the final multivariable memory model, acute memory impairments (pooled OR=1.30 [95% 

CI=1.19–1.40]) predicted likelihood of 6-month memory impairment (p<0.10). Of the data-

driven predictors, only requiring carer support prior to admission was retained OR=1.36 

[95% CI=1.18–1.57]).  

 The final optimism-adjusted memory model showed acceptable to good performance 

(C-Statistic=0.71 [95% CI=0.65–0.75]; C-Slope=0.88 [95% CI=0.70–1.06]; CITL= -0.92 

[95% CI= -1.13– -0.72]; Brier Score =0.09 [95% CI=0.07–0.11]; Nagelkerke’s R2=0.16), 

with no differences in predictor selection in complete case data.  

 

Attention Model 

For the final multivariable attention model, higher age (pooled OR=1.01 [95% CI=1.00–

1.01]), lower number of years of education (pooled OR=0.99 [95% CI=0.98–0.99]), right 

hemisphere lesions (pooled OR=1.13 [95% CI=1.03–1.23]), recurrent stroke (pooled 

OR=1.08 [95% CI=0.99–1.18]) and acute attention impairments (pooled OR=1.20 [95% 
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CI=1.11–1.30]) had the strongest associations with likelihood of 6-month attention 

impairment, with only greater CCI scores retained from the data-driven predictors (pooled 

OR=1.03 [95% CI=0.99–1.07]).  

 The final optimism-adjusted attention model showed acceptable to good performance 

(C-Statistic=0.74 [95% CI=0.69–0.78]; C-Slope=0.88 [95% CI=0.70–1.06]; CITL= -1.28 

[95% CI= -1.48– -1.07]; Brier Score=0.10 [95% CI=0.08–0.11]; Nagelkerke’s R2=0.20), with 

no predictor selection differences in complete cases.  

 

Numeracy Model 

In the final multivariable numeracy model, non-haemorrhagic stroke (pooled OR=0.92 [95% 

CI=0.83–1.02]) and acute numeracy impairments (pooled OR=1.24 [95% CI=1.14–1.34]) 

demonstrated the strongest predictive value toward likelihood of 6-month numeracy 

impairments. No data-driven predictors were retained (ps>0.10).  

 The final optimism-adjusted numeracy model showed acceptable performance (C-

Statistic=0.69 [95% CI=0.63–0.74]; C-Slope=0.83 [95% CI=0.58–1.08]; CITL= -1.37 [95% 

CI= -1.61– -1.13]; Brier Score=0.07 [95% CI=0.06–0.09]; Nagelkerke’s R2=0.10), with no 

differences in predictor selection in complete cases.  

 

Executive Function Model 

In the final multivariable executive function model, female sex (pooled OR=1.11 [95% 

CI=1.02–1.21]), non-haemorrhagic stroke (pooled OR=0.89 [95% CI=0.80–1.00]), and acute 

executive function impairments (pooled OR=1.19 [95% CI=1.09–1.31]) demonstrated the 
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strongest associations with 6-month executive function impairments. Of the data-driven 

predictors, only greater CCI scores were retained (pooled OR=1.03 [95% CI=0.99–1.07]).  

 The final optimism-adjusted executive function model showed acceptable 

performance (C-Statistic=0.71 [95% CI=0.65–0.76]; C-Slope=0.81 [95% CI=0.57–1.05]; 

CITL= -1.55 [95% CI= -1.78– -1.32]; Brier Score=0.09 [95% CI=0.07–0.11]; Nagelkerke’s 

R2=0.13), with no differences in predictor selection in complete case data. 

 

Praxis Model 

In the final multivariable praxis model, greater age at time of stroke (pooled OR=1.00 [95% 

CI=1.00–1.01]), male sex (pooled OR=0.92 [95% CI=0.85–1.00]), bilateral hemisphere 

lesions (pooled OR=0.84 [95% CI=0.72–0.98]), and acute praxis impairments (pooled 

OR=1.11 [95% CI=1.01–1.21]) were most strongly associated with likelihood of 6-month 

praxis impairments. Of the data-driven predictors, only requiring carer support prior to 

admission was retained (pooled OR=0.88 [95% CI=0.74–1.03]).  

 The final optimism-adjusted praxis model showed poor to acceptable performance (C-

Statistic=0.60 [95% CI=0.53–0.65]; C-Slope=0.66 [95% CI=0.34–0.97]; CITL= -1.61 [95% 

CI= -1.85– -1.36]; Brier Score=0.06 [95% CI=0.03–0.07]; Nagelkerke’s R2=0.01). No 

predictor selection differences were observed in complete cases.   

 
Unadjusted relationships between predictor and outcome variables are in Tables S9–

S15. All model performance measures are in Table 3. Domain-specific calibration plots are in 

Figure 2 (see Figure S1 for complete case plots).  
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[Figure 2] 

[Table 3] 

 

External Validation 

External validation estimates are in Table 4. Model discrimination, calibration, and goodness-

of-fit was not largely discrepant in the OCS-Care dataset, suggesting good model 

performance across cohorts. By contrast, Language and Attention models demonstrated good 

discrimination and goodness-of-fit, however calibration was poor across all domains, 

particularly in Memory, Numeracy, Executive Function, and Praxis.   

In the binary overall PSCI model subgroup analyses (Table S16), performance did not 

vary by sex (Male C-Statistic=0.76 [0.67–0.83], Female C-Statistic=0.76 [0.66–0.84]). Model 

performance varied by age group (<60 years C-Statistic=0.76 [0.62–0.86], >60 years C-

Statistic=0.65 [0.48–0.78], >70 years C-Statistic=0.65 [0.49–0.78], >80 years C-

Statistic=0.71 [0.52–0.72]), and by level of acute PSCI (Mild acute PSCI C-Statistic=0.62 

[0.52–0.72]; Moderate-severe acute PSCI=0.72 [0.61–0.81]). We developed an online risk 

calculator of the binary overall PSCI model given its promising performance: https://ocs-

strokecogpredictor.shinyapps.io/OCS-StrokeCog-Predictor/  

 

[Table 4 here] 

 

Discussion 
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We developed and externally validated overall and domain-specific PSCI prediction models, 

utilising domain-specific acute cognitive information from a stroke-specific screen (OCS) 

alongside established PSCI predictors. To our knowledge, this is the first study to develop 

domain-specific PSCI clinical prediction models and use acute cognitive data as a predictor.  

 

Overall and Domain-Specific Model Performance 

Our models provided good explanatory power, with optimism-adjusted C-Slopes of 

0.95 and 0.76 for continuous and binary overall PSCI models, respectively. Compared to 

models of post-stroke decline and dementia (C-Statistic range=0.53–0.6619), our models 

comparatively perform better even when considering domain-specific models (C-Statistic 

range=0.60–0.77). Promisingly, in external data, overall PSCI model performance was 

comparable to internal validation, suggesting it could be used across different stroke cohorts.  

In domain-specific model performance, language, memory, attention and executive 

function models were at least comparable to overall PSCI models (C-Statistics=0.71–0.77). 

However, numeracy and praxis domain models showed poorer performance (C-

Statistics=0.60–0.69; Nagelkerke’s R2<0.10), likely due to the lower prevalence of these 

impairments at 6-months41 and underpowered models. 

The optimism-adjusted C-Slopes for the majority of domain-specific models 

presented here (<0.90) suggests overfitting may have occurred. We applied penalization and 

shrinkage methods to account for the modest sample size42. Given the low explained variance 

in these PSCI domains (e.g., praxis), predictive accuracy will likely improve in recalibration 

in a larger sample.  

In external data, CITL estimates were consistently negative, suggesting systematic 

overprediction of 6-month PSCI risk. This is likely due to development data comprising a 
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more moderate-severe stroke cohort, whilst external data comprised a more mild stroke 

cohort. Additionally, C-Slopes in external data are larger, potentially indicating 

overshrinkage. Prediction models should be recalibrated across a range of stroke severities. 

 

Clinical Implementation of Overall and Domain-Specific PSCI Models  

Age, sex, years of education, NIHSS scores, recurrent stroke and stroke type contribute to 

PSCI21 and should be included in recalibrations of our models. Novel predictors should also 

be considered; our modelling approach includes data-driven predictors to allow for routine 

model updating. This approach identified potential predictors for recalibration (i.e., requiring 

carer support pre-stroke and multimorbidity) that are excluded from PSCI prediction 

modelling9,19,43,44. Crucially, we selected predictors available in electronic health records. 

PSCI models often include predictors not routinely available at deployment9,10,19. In the UK 

specifically, predictor selection should guided by the National Clinical Guideline for Stroke25 

such as including acute cognitive assessment, as these are more likely to available. Other 

biopsychosocial (e.g., white matter hyperintensities, socioeconomic status) and clinical (e.g., 

amount/intensity of neurorehabilitation offered) predictors may improve model performance, 

however these may be less available or have significant economic considerations. For 

example, imaging-based data improves PSCI prediction models45, however behavioural data 

(e.g., cognitive assessments) is considerably more affordable and feasible to implement46.  

As typical for electronic health record data, NIHSS and mRS scores had large 

amounts of missingness. Imputation methods should be considered at deployment36. 

Collecting feedback on model usability given predictor missingness (e.g., Archer et al.47) 

would aid implementation.  
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Role of Overall and Domain-Specific Clinical Prediction Models in PSCI Prognoses 

Domain-specific clinical prediction models may offer more meaningful PSCI prognoses. 

Though PSCI rates are highest during acute stroke, early PSCI may be reversible48 and 

information about likely 6-month outcomes is valuable to stroke patients49. Qualitative 

research suggests that focusing solely on cognitive decline as a possible PSCI outcome (e.g., 

Hbid et al.9) may cause undue concern or at best be irrelevant50. Stroke survivors and families 

commonly report wanting personalized information about managing cognitive changes49. Our 

models are an essential first step to providing person-specific and cognitive domain-specific 

trajectories.  

 

Strengths and Limitations 

A notable strength is using the OCS, a stroke-specific PSCI measure rather than cognitive 

decline or dementia. The OCS’ minimisation of confounds, brief administration time, and 

information on Language, Memory, Attention, Numeracy, Executive Function and Praxis  

make it a credible candidate for PSCI model development.  

Low prevalence of certain domain-specific outcomes (numeracy, executive function, 

and praxis) restricted model accuracy. Less prevalent impairments require substantial sample 

sizes for sufficient development. Finally, as typical for new prediction models, our domain-

specific models require recalibration.  

 

Future Domain-Specific PSCI models 

Future domain-specific PSCI models could consider how combinations of specific 

cognitive impairments influence performance. Overall PSCI models assume multiple within-
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domain and multidomain impairments have equal additive contributions to outcomes. 

Specific impairment combinations (e.g., language and executive function) could affect 

outcomes, given differential correlations between cognitive domains13. Developing within-

domain models (e.g., sentence reading model vs language impairment model) in sufficiently 

large datasets may be helpful, given varying recovery within domains4,13. Finally, predictor 

selection should be carefully considered. Acute cognition best explains long-term PSCI21 

with established predictors other than age explaining little variance13,44. Less frequently 

researched PSCI domains (i.e., numeracy, executive function, and praxis) may particularly 

benefit from data-driven predictors.  

 

Conclusion 

We demonstrate that acute cognitive information improves prediction of overall and domain-

specific 6-month PSCI. Overall 6-month PSCI models show promise in external data. Our 

model development process allows for future inclusion of novel data-driven predictors. 

Domain-specific models should be recalibrated to better inform PSCI outcomes.  
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Participants (N=430)  Min-Max 

Sex–n (%) 
     Male 
     Female 

 
230 (53.5%) 
200 (46.5%) 

 

Age–Mean (SD) 73.8 (12.5) 18–95 
Education Years–Mean (SD) 12.3 (3.6) 0–23 
Stroke Type–n (%) 
     Ischaemic 
     Haemorrhagic 

 
362 (84.2%) 
68 (15.8%) 

 

Lesion Hemisphere–n (%) 
     Left 
     Right 
     Bilateral 
     Undetermined from scan 

 
153 (35.6%) 
168 (39.1%) 
34 (7.9%) 

75 (17.4%) 

 

First or Recurrent Stroke–n (%) 
     First 
     Recurrent 

 
292 (67.9%) 
138 (32.1%) 

 

Acute NIHSS–Mean (SD) 6.8 (6.1) 0–30 
Table 1. Participant demographics.  
NIHSS=National Institute of Health Stroke Severity 
 

 

 

 

 

 

 

 

 

 

 

 Overall Score (severity- Any cognitive impairment  
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continuous) (binary) 
B [95% CI] p-value OR [95% CI] p-value 

Clinically Relevant Predictors 
Intercept -0.05 [-0.16–0.06] 0.33 0.12 [0.02–0.72] <0.05 
Stroke Age 0.001 [0.001–0.003] <0.01 0.93 [0.92–0.93] <0.001 
Sex (Female) 0.01 [-0.01–0.03] 0.38 0.94 [0.87–1.03] 0.57 

Education Years -0.002 [-0.01–0.001] 0.19 0.91 [0.89–0.92] 0.08 
NIHSS 0.001 [-0.005–0.001] 0.55 0.92 [0.91–0.93] 0.59 
Acute Rankin -0.002 [-0.02–0.01]  0.74 0.93 [0.89–0.98] 0.57 
Hemisphere 
    Right 
    Bilateral 
    Undetermined from 
Scan 

 
0.01 [-0.02–0.03] 
-0.04 [-0.09–0.002] 
0.01 [-0.03–0.04] 

 
0.63 
0.06 
0.73 

 
0.93 [0.84–1.02] 
0.75 [0.64–0.88] 
0.86 [0.76–0.97] 

 
0.89 

<0.05 
0.32 

First/Recurrent Stroke 
    Recurrent Stroke 

 
0.02 [-0.01–0.05] 

 
0.14 

 
1.01 [0.92–1.10] 

 
<0.05 

Stroke Type 
    Haemorrhagic 

 
-0.02 [-0.05–0.01] 

 
0.22 

 
0.89 [0.80–1.01] 

 
0.67 

Acute Proportion OCS 
Tasks Impaired 

 
0.31 [0.26–0.37] 

 
<0.001 

 
1.62 [1.35–1.95] 

 
<0.001 

Data Driven Predictors 
Independence Pre-
Admission  
   Carer Support 
   Family Support 

 
 
0.09 [0.04–0.13] 
0.03 [-0.02–0.09] 

 
 

<0.001 
0.24 

 
 

-- 
-- 

 
 

-- 
-- 

Table 2. Pooled model coefficients of continuous and binary overall PSCI models. Shrinkage was 
applied to coefficients using the optimism-adjusted C-Slope. For categorical variables stroke 
hemisphere and independence pre-admission, reference categories were left-hemisphere stroke and 
independent pre-admission, respectively.  
NIHSS=National Institute of Health Stroke Severity; OCS=Oxford Cognitive Screen 
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Model Estimate 
Model 

Performance  
[95% CI] 

Average  
Optimism 
 [95% CI] 

Optimism-Adjusted 
Performance  

[95% CI] 

Overall PSCI 
(Continuous) 

C-Slope 
CITL 
MSE 
Adjusted R2 

1 [0.88–1.12] 
0.00 [-0.0001–0.0001] 
0.02 [-0.05–0.08] 
0.38 [0.31–0.45] 

0.05 
-0.007 
0.00 
0.05 

0.95  
-0.04 
0.02 
0.32 

Any domain 
impairment 
(Binary) 

C-Statistic 
C-Slope 
CITL 
Brier Score 
E/O 
Nagelkerke’s R2 

0.78 [0.73–0.83] 
1.04 [0.85–1.22] 
0.0001 [-0.04–0.04] 
0.17 [0.15–0.19] 
1 [1–1] 
0.28 

0.02 [0.02–0.03] 
0.12 [0.10–0.12] 
1.83 [1.58–2.04] 
0.05 [0.04–0.05] 
0.13 [0.06–0.18] 
0.06 [0.05–0.07] 

0.76 [0.71–0.80] 
0.92 [0.74–1.09] 
-1.84 [-2.08– -1.62] 
0.12 [0.10–0.14] 
0.87 [0.82–0.94] 
0.21 

Language 

C-Statistic 
C-Slope 
CITL 
Brier Score 
E/O 
Nagelkerke’s R2 

0.80 [0.80–0.81] 
1.01 [1.00–1.01] 
0.0001 [0.0001–0.0001] 
0.16 [0.16–0.17] 
1 [1–1] 
0.32  

0.03 [0.03–0.04] 
0.11 [0.10–0.11] 
0.99 [0.79–1.19] 
0.06 [0.06–0.07] 
0.00 [-0.12–0.12] 
0.07 [0.07–0.08] 

0.77 [0.72–0.81] 
0.90 [0.74–1.05] 
-0.99 [-1.19– -0.79] 
0.10 [0.08–0.12] 
1.00 [0.88–1.12] 
0.25  

Memory 

C-Statistic 
C-Slope 
CITL 
Brier Score 
E/O 
Nagelkerke’s R2 

0.76 [0.75–0.77] 
1.00 [0.99–1.01] 
-0.0001 [-0.0001- -0.0001] 
0.17 [0.17–0.17] 
1 [1–1] 
0.26  

0.05 [0.05–0.05] 
0.13 [0.11–0.13] 
0.92 [1.13–0.72] 
0.08 [0.07–0.08] 
0.001 [-0.13–0.13] 
0.09 [0.09–0.10] 

0.71 [0.65–0.75] 
0.88 [0.70–1.06] 
-0.92 [-1.13– -0.72] 
0.09 [0.07–0.11] 
0.99 [0.87–1.13] 
0.16 

Attention  

C-Statistic  
C-Slope 
CITL 
Brier Score 
E/O 
Nagelkerke’s R2 

0.78 [0.77–0.79] 
1.01 [1.01–1.01] 
-0.0001 [-0.0001– -0.0001] 
0.17 [0.17–0.18] 
1 [1–1] 
0.28 

0.04 [0.03–0.04] 
0.13 [0.12–0.14] 
1.28 [1.07–1.48] 
0.07 [0.07–0.08] 
0.00 [-0.12–0.12] 
0.08 [0.08–0.09] 

0.74 [0.69–0.78] 
0.88 [0.70–1.06] 
-1.28 [-1.48– -1.07] 
0.10 [0.08–0.11] 
1.00 [0.88–1.12] 
0.20 

Numeracy 

C-Statistic 
C-Slope 
CITL 
Brier Score 
E/O 
Nagelkerke’s R2 

0.74 [0.73–0.75] 
1.01 [0.99–1.02] 
-0.0001 [-0.0001- -0.0001] 
0.14 [0.14–0.14] 
1 [1–1] 
0.17  

0.05 [0.05–0.05] 
0.18 [0.17–0.19] 
1.37 [1.13–1.61] 
0.07 [0.06–0.07] 
0.00 [-0.18–0.18] 
0.07 [0.07–0.08] 

0.69 [0.63–0.74] 
0.83 [0.58–1.08] 
-1.37 [-1.61– -1.13] 
0.07 [0.06–0.09] 
1.00 [0.82–1.18] 
0.10 

Executive 
Function 

C-Statistic 
C-Slope 
CITL 
Brier Score 
E/O 
Nagelkerke’s R2 

0.75 [0.74–0.75] 
0.99 [0.98–1.00] 
-0.0001 [-0.0001- -0.0001] 
0.16 [0.16–0.16] 
1 [1–1] 
0.19 

0.04 [0.04–0.04] 
0.18 [0.16–0.19] 
0.98 [0.97–0.99] 
0.06 [0.06–0.07] 
0.24 [0.04–0.44] 
0.06 [0.06–0.07] 

0.71 [0.65–0.76] 
0.81 [0.57–1.05] 
-1.55 [-1.78– -1.32] 
0.09 [0.07–0.11] 
1.24 [1.04–1.44] 
0.13 

Praxis 

C-Statistic 
C-Slope 
CITL 
Brier Score 
E/O 
Nagelkerke’s R2 

0.69 [0.63–0.75] 
0.99 [0.97–1.01] 
-0.0001 [-0.03–0.03] 
0.14 [0.14–0.15] 
1 [1–1] 
0.13  

0.09 [0.09–0.10] 
0.33 [0.32–0.34] 
1.61 [1.82–1.33] 
0.09 [0.09–0.10] 
0.00 [-0.19–0.19] 
0.12 [0.11–0.12] 

0.60 [0.53–0.65] 
0.66 [0.34–0.97] 
-1.61 [-1.85– -1.36] 
0.06 [0.03–0.07] 
1.00 [0.81–1.19] 
0.01 

Table 3. Performance metrics all final models pooled across 20 imputed datasets.  
CITL=Calibration-in-the-large; E/O=Expected:Observed Ratio; C-Slope=Calibration Slope 
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Model Estimate 
Model 

Performance 
[95% CI] 

Overall PSCI (Continuous) 

C-Slope 
CITL 
MSE 
Adjusted R2 

1.26 [1.03–1.49] 
-0.08 [-0.04– -0.12] 
0.01 [0.009–0.017] 
0.46 

Any domain impairment 
(Binary) 

C-Statistic 
C-Slope 
CITL 
Nagelkerke’s R2 

0.74 [0.67–0.79] 
1.01 [0.67–1.35] 
-0.06 [-0.33–0.22] 
0.22 

Language 

C-Statistic 
C-Slope 
CITL 
Nagelkerke’s R2 

0.77 [0.69–0.84] 
6.10 [4.09–8.13] 
-2.69 [-3.31– -2.08] 
0.23 

Memory 

C-Statistic 
C-Slope 
CITL 
Nagelkerke’s R2 

0.62 [0.52–0.71] 
3.92 [1.59–6.25] 
-2.31 [-2.98–1.64] 
0.12 

Attention  

C-Statistic 
C-Slope 
CITL 
Nagelkerke’s R2 

0.75 [0.66–0.82] 
5.97 [3.62–8.33] 
-2.78 [-3.50– -2.07]  
0.20 

Numeracy 

C-Statistic 
C-Slope 
CITL 
Nagelkerke’s R2 

0.61 [0.51–0.69] 
12.39 [8.26–16.53] 
-3.46 [-4.30– -2.62] 
0.03 

Executive Function 

C-Statistic 
C-Slope 
CITL 
Nagelkerke’s R2 

0.74 [0.62–0.83] 
8.67 [4.48– 12.86] 
-3.37 [-4.25– -2.50] 
0.03 

Praxis 

C-Statistic 
C-Slope 
CITL 
Nagelkerke’s R2 

0.65 [0.55–0.75] 
12.33 [3.90–20.76] 
-3.42 [-4.55– -2.29] 
0.08 

Table 4. Model performance following external validation across 20 imputed datasets using OCS-Care data.  
CITL=Calibration-in-the-large; C-Slope=Calibration Slope 
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Figure 1. Calibration plot of any 6-month PSCI (0=no impairment, 1=any impairment) in complete 
cases (left; N=237) and across 20 imputed datasets.  
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Figure 2. Calibration plots of 6-month domain-specific impairments (0 = no impairment, 1 = any 
impairment) across 20 imputed datasets.  
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